Category Archives: Adult Stem Cells

Century Therapeutics to Present at the 63rd American Society of Hematology Annual Meeting and Host Virtual Research & Development Update – Yahoo…

PHILADELPHIA, Nov. 04, 2021 (GLOBE NEWSWIRE) -- Century Therapeutics (NASDAQ: IPSC), an innovative biotechnology company developing induced pluripotent stem cell (iPSC)-derived cell therapies in immuno-oncology, today announced that preclinical data from the Companys CNTY-101 program and CAR-iT platform will be presented in two posters at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition, on December 11-14, 2021 in Atlanta, Georgia and virtually.

The Company also announced today that it will host a virtual research & development update on Thursday, December 16, 2021 from 8:00 AM - 9:30 AM EST to share progress on its iPSC technology platform and pipeline. Eduardo Sotomayor, M.D., director of the Cancer Institute at Tampa General Hospital, will discuss the current treatment paradigm for B-cell malignancies. For additional information on how to access the event, please visit the Events & Presentations section of Centurys website.

Details of the two poster presentations are as follows:

Abstract Number: 1729 Title: Development of Multi-Engineered iPSC-Derived CAR-NK Cells for the Treatment of B-Cell Malignancies Session Name: 703. Cellular Immunotherapies: Basic and Translational: Poster I Session Date: Saturday, December 11, 2021 Session Time: 5:30 PM - 7:30 PM Presenter: Luis Borges, Chief Scientific Officer, Century Therapeutics

Abstract Number: 2771 Title: Induced Pluripotent Stem Cell-Derived Gamma Delta CAR-T Cells for Cancer Immunotherapy Session Name: 703 Cell Therapies: Basic and Translational Session Date: Sunday, December 12, 2021 Session Time: 6:00 PM 8:00 PM Presenter: Mark Wallet, Vice President, Immuno-Oncology, Century Therapeutics

Full abstracts are currently available through the ASH conference website.

About Century Therapeutics

Century Therapeutics (NASDAQ: IPSC) is harnessing the power of adult stem cells to develop curative cell therapy products for cancer that we believe will allow us to overcome the limitations of first-generation cell therapies. Our genetically engineered, iPSC-derived iNK and iT cell product candidates are designed to specifically target hematologic and solid tumor cancers. We are leveraging our expertise in cellular reprogramming, genetic engineering, and manufacturing to develop therapies with the potential to overcome many of the challenges inherent to cell therapy and provide a significant advantage over existing cell therapy technologies. We believe our commitment to developing off-the-shelf cell therapies will expand patient access and provide an unparalleled opportunity to advance the course of cancer care. For more information on Century Therapeutics please visit http://www.centurytx.com.

Story continues

Century Therapeutics Forward-Looking Statement

This press release contains forward-looking statements within the meaning of, and made pursuant to the safe harbor provisions of, The Private Securities Litigation Reform Act of 1995. All statements contained in this press release, other than statements of historical facts or statements that relate to present facts or current conditions, including but not limited to, statements regarding our clinical development plans, are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance, or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. In some cases, you can identify forward-looking statements by terms such as may, might, will, should, expect, plan, aim, seek, anticipate, could, intend, target, project, contemplate, believe, estimate, predict, forecast, potential or continue or the negative of these terms or other similar expressions. The forward-looking statements in this presentation are only predictions. We have based these forward-looking statements largely on our current expectations and projections about future events and financial trends that we believe may affect our business, financial condition, and results of operations. These forward-looking statements speak only as of the date of this press release and are subject to a number of risks, uncertainties and assumptions, some of which cannot be predicted or quantified and some of which are beyond our control, including, among others: our ability to successfully advance our current and future product candidates through development activities, preclinical studies, and clinical trials; our reliance on the maintenance of certain key collaborative relationships for the manufacturing and development of our product candidates; the timing, scope and likelihood of regulatory filings and approvals, including final regulatory approval of our product candidates; the impact of the COVID-19 pandemic on our business and operations; the performance of third parties in connection with the development of our product candidates, including third parties conducting our future clinical trials as well as third-party suppliers and manufacturers; our ability to successfully commercialize our product candidates and develop sales and marketing capabilities, if our product candidates are approved; and our ability to maintain and successfully enforce adequate intellectual property protection. These and other risks and uncertainties are described more fully in the Risk Factors section of our most recent filings with the Securities and Exchange Commission and available at http://www.sec.gov. You should not rely on these forward-looking statements as predictions of future events. The events and circumstances reflected in our forward-looking statements may not be achieved or occur, and actual results could differ materially from those projected in the forward-looking statements. Moreover, we operate in a dynamic industry and economy. New risk factors and uncertainties may emerge from time to time, and it is not possible for management to predict all risk factors and uncertainties that we may face. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

For More Information: Company: Elizabeth Krutoholow investor.relations@centurytx.comInvestors: Melissa Forst/Maghan Meyers century@argotpartners.comMedia: Joshua R. Mansbach century@argotpartners.com

Originally posted here:
Century Therapeutics to Present at the 63rd American Society of Hematology Annual Meeting and Host Virtual Research & Development Update - Yahoo...

BioRestorative Therapies Prices $23 Million Public Offering – GlobeNewswire

Common stock will begin trading on The Nasdaq Capital Market under the ticker symbol BRTX November 5, 2021

MELVILLE, N.Y., Nov. 04, 2021 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (the Company") (NASDAQ:BRTX), a life sciences company focused on adult stem cell-based therapies, today announced the pricing of the underwritten public offering of 2,300,000 units, each consisting of one share of its common stock and a warrant to purchase one share of its common stock at a per unit price of $10.00. The warrants have a per share exercise price of $10.00, are exercisable immediately, and expire five years from the date of issuance. The aggregate gross proceeds from the offering are expected to total $23 million, before deducting the underwriting discounts and commissions and estimated offering expenses payable by the Company and without giving effect to proceeds from any subsequent exercise of warrants.

As a result of the offering, the Companys common stock will become listed on the Nasdaq Capital Market and will trade under the ticker symbol BRTX beginning November 5, 2021. The offering is expected to close on or about November 9, 2021, subject to customary closing conditions. In addition, the Company has granted to the underwriters of the offering a 45-day option to purchase up to 345,000 additional shares and/or additional warrants to purchase up to 345,000 shares of common stock to cover over-allotments, if any.

Roth Capital Partners is acting as sole manager for the offering.

BioRestorative Therapies advancement to The Nasdaq Capital Market continues a year of growth and accomplishment for our company during which time we emerged from Chapter 11 reorganization, transformed our business, strengthened our financial position and enhanced our IP position said Lance Alstodt, President and Chief Executive Officer of BioRestorative.

The securities described above are being sold by BioRestorative Therapies pursuant to a registration statement on Form S-1 (Registration No. 333-258611) that was previously filed by BioRestorative Therapies with the Securities and Exchange Commission (the SEC) and declared effective on November 4, 2021 and an additional registration statement filed pursuant to Rule 462(b), which became effective upon filing. This press release shall not constitute an offer to sell or the solicitation of an offer to buy these securities, nor shall there be any sale of these securities in any state or jurisdiction in which such offer, solicitation, or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.

The offering is being made only by means of the written prospectus forming part of the effective registration statement. Electronic copies of the accompanying prospectus may be obtained, when available, by contacting Roth Capital Partners, 888 San Clemente, Newport Beach, CA 92660, Attn: Prospectus Department, telephone: 800-678-9147, or email at rothecm@roth.com, or by visiting the SECs website at http://www.sec.gov.

About BioRestorative Therapies, Inc. BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders or as a complementary therapeutic to a surgical procedure. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat chronic lower back pain arising from degenerative disc disease.

Metabolic Program (ThermoStem): We are developing a cell-based therapy candidate to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in animals may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, those set forth in the Company's latest Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT:

Email: ir@biorestorative.com

See more here:
BioRestorative Therapies Prices $23 Million Public Offering - GlobeNewswire

Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World – Intelligent Living

Our Need For Things Lab-Grown

What was once something of the movies objects forming themselves in thin air is real now. Various things can be grown in a laboratory setting, some even on a large scale for commercial distribution. This technology could be a big part of the solution to establish sustainable societies. At the moment, we harvest organs from the deceased, rear animals for meat and dairy, destroy forests by cutting down trees for wood, mine the earth for diamonds, and the list goes on. All these things can already be lab-made or are on the brink of reality.

Once these staples of society can be mass-made affordably, they could supply the world while minimally impacting the natural environment. Acres of land wouldnt need to be used for food and building materials, meaning deforestation can cease, for starters. Looking at lab-grown meats alone: they require 99% less land than traditionally farmed meats, generate up to 96% fewer emissions, use up to 96% less water, and no animals need to be slaughtered in the process.

Naturally, there will be short-term disruptions, particularly job-related. For example, eco-friendly agriculture will mean fewer farms and agriculture jobs. But new employment opportunities will emerge in the scientific and technical fields related to lab-grown foods.

Whats the difference between 3D printing (additive manufacturing) and lab-grown, you may be wondering? 3D printing uses material as ink anything from plastic to cellular material whereas lab-grown materials start off as a bit of material that multiplies on its own, replicating natural processes. Thus, lab-grown material has the same cellular structure as the naturally occurring material and mimics the natural formation process but within a much shorter period.

In the future, we are bound to see various lab-grown breakthroughs coming from the medical field. Eventually, there should be alternative sources for organs and blood cultured from stem cells. In addition, there will likely be lab-produced medicines (lotions, ointments, balms, nutraceuticals, energy drinks, etc.), breast milk, and more.

Scientists are well on the way to functioning full-sized organs, with several innovations in fully functional mini-organs, or organoids, making headlines in recent years. For now, these organoids are tools for testing new drugs and studying human diseases. But soon enough, these research teams will take the technology to the next level and develop organs that can be used for implantation when someone needs an organ replacement. So far, the brain, liver, lungs, thymus, heart, blood, and blood vessels are among the growing list of lab-grown medical accomplishments.

A team of scientists from the University of Pittsburgh managed to grow miniature human livers using induced pluripotent stem cells (IPSCs) made from human skin cells. Meaning, in the far future, someone needing a liver transplant could have the organ grown from their own skin cells! This method may even reduce the chances of a patients immune system rejecting the new tissue because it would recognize the cells as self. Whats more, their lab-grown livers matured in under a month compared to two years in a natural environment.

The scientists tested their fully-functional mini-livers by transplanting them into rats. In this proof-of-concept study, the lab-made organs survived for four days inside their animal hosts, secreting bile acids and urea like a healthy liver would.

A research team led by the University Hospital Dsseldorf induced pluripotent stem cells (iPSCs) to grow into pea-sized brain organoids with rudimentary eye structures that sense light and send signals to the rest of the brain. They used skin cells taken from adult donors, reverted them back into stem cells, and placed them into a culture mimicking a developing brains environment, which encourages them to form specific brain cells. Their mini-brains grew optic cups, vision structures of the eye found where the optic nerve and retina meet. The cups even grew symmetrically, as eyes would, and were functional!

Jay Gopalakrishnan, a senior author of the study, said:

Our work highlights the remarkable ability of brain organoids to generate primitive sensory structures that are light sensitive and harbor cell types similar to those found in the body. These organoids can help to study brain-eye interactions during embryo development, model congenital retinal disorders, and generate patient-specific retinal cell types for personalized drug testing and transplantation therapies.

This achievement is the first time an in vitro system shows nerve fibers of retinal ganglion cells reaching out to connect with their brain target an essential aspect of the mammalian brain.

Scientists from Michigan State University developed functional miniature human heart models grown from stem cells complete with all primary heart cell types and with functioning chambers and vascular tissue. The models could help researchers better understand how hearts develop and provide an ethical platform for treating disease and testing drugs or new treatments.

The teams lab-grown mini hearts follow the fetal development of a human heart, offering a new view into that process. The organoids start beating by day six, and they grow into spheres approximately 1 mm (0.4 in) wide, with all significant cardiac cell types and multiple internal chambers by day 15.

Aside from research purposes, full-sized lab-grown hearts could solve the shortage problem of hearts the world faces today. More than 25 million people suffer heart failure each year. In the United States, approximately 2,500 of the 4,000 people in line for heart transplants receive them. That means almost 50% of the people needing a new heart to keep them alive wont get it.

Unlimited supplies of blood for transfusions are possible with lab-growing technology. Blood has been challenging to grow in the lab. However, real breakthroughs in creating artificial blood have sprung up!

A couple of years ago, Japanese researchers developed universal artificial blood that worked for all blood types. It even has a shelf life of one year stored at room temperature, therefore eliminating the problem of identifying blood type and storage simultaneously.

Like that wasnt impressive enough, last year, a team of scientists from the South China University of Technology, the University of New Mexico, and Sandia National Laboratories created artificial red blood cells (RBCs) with more potential capabilities than real ones! The synthetic RBCs mimic the properties of natural ones such as oxygen transport, flexibility, and long circulation times with the addition of a few new tricks up their sleeves, such as toxin detection, magnetic targeting, and therapeutic drug delivery. In addition, blood contains platelets and red blood cells, so these new cells could be used to make superior artificial blood.

Researchers from the University of British Columbia successfully coaxed stem cells to grow into human blood vessels. The thing that is so remarkable about this study is that the system of blood vessels grown in the lab is virtually identical to the ones currently transporting blood throughout the body. They are using this now to generate new leads in diabetes treatment. They put the lab-grown blood vessels in a petri dish designed to mimic a diabetic environment.

The global demand for meat and dairy is expected to rise by almost 90% over the next 30 years, regardless of the need to cut back on meat consumption. The risk of environmental damage and the rising food demand itself is a problem many have recently addressed. Thats why companies worldwide are on the verge of scaling up all sorts of lab processes to produce various food items, including steaks, chicken, cheese, milk, ice cream, fruits, and more.

Thinktank RethinkX even published research suggesting that proteins from precision fermentation (lab-grown protein using microbes) will be about ten times cheaper than animal protein by 2035, resulting in a collapse of the livestock industry. It says the new food economy will subsequently:

replace an extravagantly inefficient system that requires enormous quantities of inputs and produces considerable amounts of waste with one that is precise, targeted, and tractable. [Using tiny land areas, with a massively reduced requirement for water and nutrients, it] presents the most significant opportunity for environmental restoration in human historyFarm-free food offers hope where hope is missing. We will soon be able to feed the world without devouring it.

The worlds pace of meat consumption is placing a significant strain on the environment. Many studies show that eating less meat is just as crucial to slowing down global warming as using solar panels and zero-emissions vehicles. Unfortunately, animal farming generates an obscene amount of greenhouse gas emissions. Yet again, scientists come to the rescue, working diligently to fix this situation.

Over a decade ago, researchers created something akin to ground beef, but the complex structure of steak didnt happen until recently, with Aleph Farms debuting its thick-cut rib-eye steak in 2018. Furthermore, that first burger cost around US$345,000, but now the price has dropped dramatically to the point that lab-grown chicken is to be commercially produced and hit grocery store shelves as of this year.

SuperMeat, Eat Just, and Aleph Farms are todays most prominent startups working on getting lab-grown meats to people looking to lower their carbon and environmental footprints. In addition, their products are made from actual animal cells, so theyre real meat, but no animals had to be hurt or killed.

Speaking of Aleph Farms, the company also grew meat in space to show that it can even be done in a zero-gravity environment with limited resources.

Aside from Aleph Farms figuring out how to make steak like an authentic steak, a group of Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) researchers also devised a solution to the texture challenge. First, they made edible gelatin scaffolds that have the texture and consistency of real meat. Then, they grew rabbit and cow muscle cells on this scaffolding. The research demonstrates how realistic meat products are possible!

Parker and his Disease Biophysics Group developed a technique to produce the scaffolding. Its a fiber-production system inspired by cotton candy known as immersion Rotary Jet-Spinning (iRJS). It enabled the team to spin long nanofibers of a specific shape and size using centrifugal force. So, they spun food-safe gelatin fibers, creating the base upon which cells could grow.

Natural muscle tissue is composed of an extracellular matrix, which is the glue that holds the tissue together. As a result, it contributes to the texture of the meat. The spun gelatin fibers mimicked this extracellular matrix and provided the texture to make the lab-grown meat realistic. When the team seeded the fibers with animal (rabbit and cow) muscle cells, they anchored to the gelatin scaffolding and grew in long, thin structures, similar to real meat.

Meanwhile, Boston College developed a new, even greener technology that uses the skeleton of spinach leaves to support bovine animal protein growth. However, animal products arent eliminated from the process entirely. For example, lab-grown steak and chicken are created by painlessly harvesting muscle cells from a living cow, subsequently fed and nurtured to multiply and develop muscle tissue. But for this to have the same texture as real meat, the cells need structural support to flourish and are therefore placed in a scaffold.

Singapore is leading the way, becoming the first country in the world to approve the sale of Eat Justs cultured chicken. The company will start by selling nuggets at a restaurant. Meanwhile, SuperMeat has been handing out lab-grown chicken burgers in Israel for free. Theyre aiming to gain public acceptance of the idea.

The cultured chicken starts as a tiny number of harvested cells. Those cells are put into a bioreactor and fed the same nutrients the living animal would consume to grow. The cells multiply and turn into an edible portion of cultured chicken meat. The meats composition is identical to that of real chicken and offers the same nutritional value. And its cleaner because its antibiotic-free!

Labs are manufacturing dairy products by utilizing the fermentation process of living microbes to produce dairy proteins like whey and casein. These proteins are then used to make dairy products like butter, cheese, and ice cream. Two leading companies in this category are Imagindairy and Perfect Day, which already have several products on supermarket shelves in the United States.

Researchers havent figured out how to make fruits and vegetables yet, but a team is perfecting a cell cultivation process that generates plant biomass. The stuff tastes like the natural-grown product from which the cells were obtained and even exceeded its nutritional properties. Although, the texture of the biomass is different. For example, an apple isnt a solid apple akin to one grown from a tree. Instead, its like applesauce.

Lab-produced materials Including wood, diamonds, leather, glass, clothing, crystals, gels, cardboard, and plastics for making objects are either under development or already available. Many materials need to be taken from nature mined from the earth or cut down from forests. If they can be made in a lab instead, then people could leave nature alone!

A recent project led by a Ph.D. student at MIT paves the way for lab-grown wood one of the worlds most vital resources used to make paper, build houses, heat buildings, and so much more. The process begins with live plant cells cultivated in a growth medium coaxed using plant hormones to become wood-like structures. Next, a gel matrix is used to guide the shape of the cellular growth, and controlling the levels of plant hormones regulates the structural characteristics. Therefore, the technology could grow anything from tables and chairs to doors to boats and so on.

The environmental and socio-economic impact of traditionally mined diamonds has been exposed in recent years, and as awareness grows, the rising popularity of lab-grown diamonds does too. Mined diamonds are linked to bloody conflicts, and their excavation produces carbon emissions, requires substantial water use, and causes severe land disturbances.

Research has found that 1,000 tons of earth have to be shifted, 3,890 liters or more of water is used, and 108kg of carbon is emitted per one-carat stone produced. In addition, the traditional diamond mining industry causes irreversible damage to the environment, hence why, a decade ago, researchers started experimenting with how to grow them in the lab. Its been a feat a long time in the making, but we finally have lab-grown diamonds available for eco-conscious consumers to buy.

Diamonds are made of pure carbon. It takes extreme heat and pressure for carbon to crystalize. In nature, this happens hundreds of miles beneath the Earths surface. The ones being mined were shot out by a volcano millions of years ago. So how have scientists managed to hack such an intense and time-consuming process?

They began by investigating the mechanisms behind the diamond formation, zooming in at the atomic level. This led to the invention of a novel technology that utilizes the process of HPHT (high pressure, high temperature) to mimic the natural atmospheric conditions of diamond formation. Labs can use it to replicate the process and turn pure carbon into diamonds in 2-6 weeks.

Lab-grown gems are eco-friendly rocks, especially when theyre made entirely from the sky, like SkyDiamonds. Even the electricity used to grow its stones is from renewables, so theyll indeed be the worlds first zero-impact diamonds.

But how are the diamonds created out of thin air? They are made of carbon from the sky and rainwater. The sky mining facility is in Stroud. Energy is sourced from wind and sunlight. The CO2 is sourced directly from the air. Hydrogen is produced by splitting rainwater molecules in an electrolysis machine using renewable energy. The captured carbon and hydrogen are then used to make methane, used to grow the diamonds. The final product is a diamond anatomically identical to those mined from the ground. It is even accredited, fully certified, and graded by the International Gemological Institute.

Another company, Climeworks, is also making diamonds using carbon sucked from the sky. However, SkyDiamonds takes it a step forward by using rainwater and sunshine in the process.

The last lab-grown object were going to discuss is not something in the works, but an idea a fantastic and outlandish one thats jumping far into the future but was thought up in 2010 by Mercedes Benz. The luxury car companys ambitious BIOME idea shows just how wild imagination can get with lab-grown technology. It envisions a day when it can grow an entire supercar from scratch.

Mercedes-Benz explained when launching the concept:

The interior of the BIOME grows from the DNA in the Mercedes star on the front of the vehicle, while the exterior grows from the star on the rear. The Mercedes star is genetically engineered in each case to accommodate specific customer requirements, and the vehicle grows when the genetic code is combined with the seed capsule. The wheels are grown from four separate seeds.

This list of lab-grown possibilities is just the tip of the iceberg! Other materials in the pipeline include leather, chocolate, and silk. This intelligent technology can make anything a scientist can dream up! The only limit is the imagination and dedication of brilliant people.

See the rest here:
Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World - Intelligent Living

Probiotics Market to Experience Significant Growth during the Forecast Period 2021-2028 Bolivar Commercial – Bolivar Commercial

Probiotics Market is anticipated to observe growth during the forecast period due to growing demand at the end user level. The business report gives a clue about the uncertainties that may come up due to changes in business activities or introduction of a fresh product in the market. The facts and figures included to produce this report are based on the data collection modules with large sample sizes. It is a meticulous analysis of current scenario of the market, which takes into consideration several market dynamics. Probiotics Market Research study assists customers in understanding a range of drivers and restraints in theProbiotics Marketwhich impacts the market during forecast period.

In addition, the whole Probiotics Market report provides with the information about company profile, product specifications, capacity, production value, and market shares for each company for the year 2021 to 2028 with the help of competitive analysis study. A strong research methodology used in the report consists of data models that include market overview and guide, vendor positioning grid, market time line analysis, company positioning grid, company market share analysis, standards of measurement, top to bottom analysis and vendor share analysis. The world class Probiotics Market research report certainly helps to diminish business risk and failure.

DOWNLOAD FREE SAMPLE REPORT:https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-probiotics-market&Shiv

CAGR

Probiotics market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to account to USD 91.25 billion by 2027 growing at a CAGR of 7.12% in the above-mentioned forecast period. The growing popularity of probiotic dietary supplements among customers is driving the growth of the probiotics market.

The top most players with the entire requirement cover in this report:

The major players covered in the probiotics market report are Chr. Hansen Holding A/S, Yakult Honsha Co., Ltd, Nestl, DuPont, MORINAGA & CO., LTD., BioGaia AB, Protexin, Daflorn Probiotics UK. , DANONE, Yakult USA, Deerland Enzymes, Inc., UAS Laboratories, among other domestic and global players

Segmentation

Global Stem Cell Therapy Market By Type (Allogeneic Stem Cell Therapy, Autologous Stem Cell Therapy), Technology (Cell Acquisition, Cell Production, Cryopreservation, Expansion and Sub-Culture), Product (Adult Stem Cells, Human Embryonic Stem Cells, Induced Pluripotent Stem Cells), Applications (Musculoskeletal Disorders, Wounds, Injuries, Cardiovascular Diseases, Surgeries, Gastrointestinal Diseases, Other Applications), End Users (Therapeutic Companies, Cell And Tissues Banks, Tools And Reagent Companies, Service Companies), Country (U.S., Canada, Mexico, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia- Pacific, Brazil, Argentina, Rest of South America, South Africa, Saudi Arabia, UAE, Egypt, Israel, Rest of Middle East & Africa) Industry Trends and Forecast to 2027

Access Full TOC, Table & Figures:https://www.databridgemarketresearch.com/toc/?dbmr=global-probiotics-market&Shiv

The Report Consolidates All The Fundamental Factors:

The cutthroat scene gives intensive portion of the overall industry for driving business sector players as indicated by deals and volume produced. The report conveys a presence, contenders, and gross edge for each driving player. Besides, the report likewise cooks the natty gritty data about the essential angles, for example, drivers and limiting elements which will characterize the future development of the market. The report gives a serious scene to the main market players. The report shares restrictive experiences into the market to assist with keying players and new contestants comprehend the capability of interests in the Probiotics Market.

The report is an unobtrusive exertion of informed authorities and experts to convey market gauge and investigation. It highpoints the exceptional discernments conveyed by industry specialists. The report gives a natty gritty appraisal of key market elements and extensive data about the construction of the Probiotics Market industry. The report considers contending factors which is significant to take your business to the creative level. This archive is a splendid source that gives present just as future investigation of the business exhaustively.

The report gives imperative bits of knowledge into the overall market, especially the predominant development openings, patterns, and serious situations. The Probiotics Market report gives a natty gritty examination of item advancements, item types, import-trade, esteem chain streamlining, piece of the pie, development sway on homegrown and limited market players.

ACCESS FULL REPORT: https://www.databridgemarketresearch.com/reports/global-probiotics-market?utm_source=Shiv&utm_medium=Shiv&utm_id=Shiv

It isolates the market size, by volume and worth, contingent on the sort of usage and region. The report involves past and figures grandstand information, domains of utilization, esteem procedures, and fundamental associations by the geographical region.

Further, the statistical surveying report gives local market examination creation, deals, exchange, and territorial estimate. it additionally gives Probiotics Market money growth strategies like item includes, value pattern examination, channel highlights, territorial and industry speculation opportunity, cost and income estimation, financial execution assessment.

Key Benefits of The Report:

Link:
Probiotics Market to Experience Significant Growth during the Forecast Period 2021-2028 Bolivar Commercial - Bolivar Commercial

They demonstrate the existence of stem cells in the hippocampus of the human brain – Market Research Telecast

Madrid, Oct 21 (EFE) .- An international team of scientists has shown that there are stem cells in the hippocampus of the human brain that allow the generation of neurons throughout life through a process called adult neurogenesis, something that was known about the brain of some animals such as rodents, but it had never been shown in adult humans.

In addition, the work has revealed that neurodegenerative diseases specifically attack these hippocampal stem cells, preventing the regeneration of new healthy neurons.

The research, led by Mara Llorens-Martn, researcher at the Severo Ochoa Molecular Biology Center (CBMSO), a joint center of the CSIC and the Autonomous University of Madrid, is published today in Science.

These findings could be useful for developing therapeutic strategies to prevent or slow down some of the symptoms that accompany these diseases, Llorens-Martn pointed out at a press conference in which he presented the results of the important study.

The research was done with 48 brain samples provided by the CIEN Foundation Brain Bank: 15 belonged to neurologically healthy people (called control group) and 33 to others with different ailments such as amyotrophic lateral sclerosis (ALS), Huntingtons disease, Parkinsons disease, Lewy body dementia, and frontotemporal dementia.

The samples came from subjects between 43 and 89 years of age; 16 women and 32 men.

NEUROGENESIS IN THE HUMAN BRAIN UP TO 90 YEARS

In all of them there were stem cells (even in patients with some of these neurodegenerative diseases the levels of stem cells were increased), which confirms that the process of adult neurogenesis continues in the human brain, at least until the age of 90, underlines the researcher.

Neurogenesis is a key process for the generation, acquisition and storage of new memories in the brain. It is a very complex process that occurs in different stages in which stem cells divide and create daughters that actively proliferate and mature into a healthy neuron.

Article Source

Disclaimer: This article is generated from the feed and not edited by our team.

View post:
They demonstrate the existence of stem cells in the hippocampus of the human brain - Market Research Telecast

BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors – StreetInsider.com

Get inside Wall Street with StreetInsider Premium. Claim your 1-week free trial here.

MELVILLE, N.Y., Oct. 26, 2021 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (BioRestorative or the Company) (OTC: BRTX), a life sciences company focused on stem cell-based therapies, today announced the nomination of two new independent members to its Board of Directors with industry and medical device experience: Patrick F. Williams, Chief Financial Officer at STAAR Surgical, and David Rosa, President and Chief Executive Officer at NeuroOne. Their election to the Board will take effect in the event the Companys pending registration statement becomes effective.

Our new board member nominations represent qualified and diverse executives who bring new perspectives, relevant expertise and leadership experience, positioning BioRestorative to fulfill our mission of bringing cell therapies to patients said Lance Alstodt, Chief Executive Officer of BioRestorative. The addition of Patrick and David is part of a strategic effort to add meaningful leadership experience to BioRestoratives Board of Directors to support the companys focus on driving future growth, enhancing its corporate governance, and creating additional shareholder value.

Patrick F. Williams

Patrick F. Williams has more than 20 years of experience across medical device, consumer product goods and technology sectors. Appointed as Chief Financial Officer of STAAR Surgical Company in July 2020, Mr. Williams is responsible for optimizing the financial performance of STAAR and ensuring the scalability of various functions to support high growth expansion. From 2016 to 2019, he served as the Chief Financial Officer of Sientra, Inc. before transitioning to General Manager for its miraDry business unit. From 2012 to 2016, Mr. Williams served as Chief Financial Officer of ZELTIQ Aesthetics, Inc., a publicly-traded medical device company that was acquired by Allergan. Previously, he served as Vice President in finance, strategy and investor relations roles from 2007 to 2012 at NuVasive, Inc., a San-Diego based medical device company servicing the spine sector. He has also held finance roles with Callaway Golf and Kyocera Wireless. Mr. Williams received an MBA in Finance and Management from San Diego State University and a Bachelor of Arts in Economics from the University of California, San Diego.

David Rosa

DavidRosa has served as the Chief Executive Officer, President and a director of NeuroOne Medical Technologies Corporation, or NeuroOne (Nasdaq: NMTC), since July2017 and served as Chief Executive Officer and a director of NeuroOne, Inc., formerly its wholly-ownedsubsidiary, from October2016 until December2019, when NeuroOne, Inc. merged with and into NeuroOne. NeuroOne is committed to providing minimally invasive and hi-definition solutions for EEG recording, brain stimulation and ablation solutions for patients suffering from epilepsy, Parkinsons disease, dystonia, essential tremors, chronic pain due to failed back surgeries and other related neurological disorders that may improve patient outcomes and reduce procedural costs. From November2009 to November2015, Mr.Rosa served as the Chief Executive Officer and President of Sunshine Heart, Inc., n/k/a Nuwellis, Inc. (Nasdaq: NUWE), a publicly-heldearly-stagemedical device company. From 2008 to November2009, he served as Chief Executive Officer of Milksmart, Inc., a company that specializes in medical devices for animals. From 2004 to 2008, Mr.Rosa served as the Vice President of Global Marketing for Cardiac Surgery and Cardiology at St. Jude Medical, Inc. He serves as a director on the board of directors of Biotricity Inc (Nasdaq: BTCY) and is Chairman of the Board at Neuro Event Labs, a privately held AI-based diagnostics company in Finland.

About BioRestorative Therapies, Inc.

BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders or as a complementary therapeutic to a surgical procedure. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat chronic lower back pain arising from degenerative disc disease.

Metabolic Program (ThermoStem): We are developing a cell-based therapy candidate to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in animals may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, those set forth in the Company's latest Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT: Email: ir@biorestorative.com

Read this article:
BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors - StreetInsider.com

Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology – UConn Today – UConn Today

Akiko Nishiyama, professor and head of physiology and neurobiology, on August 17, 2021. (Bri Diaz/UConn Photo)

Forty years ago,neurologistsand neurobiologistsbelieved that the adult brain became lessplastic and less able to learn and retain new things.Theyhad no idea that non-neuronal cells had anything to do with information processing in the brain, including learning and memory.

Now,afterdecades of researchingand characterizinga particular cell type, called glial cells, in the brain, Akiko Nishiyama, professor of physiology and neurobiology and the new department head,can tell youthatthese cells areessential to enabling humans to learn new tasks well into adulthood, thanks to a very dynamic regulation of the ability of oligodendrocyte precursor cells she had found to generate mature myelin-forming cells. She believes that these cells also play a yet unidentified critical role in the network of brain activity.

We sat down with Nishiyama to talk about her goals for the department and current trends in the growing field of physiology and neurobiology.

What isthephysiology and neurobiology (PNB)majorat UConn?

Physiology is the study of how different parts of the body work, andneurobiology is the study of how the nervous system (brain, spinal cord, and peripheral nerves) works, and this is what I study.ThePNBdepartmentis where faculty andstudentsstudy both disciplines.

In the early- to mid-20th Century, we saw a tremendous expansion of the study of the nervous system, which led to the emergence of a multi-disciplinary field called neurobiology. The name of our department reflects this transition.

How did you get started inneurobiology? Tell us about your research.

I startedmy career in neuropathologyafter finishing six years of medical training.I was curious about how different cells in the nervous system support the function of neurons and how these support cells, known as glial cells, might malfunction in the process of neurodegenerative diseases. Halfway through the residency-doctoral program, I switched to a more basic doctoral program in molecular neurobiology, because I wanted to ask fundamental molecular and cellular questions about how different glial cells in the nervous system interact with neurons.

I sought my postdoctoral training in a lab studying the NG2 protein that seemed to be present in a yet-unidentified subset of glia,andI spent my career characterizing them.

Thirty years later, these cells have become widely known to cellular neurobiologists and have made it into textbooks. My studies established that NG2 cells are precursor cells to oligodendrocytes that make myelin sheaths but are different from stem cells or other known glial cell types.

Now we know these myelin structures are constantly being remodeled as we learn new skills as adults. And if you disrupt the process of the precursor cells, you disrupt the ability to acquire new tasks or learn new motor skills.

Why are these cells important?

We used to think that myelin was formed during the few years after birth and remained stable throughout life.What I found was that oligodendrocyte precursor cells persist in the adult brain and are implicated in some neurological disorders, such as multiple sclerosis.

Thisis an expanding areaof research in a new field called myelin plasticity.Myelin repair is important for the functional repair not only in multiple sclerosis but also after trauma such as spinal cord injury. New genomic studies are emerging that have linked oligodendrocytes to neuropsychiatric and neurodegenerative diseases such as schizophrenia and Parkinsons disease.

What are some of the things you can do with a degree in PNB?

We provide a wide-ranging set of skills, collectively, in the department, because the possibilities grow every day.

Many of our undergraduate students pursue medical, dental, or other health care professions. For instance, we recently developed theInteroperative Neuromonitoring Programwith a masters degree in Surgical Neurophysiology. This program trains specialized medical technologists who monitor the patients muscle and brain activity and other neurophysiologicalindicatorsduring surgery that may be important for surgeons and anesthesiologists to see in real-time.

Some PNB majors go to graduate school to pursue a career in academic or industry research. In addition,students withan advanced degree inphysiology andneurobiology can become teachers or science writers.

Regardless of whether they are pursuing research, we train our undergraduate students to develop a good habit ofidentifying and thinkingthrough a problem. We have faculty with diverse expertise, and our students are introduced to a wide range of questions and approaches to answer them in the classroom as well as in faculty laboratories.

What are some of your goals for the department over the next five years?

Imreally luckyto have astrong andfriendly department. Its a smallenoughdepartment that I can get to knoweach faculty and staff memberquite well.

I would like tobetter connectwith our undergraduate majors early during their time at UConn. Currently, we see them for the first time when they take our gatewayHuman Physiology and Anatomycourse in their sophomore year, and most of our faculty do not see them until they are juniors or seniors. I am interested in exposing freshmen and early sophomores to more experientialtypesof learning, monitoring their progress, and providing feedback and support where needed.

One of the strengths of our department is our facultys research. Many of our faculty, especially the younger faculty, have expanding research programs, have been successful in securing large external grants, and are active in mentoring graduate and undergraduate students in their labs. I would like to provide an environment where the successful faculty can attain an even greater level of excellence and as a department attract a larger number of talented doctoral and postdoctoral trainees to UConn.

I would like to strengthen our graduate program to providemoremultidisciplinary training for the next generation of physiologists andneurobiologiststo gain quantitative and computer skillsas well.

See the article here:
Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today

New stem cell identified by Sanford Burnham Prebys researchers offers hope to people with rare liver disease – Newswise

Newswise LA JOLLA, CALIF. October 11 Researchers from Sanford Burnham Prebys have discovered a new source of stem cells just outside the liver that could help treat people living with Alagille syndrome, a rare, incurable genetic disorder in which the bile ducts of the liver are absent, leading to severe liver damage and death. The findings, published recently in the journal Hepatology,have extensive biomedical implications for Alagille syndrome and for liver disease in general, including cancer.

Weve been aware of the regenerative power of the liver for a long time, possibly even going back to the ancient Greek myth of Prometheus, says lead authorDuc Dong, Ph.D., an associate professor in theHuman Genetics Programat Sanford Burnham Prebys. But the existence and nature of liver stem cells remains an intensely debated topic.

The new study suggests that the reason these cells have been so hard to find may be that researchers have been looking in the wrong place.

The stem cells that we found are actually outside the liver, not within it, which may have made their discovery difficult, adds Dong. We think these outside the box liver stem cells act more like reserves, only traveling into the liver when all other options are exhausted. It only requires a few of these cells to enter the liver and multiply to repopulate all of the cells lost to the disease.

Over 4 thousand babies each year are born with Alagille syndrome, which is caused by a mutation that prevents duct cells from forming in the liver. And while the syndrome can occasionally resolve naturally, and there are treatments available to manage the symptoms, the disease is incurable, carrying a 75% mortality rate by late adolescence for those without a liver transplant.

"We have known and supported Dr. Dong for years and we feel the work he and his team have done on this disease to date is extraordinary," says Cher Bork, Executive Director of the Alagille Syndrome Alliance. "Hope can be difficult to come by for families dealing with any incurable disease, and discoveries like this help give that hope back to families living with this life-dominating condition."

Using zebrafish, which have many of the same genes and cellular pathways as humans, Dongs research team were able to create a model of Alagille syndrome by selectively deactivating genes associated with Alagille syndrome. These genes encode for chemical messengers from the Notch pathway, a signaling system found in most animals that is involved in embryonic development and adult cell maintenance.

Our work suggests that there is potential for liver regeneration in Alagille patients, but because this signaling pathway is mutated, the regenerative cells fail to fully mature into functioning liver duct cells, says Dong.

In further animal studies, the team showed that by genetically restoring this signaling pathway, the regenerative cells could remobilize to form liver ducts, restoring the function of the liver and improving survival. The researchers are now leveraging their discovery to develop new therapies for Alagille syndrome.

Weve shown not just that regeneration is possible in models of Alagille syndrome, but, importantly, how it can be enhanced, says Dong. These missing duct cells can regenerate if Jagged/Notch is restored, and our lab has developed the first drug that can boost this pathway.

While the new drug requires further studies to advance into clinical trials, the team has already found that it could enhance regeneration and survival in animal models and can trigger the Notch pathway in cells from Alagille patients. These results will be published in separate studies.

Were hopeful that this drug will restore the regenerative potential of the liver in Alagille patients, to be more like the liver of Prometheus, adds Dong.

###

About Sanford Burnham Prebys Medical Research Institute

Sanford Burnham Prebys is a preeminent, independent biomedical research institute dedicated to understanding human biology and disease and advancing scientific discoveries to profoundly impact human health. For more than 40 years, our research has produced breakthroughs in cancer, neuroscience, immunology and childrens diseases, and is anchored by our NCI-designated Cancer Center and advanced drug discovery capabilities. For more information, visit us atSBPdiscovery.orgor on Facebookfacebook.com/SBPdiscoveryand on Twitter@SBPdiscovery.

Originally posted here:
New stem cell identified by Sanford Burnham Prebys researchers offers hope to people with rare liver disease - Newswise

The Impact Of Market Restrictions On The US Stem Cell Biomaterials Market – Med Device Online

By Alycea Wood and Kamran Zamanian, Ph.D., iData Research Inc.

When choosing a treatment option for orthopedic procedures, biomaterials have become widely popular. Biomaterials are biomedical materials that can be safely implanted or injected into the body and are, more often than not, a form of biologically active tissue themselves.1 Their prevalence in orthopedic procedures is largely attributed to their ability to mimic the structure or properties of osseous tissue. Many products can offer a number of beneficial properties, such as promoting bone growth within the body (osteoinduction), promoting bone growth on the biomaterials scaffold (osteoconduction), or inducing the differentiation of stem cells into osseous tissue (osteogenesis).2,3 The orthopedic biomaterials market includes bone graft substitutes, growth factors, cellular allografts, cell therapy, hyaluronic acid viscosupplementation, and even cartilage repair devices. The U.S. orthopedic biomaterials market saw a dramatic dip and subsequent rebound in market value in 2020 and 2021 as a result of the COVID-19 pandemic. After recovery, the market is projected to see a consistently steady growth in value within the next few years. This growth is expected to be seen across all market segments apart from cellular allograft devices (Figure 1).4

Figure 1: Orthopedic biomaterials market growth trends by market segment, U.S., 20192028. Access iDatas U.S. Orthopedic Biomaterials report to view more granular data.

Cellular allografts may consist of either allograft bone (donated bone tissue) in conjunction with adipose-derived adult stem cells or viable cells within a cortical cancellous bone matrix.4,5 In both scenarios, the devices provide osteoconduction, osteoinduction, and osteogenesis to the site of implantation. Historically, this market had seen promising growth because of the optimal environment for bone growth they can provide.6 The cellular allograft market is projected to see a much slower rate of growth in market value in the next few years despite its market potential due to increased constraints on the market itself. These include, but are not limited to, direct federal restriction on product research, cost of product development, and product recalls.4

There is a strong interest in the scientific community in embryonic stem cell (ESC) research, which is largely due to ESCs high differentiability when compared to adult stem cell (ASC) lines.7 The development of new cellular allograft products, and the resulting growth in the market, is dependent on continued research into realizing the full medical potential of stem cell use. In 2019, the Trump administration eliminated federal funding of research relying on ESC tissue and instituted the National Institutes of Health (NIH) Human Fetal Tissue Research Ethics Advisory Board. This negatively impacted a large number of studies in progress while restricting the ability of new projects to commence.8,9,10 While the board was in effect, it rejected all but one application for funding.11 In April 2021, the Biden administration removed both the board and the restrictions on current projects, allowing federally funded research using ESC to continue.12 This was not the first instance where restrictions were placed and then removed on ESC research. In March 2009, President Obama signed an executive order to overturn the Bush administrations restriction on ESC research.13

The repeated restrictions on ESC research have a number of long-term ramifications in the development and implementation of new, effective cellular allograft treatments. Scientists may need to divert their research efforts away from stem cells and into less turbulent fields, and the progress of product development slows down as studies have funding pulled; this may contribute to increased hesitancy by end users to use stem cell products. Reduced research efforts, funding, and faith in stem cell products will continue to limit the growth of the cellular allograft market.

Cellular allografts tend to be notably more expensive than others within the broader cell-based biomaterials market. When compared to the cell therapy market, which uses either concentrated platelet-rich plasma (PRP) or bone marrow aspirate concentrate (BMAC) in its treatment, the cellular allograft average selling price (ASP) sits over three times higher (Figure 2).3

Figure 2: The average selling price (ASP) of the cellular allograft & cell therapy markets, U.S., 20182028. Access iDatas U.S. Orthopedic Biomaterials report to view more granular data.

The ASP of the cellular allograft market is so high because of the prohibitively expensive cost of developing new products. During the development process, reliable efficacy of a new product is uncertain, and using protein markers to help distinguish stem cell types can be very challenging.4,14 The increased cost of product development acts as a significant barrier to parties looking to enter the U.S. cellular allograft market. The result is fewer products entering and rejuvenating the market, and existing products sit at prohibitively high prices as they have low direct competition.4 The high cost of cellular allograft products hinders new entrants from introducing products and prevents end users from being able to afford existing ones. A broader consequence of this is end users turning to more affordable orthopedic biomaterial types to reduce procedural costs.

Any product recalls within the U.S. orthopedic biomaterials market, especially within cell-based therapies, will negatively impact the use of cellular allografts. This impact is amplified when a recall occurs within the market segment itself, which was seen in the cellular allograft market as recently as June 2021. On June 2, 2021, Aziyo Biologics recalled its product FiberCel following a number of patients contracting tuberculosis.15 Recalls deter the use of cell-based products through increased distrust in the safety of the products themselves, potential public backlash against the specific product itself or, in the market more broadly, reduced reimbursement from health insurance providers as well as the introduction of more restrictive FDA protocols. This is another reason why effective, safe, cell-based products are necessary for the cellular allograft market to move forward.

Conclusion

Federal research restrictions, high development costs, and product recalls all negatively impact the growth of the cellular allograft market in the United States. These constraints contribute to the projected low growth rate in market value in the coming years despite the potential uses for stem cell therapies. To shift the tide back toward growth, the cellular allograft space will need consistent research progress through large-scale studies, more affordable product development, and strict enforcement of sanitization protocols for existing products to prevent future product recalls. The large therapeutic potential of stem cell therapy has been discussed extensively in scientific and popular literature, but it may take a while to realize it.

References

About The Authors:

Alycea Wood is a research analyst at iData Research. She develops and composes syndicated research projects regarding the medical device industry, and published the U.S. Orthopedic Biomaterials report series.

Kamran Zamanian, Ph.D., is CEO and founding partner of iData Research. He has spent over 20 years working in the market research industry with a dedication to the study of medical devices used in the health of patients all over the globe.

About iData Research

For 16 years, iData Research has been a strong advocate for data-driven decision-making within the global medical device, dental, and pharmaceutical industries. By providing custom research and consulting solutions, iData empowers its clients to trust the source of data and make important strategic decisions with confidence.

Read more here:
The Impact Of Market Restrictions On The US Stem Cell Biomaterials Market - Med Device Online

College Student and Retired Teacher to Thank Stem Cell Donors They’ve Never Met for Saving Their Lives During City of Hope’s 45th Bone Marrow…

DUARTE, Calif.--(BUSINESS WIRE)--As a 16-year-old high school sophomore, Julian Castaeda was focused on running track specifically, trying to run a mile in under five minutes. He was also planning to attend two camps that summer that would help him prepare for the rigors of college.

Despite being diagnosed with precursor B cell acute lymphoblastic leukemia at age 10 and receiving chemotherapy on and off for three and a half years, Castaeda had been in remission for two years. He had moved on from that difficult experience.

But in March 2017, Castaeda and his mother, Erica Palacios, again received devastating news the leukemia had returned. Castaeda received chemotherapy for a few months, but the cancer kept proliferating. Castaeda would need a hematopoietic stem cell transplant (more commonly referred to as a bone marrow transplant, or BMT) this time to put his cancer back into remission.

It was heartbreaking. I knew at that point that all my plans for sophomore year would be gone, Castaeda recalled.

But Castaeda was determined to get his life back. This was possible thanks to Johannes Eppler, 27, of Breisach, Germany, who joined the bone marrow registry via DKMS, an international nonprofit that is dedicated to the fight against blood cancers and blood disorders, including the recruitment of bone marrow donors. Castaeda received a bone marrow transplant on Aug. 2, 2017, putting the cancer into remission.

He has a big heart, Palacios said about Eppler. Hes an angel. He saved my son. I am thankful that people are willing to [donate].

Castaeda, who grew up in Bakersfield, California, and was treated by City of Hopes Joseph Rosenthal, M.D., M.H.C.M., the Barron Hilton Chair in Pediatrics, is now 20 years old and a junior at California State University Northridge. He also founded Bags of Love Foundation, a nonprofit that has delivered more than 200 care packages to young cancer patients in treatment and has provided $11,000 in scholarships to survivors.

On Friday, Oct. 15, Castaeda will meet his donor for the first time virtually during City of Hopes BMT Reunion. City of Hope, a pioneer and leader in BMT, has hosted a Celebration of Life for bone marrow, stem cell and cord blood transplant recipients, their families and donors for more than 40 years. The celebration honors children and adult cancer survivors, including those who have received autologous transplants, which use a patients own stem cells, and those who received an allogeneic procedure, which require a bone marrow or stem cell donation from a related or unrelated donor.

What began with a birthday cake and a single candle representing a patients first year free from cancer has grown into an annual extravaganza that draws thousands of cancer survivors, donors and families from around the world, as well as the doctors, nurses and staff who help them through the lifesaving therapy.

Each year, patient-donor meetings are the events emotional highlight. Many recipients, though overwhelmed with curiosity and the need to express their gratitude, can only dream of meeting the stranger who saved their lives. City of Hope is making that dream come true for Castaeda, as well as Dona Garrish, a Fullerton, California resident and retired school teacher. Her donor was Michael Fischer, 35, of Wlkau, Germany.

Garrish, 75, received her transplant on March 22, 2017, after it was delayed several times due to infections and other complications that prevented her from going through with the treatment. Garrish, who was diagnosed with acute myeloid leukemia, felt a strong connection to Fischer from the first time a City of Hope employee told her a German male, whom she had never met, was a perfect match for her. She refers to him as her gift from God and her angel on Earth.

He unknowingly encouraged me to fight harder and not to become discouraged, as someday I wanted to meet him and thank him, she added. Garrish recalled watching two patients meeting their donors at the 2017 BMT Reunion. The reunions were held in front of City of Hope Helford Clinical Research Hospital, where Garrish was recovering from her transplant.

While tethered to her IV pole, Garrish looked down from the hospitals sixth floor and said, Thats what I want to do.

City of Hope nurses, doctors and staff were constantly there supporting me every step of the way, even when I couldnt take a single step, said Garrish, who was treated by City of Hopes Liana Nikolaenko, M.D. The timing was urgent, my battle was rough and long, but I live, breathe and enjoy life today because of City of Hope.

Other event highlights include videos of grateful patients wearing the signature BMT buttons that display the number of years since their transplants, comedy by City of Hope BMT patient Sean Kent and a dance/song performed by BMT nurses, known as the Marrowettes. There will be special guest appearances by a Los Angeles Dodger and Katharina Harf, executive chairwoman of DKMS U.S., to congratulate patients, their donors and the BMT program.

During our annual BMT reunion, we express our most heartfelt thanks to the many selfless individuals who each year donate their bone marrow or stem cells to save a persons life, said Stephen J. Forman, M.D., director of City of Hopes Hematologic Malignancies Research Institute and former chair of its Department of Hematology & Hematopoietic Cell Transplantation. Whether the donor is a patients family member or a person she or he has never met, we are all extremely grateful that these donors took the time to donate and gave someone a second chance at life.

About City of Hopes BMT program

City of Hopes BMT program has performed more than 17,000 transplants, making it one of the largest and most successful programs in the nation. The institution has the largest BMT program in California, performing over 700 transplants annually, and is among the top three hospitals in the nation in terms of total transplants performed.

Over the years, City of Hope has also helped pioneer several BMT innovations. In addition to being one of the first institutions to perform BMTs in older adults, it was one of the first programs to show that BMTs could be safely performed for patients with HIV. City of Hope has had growing success with nonrelated matched donors and, most recently, half matched family donors.

City of Hopes BMT program is the only one in the nation that has had one-year survival above the expected rate for 15 consecutive years, based on analysis by the Center for International Blood and Marrow Transplant Research.

City of Hope was also one of the first programs to develop a treatment for prevention of cytomegalovirus (CMV), a common and potentially deadly infection after transplant, which has nearly eliminated the threat of CMV for BMT patients. The institution successfully conducted clinical trials of a CMV vaccine developed at City of Hope. As a pioneer in the development of CAR T cells to treat cancer, City of Hope is also testing how this form of cancer immunotherapy can help patients have a more successful transplant.

In addition, Be The Match at City of Hope last year added more than 13,000 new volunteers willing to save a life when they match a patient who needs a bone marrow transplant. In total, nearly 300,000 potential donors have signed up via City of Hope, motivated by a patient at the cancer center. Be The Match encourages healthy individuals between the ages of 18 and 40 to take the first step of registering by texting COHSAVES to 61474. To learn more about the donation process, visit Be The Match at City of Hopes website.

The public can register to view the event here.

About City of Hope

City of Hope is an independent biomedical research and treatment center for cancer, diabetes and other life-threatening diseases. Founded in 1913, City of Hope is a leader in bone marrow transplantation and immunotherapy such as CAR T cell therapy. City of Hopes translational research and personalized treatment protocols advance care throughout the world. Human synthetic insulin, monoclonal antibodies and numerous breakthrough cancer drugs are based on technology developed at the institution. A National Cancer Institute-designated comprehensive cancer center and a founding member of the National Comprehensive Cancer Network, City of Hope is ranked among the nations Best Hospitals in cancer by U.S. News & World Report. Its main campus is located near Los Angeles, with additional locations throughout Southern California and in Arizona. Translational Genomics Research Institute (TGen) became a part of City of Hope in 2016. AccessHope, a subsidiary launched in 2019, serves employers and their health care partners by providing access to NCI-designated cancer center expertise. For more information about City of Hope, follow us on Facebook, Twitter, YouTube or Instagram.

Read the original here:
College Student and Retired Teacher to Thank Stem Cell Donors They've Never Met for Saving Their Lives During City of Hope's 45th Bone Marrow...