Mitophagy in human health, ageing and disease – Nature.com

Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 10131022 (2018).

Article CAS PubMed Google Scholar

Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525528 (2015).

Article CAS PubMed Google Scholar

Lpez-Otn, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243278 (2023).

Article PubMed Google Scholar

Lpez-Otn, C. & Kroemer, G. Hallmarks of health. Cell 184, 3363 (2021).

Article PubMed Google Scholar

Esteban-Martnez, L. et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 16881706 (2017).

Article PubMed PubMed Central Google Scholar

Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232235 (2008).

Article CAS PubMed PubMed Central Google Scholar

McWilliams, T. G. et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333345 (2016).

Article CAS PubMed PubMed Central Google Scholar

Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685696 (2015).

Article CAS PubMed PubMed Central Google Scholar

Sekine, S. & Youle, R. J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol. 16, 2 (2018).

Article PubMed PubMed Central Google Scholar

Tereak, P. et al. Regulation of PRKN-independent mitophagy. Autophagy 18, 2439 (2022).

Article PubMed Google Scholar

Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309314 (2015).

Article CAS PubMed PubMed Central Google Scholar

Zhang, T. et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J. Biol. Chem. 291, 2161621629 (2016).

Article CAS PubMed PubMed Central Google Scholar

Lee, Y., Lee, H.-Y., Hanna, R. A. & Gustafsson, . B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301, H1924H1931 (2011).

Article CAS PubMed PubMed Central Google Scholar

Lou, G. et al. Mitophagy and neuroprotection. Trends Mol. Med. 26, 820 (2020).

Article CAS PubMed Google Scholar

Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A. & McBride, H. M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PloS ONE 7, e52830 (2012).

Article CAS PubMed PubMed Central Google Scholar

Roberts, R. F., Tang, M. Y., Fon, E. A. & Durcan, T. M. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles. Int. J. Biochem. Cell Biol. 79, 427436 (2016).

Article CAS PubMed Google Scholar

Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135141 (2012).

Article CAS PubMed Google Scholar

McLelland, G.-L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282295 (2014).

CAS PubMed PubMed Central Google Scholar

Nicols-vila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94109 (2020).

Article PubMed Google Scholar

Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).

Article CAS PubMed PubMed Central Google Scholar

Rosina, M. et al. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab. 34, 533548 (2022).

Article CAS PubMed PubMed Central Google Scholar

Davis, C. O. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 96339638 (2014).

Article CAS PubMed PubMed Central Google Scholar

Melentijevic, I. et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542, 367371 (2017).

Hao, T. et al. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion. Nat. Commun. 14, 4105 (2023).

Article CAS PubMed PubMed Central Google Scholar

Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ERmitochondrial contact site under hypoxic conditions. EMBO J. 35, 13681384 (2016).

Article CAS PubMed PubMed Central Google Scholar

Pryde, K. R., Smith, H. L., Chau, K.-Y. & Schapira, A. H. V. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 213, 163171 (2016).

Article CAS PubMed PubMed Central Google Scholar

Oshima, Y. et al. Parkin-independent mitophagy via Drp1-mediated outer membrane severing and inner membrane ubiquitination. J. Cell Biol. 220, e202006043 (2021).

Article CAS PubMed PubMed Central Google Scholar

Munson, M. J. et al. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat. Commun. 12, 6101 (2021).

Article CAS PubMed PubMed Central Google Scholar

Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 48614870 (2010).

Article CAS PubMed PubMed Central Google Scholar

Ziviani, E. & Whitworth, A. J. How could parkin-mediated ubiquitination of mitofusin promote mitophagy? Autophagy 6, 660662 (2010).

Article PubMed Google Scholar

Palikaras, K. & Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182188 (2014).

Article CAS PubMed Google Scholar

Cant, C. & Auwerx, J. PGC-1, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98105 (2009).

Article PubMed PubMed Central Google Scholar

Malik, N. et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 380, eabj5559 (2023).

Article CAS PubMed Google Scholar

Lionaki, E., Markaki, M., Palikaras, K. & Tavernarakis, N. Mitochondria, autophagy and age-associated neurodegenerative diseases: new insights into a complex interplay. Biochim. Biophys. Acta 1847, 14121423 (2015).

Article CAS PubMed Google Scholar

Laker, R. C. et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat. Commun. 8, 548 (2017).

Article PubMed PubMed Central Google Scholar

Iorio, R., Celenza, G. & Petricca, S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells 11, 30 (2021).

Article PubMed PubMed Central Google Scholar

DAmico, D. et al. The RNA-binding protein PUM2 impairs mitochondrial dynamics and mitophagy during aging. Mol. Cell 73, 775787 (2019).

Article PubMed PubMed Central Google Scholar

Shin, H. J. et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J. Clin. Med. 8, 1849 (2019).

Article CAS PubMed PubMed Central Google Scholar

Kuroda, Y. et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum. Mol. Genet. 15, 883895 (2006).

Article CAS PubMed Google Scholar

Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162184 (2013).

Article CAS PubMed Google Scholar

Gaitanos, G. C., Williams, C., Boobis, L. H. & Brooks, S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 75, 712719 (1993).

Article CAS PubMed Google Scholar

Sin, J. et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy 12, 369380 (2016).

Article CAS PubMed Google Scholar

Hong, X. et al. Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy. Cell Stem Cell 29, 12981314 (2022).

CAS Google Scholar

Leduc-Gaudet, J.-P. et al. Parkin overexpression attenuates sepsis-induced muscle wasting. Cells 9, 1454 (2020).

Article CAS PubMed PubMed Central Google Scholar

Leduc-Gaudet, J.-P. et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 6, 1792317937 (2015).

Article PubMed PubMed Central Google Scholar

Garca-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 3742 (2016).

Article PubMed Google Scholar

Luan, P. et al. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci. Transl. Med. 13, eabb0319 (2021).

Article CAS PubMed Google Scholar

Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879888 (2016).

Article CAS PubMed Google Scholar

Fang, E. F. et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci. Rep. 7, 46208 (2017).

Article CAS PubMed PubMed Central Google Scholar

DAmico, D. et al. Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell 21, e13662 (2022).

Article PubMed PubMed Central Google Scholar

Choi, S. et al. 31P magnetic resonance spectroscopy assessment of muscle bioenergetics as a predictor of gait speed in the Baltimore Longitudinal Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 71, 16381645 (2016).

Link:
Mitophagy in human health, ageing and disease - Nature.com

Related Posts