Category Archives: Somatic Stem Cells

The Rise of Longevity Therapeutics – Pharmaceutical Executive

Aging is the ultimate risk factor for most diseases, such as cancer, neurodegenerative, cardiovascular, diabetes, degenerative fibrosis and many others. When we are young, we are typically healthy, despite a predisposition that will lead inevitably to a specific degenerative condition. However, the degenerative processes do not kick in until a certain age, when we are older. It looks like when we are younger, the body can compensate cumulative stress and damage caused to our cells in the tissues, allowing to maintain that equilibrium, called homeostasis, that keeps our organs functional and healthy. However, over time this buffering capacity becomes thinner and thinner, until things wear off: our tissues stop working as they used to. These changes are typically caused by an initial small number of rare but bad cells, that progressively increase over time, causing additional damage to the good cells that eventually stop working efficiently, causing a vicious cycle. Eventually the bad cells take over leading to the onset of a disease.

Our body is equipped with a number or regenerative and healing functions. Some are intrinsic in every cell, such as DNA repair mechanisms that are triggered when something compromises the integrity of our genomic structures. These are important functions that enable a cell, for example when it replicates, to repair errors and other damages that might have happened to our DNA. For example, two large proteins called ATM and ATR, involved in the cellular response to DNA damage, are responsible to maintain genomic instability caused by intrinsic and external DNA-damaging agents, such as UV light or various chemicals and toxins. A lack of functions of these proteins results in progressive neurodegeneration, immunodeficiency, predisposition to malignancy or radiation sensitivity. Mutations on the genes encoding these proteins can cause premature aging and premature development of these diseases, but this occurs also naturally, over time.

Cells also have an intrinsic immune system, producing factors called interferons employed by the cells as antiviral agents and to modulate other immune functions. It can be triggers by a viral infection so when a cell is infected will release interferons, protecting the neighbor cells against potential infection. Interferons can also suppress growth of blood vessels preventing tumors to get nutrients and growing. They can also activate immune cells so they can better fight viruses, tumors and others agents. Unfortunately, an age-related decline or impaired innate interferon functions in the cells results in a number of negative consequences in the body, such as increased susceptibility of the elderly to infections, tumors and damage.

In the body there are several cell types responsible to keep the tissues in check. The immune system is specialized to recognize remove and remember damaging agents. Those could be external, such as virus, bacteria or parasites, or internal, such as tumorigenic cells or senescent cells (see below). The immune system is a very sophisticated network of cell types, intercommunicating with each other to maintain the body clean from damaging factors. As we age the immune system also ages and loses capacity to recognize or responding to these damaging agents. It also become exhausted by an increasing chronic inflammation that progressively accumulate as we age, phenomenon also called inflammaging.

Another important repairing mechanism is the regenerative tissue functions, driven by the stem cells. Those cells are progenitor cells, often dormant in a quiescent state in the tissue and waiting to be activated by some damage. Stem cells are critical because once activated they can generate a progeny of daughter cells capable of re-growing the damaged tissue back to its original structure and function. Stem cells have another important function: they can regenerate themselves, in a process called self-renewal. This is important so that the new repaired tissue can repeat the process if a new damage occurs. The regenerative capacity of our body is remarkable, allowing our tissues to keep their integrity, health and functions. However, over time also stem cells age or respond to the aged microenvironment where they live (called the niche), and they become less efficient to repair tissues or to self-renewing. As a result, our tissues change, become atrophic, fibrotic or dysfunctional leading eventually to diseases.

In regenerative medicine, the application of stem cells resulted of the generation of multiple new therapeutic opportunities. A promising area uses stem cells to generate bioengineering strategies to grow new tissues in a petri dish to be then transplanted in the body to repair damaged tissues. Some applications are already in clinical use, such as for skin grafts. Many others are on their way, either in preclinical development or in clinical trials for many different tissue types and for different clinical indications.

Another promising stem cells application is the direct transplantation into damaged tissues, where they can grow and engraft repairing. However, as we age stem cells become less efficient. What if we If we could rejuvenate them? We could restore their capacity to repair our tissues and maintain homeostasis. Promising and exciting strategies are advancing in that direction. For example, we and others showed that it is possible to reprogram epigenetically a cell so it can become the younger and healthier version of itself (Sarkar et al., 2020). This is a mechanism that every cell has encoded in its DNA, but normally works only in the germline (the sperm and the egg) during the embryogenesis to make sure that the cellular clock is turned back to zero, before initiating the cellular programs to generate the embryo. This important for example to prevent making old newborn babies. This intrinsic rejuvenative mechanism is locked in the other somatic cells of the body. We found it is possible to re-activate it transiently and safely, without changing the identity of the cell, enabling to push back the cellular clock of aged human cells to make them healthier and restore their functions. These technologies are under development to be translated into therapeutics with the promise that one day could rejuvenate the aged cells in the body so they can become the younger version of themselves, repeating the process over time when needed.

Among many of the drivers of the aging process, there is one that seems to stands out as the lower hanging fruit among the emerging space of the longevity therapeutics. This is cellular senescence. Every damage that occurs to the cells in our body can push the cells to stop what they are doing and activate a safety mechanism that locks them into an arrested state called cellular senescence. Senescent cells cannot replicate anymore preventing them to cause additional damage, such as becoming cancer cells. All sort of damage can trigger this response leading to cellular senescence such as, oxidative stress, mitochondrial dysfunctions, DNA damage, viral infection, cigarette smoking, pollutions, chemicals, etc. They all can induce that safety lock and push damage cells to become senescent.

Senescent cells dont die easily but they stick around in the tissue, accumulating slowly over time. Importantly, cellular senescence is a pleiotropic mechanism, meaning it can be both good or bad. When we are young, we can efficiently get rid of senescent cells. The body uses them positively such as for tissue repair, wound healing or tissue remodeling. However, as we age, and our immune system ages (partially trough cellular senescence, a phenomenon called immune-senescence), our body become less efficient in removing senescent cells, which then start to accumulate.

Being able to make a new generation of drugs that are very selective for senescent cells, will enable the promise to achieve rejuvenative clinical results in humans similarly to what we found in preclinical results. On that end, we recently published a targeted strategy with the goal to advance the field in that direction (Doan et al., 2020). Using a prodrug, we engineered a small molecule to generate a selective senolytic compound to develop a targeted therapy. This prodrug is inactive in non-senescent cells but activated by senescent cells, taking advantage of an enzymatic function of those cells. In geriatric mice this prodrug showed to be well tolerated but also efficacious to clear senescent cells, resulting in restored cognitive functions, muscle functions, stem cells functions, vitality and overall health. As we advance senolytic drugs to the clinic to treat age-related diseases, it is very important to be mindful that elderly individuals, who are frail, with co-morbidities and exposed to multiple medications, will not well tolerate drugs that are not safe and effective. Importantly, not all senescent cells are the same. They are rare, interspersed in the tissues but are also very heterogeneous. Being able to hit the right senescent cells, in the right diseased tissue will be key to enable effective therapies. Developing drugs that are very potent, selective and potent and safe will be pivotal.

The longevity therapeutics space is emerging, but is already disrupting the medical industry. The goal of longevity therapeutics is not just to add years to life, extending lifespan. The true goal is to add life to years and extend health span. A target that gets closer every day.

Marco Quarta is CEO, Rubedo Life Sciences.

See the original post:
The Rise of Longevity Therapeutics - Pharmaceutical Executive

Tooth Regeneration Market Size | COVID-19 Impact Analysis | Forecast to 2027 investigated in the latest research – WhaTech

Tooth Regeneration Market Global Trends, Market Share, Industry Size, Growth, Opportunities and Market Forecast - 2021 to 2027. The tooth regeneration market size is expected to grow significantly from 2021 to 2027.

The tooth regeneration marketsize is expected to grow significantly from 2021 to 2027.

Tooth regeneration is a stem cell-based regenerative medical procedure used in the fields of tissue engineering and stem cell biology. The tooth regeneration procedure replaces damaged or lost teeth by growing on autologous stem cells.

Somatic cells are collected and reprogrammed to derive pluripotent stem cells and tooth layers with the help of resorbable biopolymers.

(Getthis Report)

A full report of Global Tooth Regeneration Market is available at: http://www.orionmarketreports.com/tooth-rket/55394/

Market Segments

By Type

By Process

By End-use

Key Players

Key players operating in the global tooth regeneration market include Unilever, Ocata Therapeutics, Integra LifeSciences, CryoLife, Inc., BioMimetic Therapeutics, Inc. (Wright Medical Group, Inc.), Cook Medical, and StemCells Inc.

Scope of the Report

The research study analyzes the global Tooth Regeneration industry from 360-degree analysis of the market thoroughly delivering insights into the market for better business decisions, considering multiple aspects some of which are listed below as:

Recent Developments

o Market Overview and growth analysis o Import and Export Overview o Volume Analysis o Current Market Trends and Future Outlook o Market Opportunistic and Attractive Investment Segment

Geographic Coverage

o North America Market Size and/or Volume o Latin America Market Size and/or Volume o Europe Market Size and/or Volume o Asia-Pacific Market Size and/or Volume o Rest of the world Market Size and/or Volume

Key Questions Answered by Tooth Regeneration Market Report

1. What was the Tooth Regeneration Market size in 2019 and 2020; what are the estimated growth trends and market forecast (2021-2027).

2. What will be the CAGR of the Tooth Regeneration Market during the forecast period (2021-2027)?

3. Which segments (product type/applications/end-user) were most attractive for investments in 2021? How these segments are expected to grow during the forecast period (2021-2027).

4. Which manufacturer/vendor/players in the Tooth Regeneration Market was the market leader in 2020?

5. Overview on the existing product portfolio, products in the pipeline, and strategic initiatives taken by key vendors in the market.

The report covers the following objectives:

About Us:

Orion Market Reports (OMR) endeavors to provide an exclusive blend of qualitative and quantitative market research reports to clients across the globe. Our organization helps both multinational and domestic enterprises to bolster their business by providing in-depth market insights and the most reliable future market trends.

Our reports address all the major aspects of the markets providing insights and market outlook to global clients.

This email address is being protected from spambots. You need JavaScript enabled to view it.

Original post:
Tooth Regeneration Market Size | COVID-19 Impact Analysis | Forecast to 2027 investigated in the latest research - WhaTech

Global Induced Pluripotent Stem Cell (iPS Cell) Market Report 2021: In Total, At Least 68 Distinct Market Competitors Now Offer Various Types of iPSC…

DUBLIN, April 15, 2021 /PRNewswire/ -- The "Global Induced Pluripotent Stem Cell (iPS Cell) Industry Report 2021" report has been added to ResearchAndMarkets.com's offering.

The main objectives of this report are to describe the current status of iPSC research, patents, funding events, industry partnerships, biomedical applications, technologies, and clinical trials for the development of iPSC-based therapeutics.

Since the discovery of induced pluripotent stem cells (iPSCs) a large and thriving research product market has grown into existence, largely because the cells are non-controversial and can be generated directly from adult cells. It is clear that iPSCs represent a lucrative market segment because methods for commercializing this cell type are expanding every year and clinical studies investigating iPSCs are swelling in number.

Therapeutic applications of iPSCs have surged in recent years. 2013 was a landmark year in Japan because it saw the first cellular therapy involving the transplant of iPSCs into humans initiated at the RIKEN Center in Kobe, Japan. Led by Masayo Takahashi of the RIKEN Center for Developmental Biology (CDB), it investigated the safety of iPSC-derived cell sheets in patients with macular degeneration.

In another world-first, Cynata Therapeutics received approval in 2016 to launch the world's first formal clinical trial of an allogeneic iPSC-derived cell product (CYP-001) for the treatment of GvHD.

Riding the momentum within the CAR-T field, Fate Therapeutics is developing FT819, its "off-the-shelf" iPSC-derived CAR-T cell product candidate. Numerous physician-led studies using iPSCs are also underway in Japan, a leading country for basic and applied iPSC applications.

iPS Cell Market Competitors

Today, FUJIFILM CDI has emerged as one of the largest commercial players within the iPSC sector. FUJIFILM CDI was founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, who in 2007 derived iPSC lines from human somatic cells for the first time ever. The feat was accomplished simultaneously by Dr. Shinya Yamanaka's lab in Japan.

In 2009, ReproCELL, a company established as a venture company originating from the University of Tokyo and Kyoto University, made iPSC products commercially available for the first time with the launch of its human iPSC-derived cardiomyocytes, which it called ReproCario.

A European leader within the iPSC market is Ncardia, formed through the merger of Axiogenesis and Pluriomics. Founded in 2001, Axiogenesis initially focused on generating mouse embryonic stem cell-derived cells and assays, but after Yamanaka's iPSC technology became available, it became the first European company to license it in 2010. Ncardia's focus is on preclinical drug discovery and drug safety through the development of functional assays using human neuronal and cardiac cells.

In total, at least 68 distinct market competitors now offer various types of iPSC products, services, technologies and therapies.

iPS Cell Commercialization

Methods of commercializing induced pluripotent stem cells (iPSCs) are diverse and continue to expand. iPSC cell applications include, but are not limited to:

Since the discovery of iPSC technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and the first clinical trials employing human iPSC-derived cell types have been initiated.

Key Topics Covered:

1. REPORT OVERVIEW 1.1 Statement of the Report 1.2 Executive Summary

2. INTRODUCTION 2.1 Discovery of iPSCs 2.2 Barriers in iPSC Application 2.3 Timeline and Cost of iPSC Development 2.4 Current Status of iPSCs Industry 2.4.1 Share of iPSC-based Research within the Overall Stem Cell Industry 2.4.2 Major Focuses of iPSC Companies 2.4.3 Commercially Available iPSC-Derived Cell Types 2.4.4 Relative Use of iPSC-Derived Cell Types in Toxicology Testing Assays 2.4.5 Toxicology/Safety Testing Assays using iPSC-Derived Cell Types 2.5 Currently Available iPSC Technologies 2.6 Advantages and Limitations of iPSCs Technology

3. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (IPSCS) 3.1 First iPSC generation from Mouse Fibroblasts, 2006 3.2 First Human iPSC Generation, 2007 3.3 Creation of CiRA, 2010 3.4 First High-Throughput screening using iPSCs, 2012 3.5 First iPSCs Clinical Trial Approved in Japan, 2013 3.6 The First iPSC-RPE Cell Sheet Transplantation for AMD, 2014 3.7 EBiSC Founded, 2014 3.8 First Clinical Trial using Allogeneic iPSCs for AMD, 2017 3.9 Clinical Trials for Parkinson's disease using Allogeneic iPSCs, 2018 3.10 Commercial iPSC Plant SMaRT Established, 2018 3.11 First iPSC Therapy Center in Japan, 2019

4. RESEARCH PUBLICATIONS ON iPSCS 4.1 Categories of Research Publications 4.2 Percent Share of Published Articles by Disease Type 4.3 Number of Articles by Country

5. IPSCS: PATENT LANDSCAPE 5.1 Timeline and Status of Patents 5.2 Patent Filing Destinations 5.2.1 Patent Applicant's Origin 5.2.2 Top Ten Global Patent Applicants 5.2.3 Collaborating Applicants of Patents 5.3 Patent Application Trends iPSC Preparation Technologies 5.4 Patent Application Trends in iPSC Differentiation Technologies 5.5 Patent Application Trends in Disease-Specific Cell Technologies

6. CLINICAL TRIALS INVOLVING iPSCS 6.1 Current Clinical Trials Landscape 6.1.1 Clinical Trials Involving iPSCs by Major Diseases 6.1.2 Clinical Trials Involving iPSCs by Country

7. FUNDING FOR iPSCs 7.1 Value of NIH Funding for iPSCs 7.1.1 NHI's Intended Funding Through its Component Organizations in 2020 7.1.2 NIH Funding for Select Universities for iPSC Studies 7.2 CIRM Funding for iPSCs

8. GENERATION OF INDUCED PLURIPOTENT STEM CELLS: AN OVERVIEW 8.1 Reprogramming Factors 8.2 Overview of Four Key Methods of Gene Delivery 8.3 Comparative Effectiveness of Different Vector Types 8.4 Genome Editing Technologies in iPSCs Generation

9. HUMAN iPSC BANKING 9.1 Cell Sources for iPSCs Banking 9.2 Reprogramming methods used in iPSC Banking 9.3 Workflow in iPSC Banks 9.4 Existing iPSC Banks

10. BIOMEDICAL APPLICATIONS OF iPSCS 10.1 iPSCs in Basic Research 10.2 iPSCs in Drug Discovery 10.3 iPSCs in Toxicology Studies 10.4 iPSCs in Disease Modeling 10.5 iPSCs within Cell-Based Therapies

11. OTHER NOVEL APPLICATIONS OF iPSCS 11.1 iPSCs in Tissue Engineering 11.2 iPSCs in Animal Conservation 11.3 iPSCs and Cultured Meat

12. DEAL-MAKING WITHIN THE iPSC SECTOR 12.1 License Agreement between FUJIFILM Cellular Dynamics and Sana 12.2 Century Therapeutics Closes $160 Million Series C Financing 12.3 Bluerock Gains Access to Ncardia's iPSCs-derived Cardiomyocytes 12.4 Fate Therapeutics' Deal with Janssen Biotech 12.5 Century Therapeutics Acquires Empirica Therapeutics 12.6 $250 Million Raised by Century Theraputics 12.7 BlueRock Therapeutics Launched with $225 Million 12.8 Collaboration between Allogene Therapeutics and Notch Therapeutics 12.9 Acquisition of Semma Therapeutics by Vertex Therapeutics 12.10 Evotec's Extended Collaboration with BMS 12.11 Licensing Agreement between Allele Biotechnology and Astellas 12.12 Codevelopment Agreement between Allele & SCM Lifesciences 12.13 Fate Therapeutics Signs $100 Million Deal with Janssen 12.14 Allele's Deal with Alpine Biotherapeutics 12.15 Editas and BlueRock's Development Agreement

13. MARKET OVERVIEW 13.1 Global Market for iPSCs by Geography 13.2 Global Market for iPSCs by Technology 13.3 Global Market for iPSCs by Biomedical Application 13.4 Global Market for iPSCs by Cell Types 3.5 Market Drivers 13.6 Market Restraints

14. COMPANY PROFILES

For more information about this report visit https://www.researchandmarkets.com/r/u155vh

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

See the article here:
Global Induced Pluripotent Stem Cell (iPS Cell) Market Report 2021: In Total, At Least 68 Distinct Market Competitors Now Offer Various Types of iPSC...

Emergent drift of Dental Regenerative Products Market By the World in Upcoming Year 2021-2027 with Leading Key Players: Provia Laboratories, LLC,…

Stem cell-based regenerative medicine procedure replaces lost or damaged teeth in tissue engineering and stem cell biology by redrawing from autologous stem cells called tooth regeneration. Somatic stem cells are collected and reprogrammed into induced pluripotent stem cells as a source of new bioengineered teeth, placed in a reabsorbable biopolymer in the shape of a new tooth or directly in the dental plate.

The Global Dental Regenerative Products market elaborate report, offers a summary study on regional forecast, business size, and associated revenue estimations. The Dental Regenerative Products report more emphasizes primary challenges and growth trends adopted by leading makers of the market.

Request for Buy Report @

https://www.theinsightpartners.com/buy/TIPRE00016641/

Top Companies of Dental Regenerative Products Market:

Dental Regenerative Products Market Is Divided Into:

Based on end user, the dental regenerative products market can be segmented as:

The report provides a detailed breakdown of the Dental Regenerative Products Market region-wise and categorizes it at various levels. Regional segment analysis displaying regional production volume, consumption volume, revenue, and growth rate from 2019-2027 covers: Americas (United States, Canada, Mexico, Brazil), APAC (China, Japan, Korea, Southeast Asia, India, Australia), Europe (Germany, France, UK, Italy, Russia, Spain), Middle East & Africa (Egypt, South Africa, Israel, Turkey, GCC Countries)

Get a sample report now! @

https://www.theinsightpartners.com/sample/TIPRE00016641/

This Dental Regenerative Products Market research report also presents some significant practical oriented case studies which help to understand the subject matter clearly. This research report has been prepared through industry analysis techniques and presented in a professional manner by including effective info-graphics whenever necessary. It helps to gain stability in the businesses as well as to make the rapid developments to achieve a notable remark in the Global market space.

In This Study, The Years Considered To Estimate The Size Of Dental Regenerative Products Market Are As Follows:

History Year: 2015-2020

Base Year: 2020

Estimated Year: 2021

Forecast Year 2021 to 2027

If you have any special requirements, please let us know and we will offer you the report as you want.

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:

Call: +1-646-491-9876

Email: sales@theinsightpartners.com

Excerpt from:
Emergent drift of Dental Regenerative Products Market By the World in Upcoming Year 2021-2027 with Leading Key Players: Provia Laboratories, LLC,...

Worldwide Cell Therapy Industry to 2027 – Increasing Prevalence of Chronic Diseases is Driving the Market – PRNewswire

DUBLIN, April 1, 2021 /PRNewswire/ -- The "Cell Therapy Market Forecast to 2027 - COVID-19 Impact and Global Analysis By Therapy Type; Product; Technology; Application; End User, and Geography" report has been added to ResearchAndMarkets.com's offering.

According to this report the global cell therapy market is expected to reach US$ 12,563.23 million by 2027 from US$ 7,260.50 million in 2019. It is estimated to grow at a CAGR of 7.2% from 2020-2027. The growth of the market is attributed to increasing prevalence of chronic diseases, rising adoption of regenerative medicines, and surging number of approvals for cell-based therapies. However, the high cost of cell therapy manufacturing hinders the growth of the market.

The cell therapy market, based on therapy type, is bifurcated into allogeneic and autologous. In 2019, the allogeneic segment accounted for a larger share owing to the availability of substantial number of approved products for clinical use. For instance, in 2018, Alofisel developed by TiGenix (Takeda) is the first allogeneic stem cell-based therapy approved for use in Europe.

Chronic diseases, such as cardiovascular disorders, neurological disorders, autoimmune disorders, and cancer, are the leading causes of death and disability worldwide. As per the Centers for Disease Control and Prevention (CDC), in 2019, nearly 6 in 10 people suffered from at least one chronic disease in the US. Cardiovascular diseases (CVDs) are a significant cause of mortality owing to the hectic lifestyle. As per the World Health Organization (WHO), CVDs are the number 1 cause of death globally, taking an estimated 17.9 million lives each year. Cancer is among the leading causes of mortality worldwide, and the disease affects a huge population; therefore, it acts as a huge financial burden on society. According to the WHO, in 2018, ~9.6 million deaths occurred due to cancer globally. However, growing research on developing effective treatments for the disease is positively affecting the market growth. Gene therapy and cell therapy are transforming the cancer treatment landscape; for example, Novartis Kymriah is used to treat diffuse large B-cell lymphoma. The launches of more such products would be driving the demand for cell therapy, thus driving the growth of the cell therapy market in the coming years.

The COVID-19 outbreak was first reported in Wuhan (China) in December 2019. The pandemic is causing massive disruptions in supply chains, consumer markets, and economy across the world. As the healthcare sector is focusing on saving lives of COVID-19 patients, the demand for cell therapy is reducing worldwide.

Vericel Corporation; MEDIPOST; NuVasive, Inc.; Mesoblast Limited; JCR Pharmaceuticals Co. Ltd.; Smith & Nephew; Bristol-Myers Squibb Company; Cells for Cells; Stemedica Cell Technologies, Inc; and Castle Creek Biosciences, Inc. are among the companies operating in the cell therapy market.

Reasons to Buy

Key Topics Covered:

1. Introduction 1.1 Scope of the Study 1.2 Research Report Guidance 1.3 Market Segmentation 1.3.1 Global Cell Therapy Market - By Therapy Type 1.3.2 Global Cell Therapy Market - By Product 1.3.3 Global Cell Therapy Market - By Technology 1.3.4 Global Cell Therapy Market - By Application 1.3.5 Global Cell Therapy Market - By End User 1.3.6 Global Cell Therapy Market - By Geography

2. Cell Therapy Market - Key Takeaways

3. Research Methodology 3.1 Coverage 3.2 Secondary Research 3.3 Primary Research

4. Global Cell therapy- Market Landscape 4.1 Overview 4.2 PEST Analysis 4.2.1 North America - PEST Analysis 4.2.2 Europe- PEST Analysis 4.2.3 Asia Pacific- PEST Analysis 4.2.4 Middle East and Africa - PEST Analysis 4.2.5 South and Central America - PEST Analysis 4.3 Expert Opinions

5. Global Cell Therapy Market - Key Industry Dynamics 5.1 Key Market Drivers 5.1.1 Increasing Prevalence of Chronic Diseases 5.1.2 Rising Adoption of Regenerative Medicines 5.1.3 Increasing Number of Approvals for Cell-Based Therapies 5.2 Key Market Restraints 5.2.1 High Cost of Cell Therapy Manufacturing 5.3 Key Market Opportunities 5.3.1 Increasing Adoption of Cell Therapy in Developing Regions 5.4 Future Trends 5.4.1 Shift Toward Automated Cell Therapy Manufacturing 5.5 Impact Analysis of Drivers and Restraints

6. Cell therapy Market - Global Analysis 6.1 Global Cell therapy Market Revenue Forecast And Analysis 6.2 Global Cell therapy Market, By Geography - Forecast And Analysis 6.3 Market Positioning

7. Cell therapy Market Analysis - By Therapy Type 7.1 Overview 7.2 Cell therapy Market Revenue Share, by Therapy Type (2019 and 2027) 7.3 Allogeneic 7.3.1 Overview 7.3.2 Allogeneic: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 7.4 Autologous 7.4.1 Overview 7.4.2 Autologous: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

8. Cell therapy Market Analysis - By Product 8.1 Overview 8.2 Cell therapy Market Revenue Share, by Product (2019 and 2027) 8.3 Consumables 8.3.1 Overview 8.3.2 Consumables: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 8.4 Equipment 8.4.1 Overview 8.4.2 Equipment: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 8.5 Systems and Software 8.5.1 Overview 8.5.2 Systems and Software: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

9. Cell therapy Market Analysis - By Technology 9.1 Overview 9.2 Cell therapy Market Revenue Share, by Technology (2019 and 2027) 9.3 Viral Vector Technology 9.3.1 Overview 9.3.2 Viral Vector Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.4 Genome Editing Technology 9.4.1 Overview 9.4.2 Genome Editing Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.5 Somatic Cell Technology 9.5.1 Overview 9.5.2 Somatic Cell Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.6 Cell Immortalization Technology 9.6.1 Overview 9.6.2 Cell Immortalization Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.7 Cell Plasticity Technology 9.7.1 Overview 9.7.2 Cell Plasticity Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.8 Three-Dimensional Technology 9.8.1 Overview 9.8.2 Three-Dimensional Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

10. Cell therapy Market Analysis - By Application 10.1 Overview 10.2 Cell therapy Market Revenue Share, by Application (2019 and 2027) 10.3 Oncology 10.3.1 Overview 10.3.2 Oncology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.4 Cardiovascular 10.4.1 Overview 10.4.2 Cardiovascular: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.5 Orthopedic 10.5.1 Overview 10.5.2 Orthopedic: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.6 Wound Management 10.6.1 Overview 10.6.2 Wound Management: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.7 Other Applications 10.7.1 Overview 10.7.2 Other Applications: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

11. Cell therapy Market Analysis - By End User 11.1 Overview 11.2 Cell therapy Market Share, by End User, 2019 and 2027, (%) 11.3 Hospitals 11.3.1 Overview 11.3.2 Hospitals: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 11.4 Research Institutes 11.4.1 Overview 11.4.2 Research Institutes: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 11.5 Others 11.5.1 Overview 11.5.2 Others: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

12. Cell therapy Market - Geographic Analysis 12.1 North America: Cell Therapy Market 12.2 Europe: Cell therapy Market 12.3 Asia Pacific: Cell Therapy Market 12.4 Middle East and Africa: Cell Therapy Market 12.5 South and Central America: Cell Therapy Market

13. Impact of COVID-19 Pandemic on Global Cell Therapy Market 13.1 North America: Impact Assessment of COVID-19 Pandemic 13.2 Europe: Impact Assessment of COVID-19 Pandemic 13.3 Asia-Pacific: Impact Assessment of COVID-19 Pandemic 13.4 Middle East & Africa: Impact Assessment of COVID-19 Pandemic 13.5 South & Central America: Impact Assessment of COVID-19 Pandemic

14. Cell Therapy Market- Industry Landscape 14.1 Overview 14.2 Growth Strategies Done by the Companies in the Market, (%) 14.3 Organic Developments 14.3.1 Overview 14.4 Inorganic Developments 14.4.1 Overview

15. Company Profiles 15.1 Vericel Corporation 15.1.1 Key Facts 15.1.2 Business Description 15.1.3 Products and Services 15.1.4 Financial Overview 15.1.5 SWOT Analysis 15.1.6 Key Developments 15.2 MEDIPOST 15.2.1 Key Facts 15.2.2 Business Description 15.2.3 Products and Services 15.2.4 Financial Overview 15.2.5 SWOT Analysis 15.2.6 Key Developments 15.3 NuVasive, Inc. 15.3.1 Key Facts 15.3.2 Business Description 15.3.3 Products and Services 15.3.4 Financial Overview 15.3.5 SWOT Analysis 15.3.6 Key Developments 15.4 Mesoblast Limited 15.4.1 Key Facts 15.4.2 Business Description 15.4.3 Products and Services 15.4.4 Financial Overview 15.4.5 SWOT Analysis 15.4.6 Key Developments 15.5 JCR Pharmaceuticals Co. Ltd. 15.5.1 Key Facts 15.5.2 Business Description 15.5.3 Products and Services 15.5.4 Financial Overview 15.5.5 SWOT Analysis 15.5.6 Key Developments 15.6 Smith & Nephew 15.6.1 Key Facts 15.6.2 Business Description 15.6.3 Products and Services 15.6.4 Financial Overview 15.6.5 SWOT Analysis 15.6.6 Key Developments 15.7 Bristol-Myers Squibb Company 15.7.1 Key Facts 15.7.2 Business Description 15.7.3 Products and Services 15.7.4 Financial Overview 15.7.5 SWOT Analysis 15.7.6 Key Developments 15.8 Cells for Cells 15.8.1 Key Facts 15.8.2 Business Description 15.8.3 Products and Services 15.8.4 Financial Overview 15.8.5 SWOT Analysis 15.8.6 Key Developments 15.9 Stemedica Cell Technologies, Inc 15.9.1 Key Facts 15.9.2 Business Description 15.9.3 Products and Services 15.9.4 Financial Overview 15.9.5 SWOT Analysis 15.9.6 Key Developments 15.10 Castle Creek Biosciences, Inc. 15.10.1 Key Facts 15.10.2 Business Description 15.10.3 Products and Services 15.10.4 Financial Overview 15.10.5 SWOT Analysis 15.10.6 Key Developments

16. Appendix 16.1 About the Publisher 16.2 Glossary of Terms

For more information about this report visit https://www.researchandmarkets.com/r/hxk6k0

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Excerpt from:
Worldwide Cell Therapy Industry to 2027 - Increasing Prevalence of Chronic Diseases is Driving the Market - PRNewswire

Outlook on the Cell Therapy Global Market to 2027 – by Therapy Type, Product, Technology, Application, End-user and Geography – GlobeNewswire

Dublin, March 31, 2021 (GLOBE NEWSWIRE) -- The "Cell Therapy Market Forecast to 2027 - COVID-19 Impact and Global Analysis By Therapy Type; Product; Technology; Application; End User, and Geography" report has been added to ResearchAndMarkets.com's offering.

According to this report the global cell therapy market is expected to reach US$ 12,563.23 million by 2027 from US$ 7,260.50 million in 2019. It is estimated to grow at a CAGR of 7.2% from 2020-2027. The growth of the market is attributed to increasing prevalence of chronic diseases, rising adoption of regenerative medicines, and surging number of approvals for cell-based therapies. However, the high cost of cell therapy manufacturing hinders the growth of the market.

The cell therapy market, based on therapy type, is bifurcated into allogeneic and autologous. In 2019, the allogeneic segment accounted for a larger share owing to the availability of substantial number of approved products for clinical use. For instance, in 2018, Alofisel developed by TiGenix (Takeda) is the first allogeneic stem cell-based therapy approved for use in Europe.

Chronic diseases, such as cardiovascular disorders, neurological disorders, autoimmune disorders, and cancer, are the leading causes of death and disability worldwide. As per the Centers for Disease Control and Prevention (CDC), in 2019, nearly 6 in 10 people suffered from at least one chronic disease in the US. Cardiovascular diseases (CVDs) are a significant cause of mortality owing to the hectic lifestyle. As per the World Health Organization (WHO), CVDs are the number 1 cause of death globally, taking an estimated 17.9 million lives each year. Cancer is among the leading causes of mortality worldwide, and the disease affects a huge population; therefore, it acts as a huge financial burden on society. According to the WHO, in 2018, ~9.6 million deaths occurred due to cancer globally. However, growing research on developing effective treatments for the disease is positively affecting the market growth. Gene therapy and cell therapy are transforming the cancer treatment landscape; for example, Novartis Kymriah is used to treat diffuse large B-cell lymphoma. The launches of more such products would be driving the demand for cell therapy, thus driving the growth of the cell therapy market in the coming years.

The COVID-19 outbreak was first reported in Wuhan (China) in December 2019. The pandemic is causing massive disruptions in supply chains, consumer markets, and economy across the world. As the healthcare sector is focusing on saving lives of COVID-19 patients, the demand for cell therapy is reducing worldwide.

Vericel Corporation; MEDIPOST; NuVasive, Inc.; Mesoblast Limited; JCR Pharmaceuticals Co. Ltd.; Smith & Nephew; Bristol-Myers Squibb Company; Cells for Cells; Stemedica Cell Technologies, Inc; and Castle Creek Biosciences, Inc. are among the companies operating in the cell therapy market.

Reasons to Buy

Key Topics Covered:

1. Introduction 1.1 Scope of the Study 1.2 Research Report Guidance 1.3 Market Segmentation 1.3.1 Global Cell Therapy Market - By Therapy Type 1.3.2 Global Cell Therapy Market - By Product 1.3.3 Global Cell Therapy Market - By Technology 1.3.4 Global Cell Therapy Market - By Application 1.3.5 Global Cell Therapy Market - By End User 1.3.6 Global Cell Therapy Market - By Geography

2. Cell Therapy Market - Key Takeaways

3. Research Methodology 3.1 Coverage 3.2 Secondary Research 3.3 Primary Research

4. Global Cell therapy- Market Landscape 4.1 Overview 4.2 PEST Analysis 4.2.1 North America - PEST Analysis 4.2.2 Europe- PEST Analysis 4.2.3 Asia Pacific- PEST Analysis 4.2.4 Middle East and Africa - PEST Analysis 4.2.5 South and Central America - PEST Analysis 4.3 Expert Opinions

5. Global Cell Therapy Market - Key Industry Dynamics 5.1 Key Market Drivers 5.1.1 Increasing Prevalence of Chronic Diseases 5.1.2 Rising Adoption of Regenerative Medicines 5.1.3 Increasing Number of Approvals for Cell-Based Therapies 5.2 Key Market Restraints 5.2.1 High Cost of Cell Therapy Manufacturing 5.3 Key Market Opportunities 5.3.1 Increasing Adoption of Cell Therapy in Developing Regions 5.4 Future Trends 5.4.1 Shift Toward Automated Cell Therapy Manufacturing 5.5 Impact Analysis of Drivers and Restraints

6. Cell therapy Market - Global Analysis 6.1 Global Cell therapy Market Revenue Forecast And Analysis 6.2 Global Cell therapy Market, By Geography - Forecast And Analysis 6.3 Market Positioning

7. Cell therapy Market Analysis - By Therapy Type 7.1 Overview 7.2 Cell therapy Market Revenue Share, by Therapy Type (2019 and 2027) 7.3 Allogeneic 7.3.1 Overview 7.3.2 Allogeneic: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 7.4 Autologous 7.4.1 Overview 7.4.2 Autologous: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

8. Cell therapy Market Analysis - By Product 8.1 Overview 8.2 Cell therapy Market Revenue Share, by Product (2019 and 2027) 8.3 Consumables 8.3.1 Overview 8.3.2 Consumables: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 8.4 Equipment 8.4.1 Overview 8.4.2 Equipment: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 8.5 Systems and Software 8.5.1 Overview 8.5.2 Systems and Software: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

9. Cell therapy Market Analysis - By Technology 9.1 Overview 9.2 Cell therapy Market Revenue Share, by Technology (2019 and 2027) 9.3 Viral Vector Technology 9.3.1 Overview 9.3.2 Viral Vector Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.4 Genome Editing Technology 9.4.1 Overview 9.4.2 Genome Editing Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.5 Somatic Cell Technology 9.5.1 Overview 9.5.2 Somatic Cell Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.6 Cell Immortalization Technology 9.6.1 Overview 9.6.2 Cell Immortalization Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.7 Cell Plasticity Technology 9.7.1 Overview 9.7.2 Cell Plasticity Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 9.8 Three-Dimensional Technology 9.8.1 Overview 9.8.2 Three-Dimensional Technology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

10. Cell therapy Market Analysis - By Application 10.1 Overview 10.2 Cell therapy Market Revenue Share, by Application (2019 and 2027) 10.3 Oncology 10.3.1 Overview 10.3.2 Oncology: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.4 Cardiovascular 10.4.1 Overview 10.4.2 Cardiovascular: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.5 Orthopedic 10.5.1 Overview 10.5.2 Orthopedic: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.6 Wound Management 10.6.1 Overview 10.6.2 Wound Management: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 10.7 Other Applications 10.7.1 Overview 10.7.2 Other Applications: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

11. Cell therapy Market Analysis - By End User 11.1 Overview 11.2 Cell therapy Market Share, by End User, 2019 and 2027, (%) 11.3 Hospitals 11.3.1 Overview 11.3.2 Hospitals: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 11.4 Research Institutes 11.4.1 Overview 11.4.2 Research Institutes: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million) 11.5 Others 11.5.1 Overview 11.5.2 Others: Cell therapy Market - Revenue and Forecast to 2027 (US$ Million)

12. Cell therapy Market - Geographic Analysis 12.1 North America: Cell Therapy Market 12.2 Europe: Cell therapy Market 12.3 Asia Pacific: Cell Therapy Market 12.4 Middle East and Africa: Cell Therapy Market 12.5 South and Central America: Cell Therapy Market

13. Impact of COVID-19 Pandemic on Global Cell Therapy Market 13.1 North America: Impact Assessment of COVID-19 Pandemic 13.2 Europe: Impact Assessment of COVID-19 Pandemic 13.3 Asia-Pacific: Impact Assessment of COVID-19 Pandemic 13.4 Middle East & Africa: Impact Assessment of COVID-19 Pandemic 13.5 South & Central America: Impact Assessment of COVID-19 Pandemic

14. Cell Therapy Market- Industry Landscape 14.1 Overview 14.2 Growth Strategies Done by the Companies in the Market, (%) 14.3 Organic Developments 14.3.1 Overview 14.4 Inorganic Developments 14.4.1 Overview

15. Company Profiles 15.1 Vericel Corporation 15.1.1 Key Facts 15.1.2 Business Description 15.1.3 Products and Services 15.1.4 Financial Overview 15.1.5 SWOT Analysis 15.1.6 Key Developments 15.2 MEDIPOST 15.2.1 Key Facts 15.2.2 Business Description 15.2.3 Products and Services 15.2.4 Financial Overview 15.2.5 SWOT Analysis 15.2.6 Key Developments 15.3 NuVasive, Inc. 15.3.1 Key Facts 15.3.2 Business Description 15.3.3 Products and Services 15.3.4 Financial Overview 15.3.5 SWOT Analysis 15.3.6 Key Developments 15.4 Mesoblast Limited 15.4.1 Key Facts 15.4.2 Business Description 15.4.3 Products and Services 15.4.4 Financial Overview 15.4.5 SWOT Analysis 15.4.6 Key Developments 15.5 JCR Pharmaceuticals Co. Ltd. 15.5.1 Key Facts 15.5.2 Business Description 15.5.3 Products and Services 15.5.4 Financial Overview 15.5.5 SWOT Analysis 15.5.6 Key Developments 15.6 Smith & Nephew 15.6.1 Key Facts 15.6.2 Business Description 15.6.3 Products and Services 15.6.4 Financial Overview 15.6.5 SWOT Analysis 15.6.6 Key Developments 15.7 Bristol-Myers Squibb Company 15.7.1 Key Facts 15.7.2 Business Description 15.7.3 Products and Services 15.7.4 Financial Overview 15.7.5 SWOT Analysis 15.7.6 Key Developments 15.8 Cells for Cells 15.8.1 Key Facts 15.8.2 Business Description 15.8.3 Products and Services 15.8.4 Financial Overview 15.8.5 SWOT Analysis 15.8.6 Key Developments 15.9 Stemedica Cell Technologies, Inc 15.9.1 Key Facts 15.9.2 Business Description 15.9.3 Products and Services 15.9.4 Financial Overview 15.9.5 SWOT Analysis 15.9.6 Key Developments 15.10 Castle Creek Biosciences, Inc. 15.10.1 Key Facts 15.10.2 Business Description 15.10.3 Products and Services 15.10.4 Financial Overview 15.10.5 SWOT Analysis 15.10.6 Key Developments

16. Appendix 16.1 About the Publisher 16.2 Glossary of Terms

For more information about this report visit https://www.researchandmarkets.com/r/yyd0c

Continue reading here:
Outlook on the Cell Therapy Global Market to 2027 - by Therapy Type, Product, Technology, Application, End-user and Geography - GlobeNewswire

Exclusive Report on Global Gene Therapy Market Analysis Report 2021 and Forecast to 2029 with different segments, Key players KSU | The Sentinel…

Global gene therapy market was valued at US$ 919.6 million in 2018 and is expected to reach US$ 5,609.9 million by 2027, growing at an estimated CAGR of 8.2% over the forecast period. The introduction of gene with the potential to cure or prevent the growth of a disease is termed as Gene Therapy. Increasing investment in research and development to discover lifesaving treatment for advanced diseases such as Cancer is driving the overall gene therapy market.

Gene therapy market is growing at a notable pace. Genetic or hereditary defects such as cardiovascular diseases, neurological disorders amongst others can be cured using gene therapy by introducing functional gene in the body and eliminating the defective ones. Gene therapy is categorized into somatic cell gene therapy and reproductive or germ line gene therapy. Gene therapy of Somatic cell are related to cells other than the germ cells or the reproductive cells while the germ line therapy are related to the reproductive cells with an objective to make changes to the hereditary factors to get the desired offspring. Somatic gene therapy can be further bifurcated into ex vivo gene therapy and in vivo gene therapy. In ex vivo gene therapy the cells are altered outside the body and the planted into the body while in the in vivo therapy cells are dealt inside the body. Somatic cell gene therapy is currently focusing on the treatment of tissue restricted disease such as Cystic Fibrosis, Adenosine Deaminase.

Get Sample Copy of this Report @

https://www.absolutemarketsinsights.com/request_sample.php?id=308

This market research report on the Global Gene Therapy Market is an all-inclusive study of the business sectors up-to-date outlines, industry enhancement drivers, and manacles. It provides market projections for the coming years. It contains an analysis of late augmentations in innovation, Porters five force model analysis and progressive profiles of hand-picked industry competitors. The report additionally formulates a survey of minor and full-scale factors charging for the new applicants in the market and the ones as of now in the market along with a systematic value chain exploration.

Top Key Players:

Some of the players operating in the gene therapy market are Voyager Therapeutics, Inc., Spark Therapeutics, Inc., Sangamo Therapeutics, Human Stem Cells Institute PJSC, Orchard Therapeutics plc, Genenta Science, Chiesi Farmaceutici S.p.A., Novartis AG, GlaxoSmithKline PLC, Gilead Sciences, Inc., Bristol Myers Squibb Delta Company Limited, Advanced Cell & Gene Therapy, LLC, Audentes Therapeutics, Inc., Biogen, and Pfizer Inc. amongst others.

Enquiry before Buying:

https://www.absolutemarketsinsights.com/enquiry_before_buying.php?id=308

The report answers important questions that companies may have when operating in the global Global Gene Therapy market. Some of the questions are given below:

What will be the size of the global Global Gene Therapy market in 2027? What is the current CAGR of the global Global Gene Therapy market? What products have the highest growth rates? Which application is projected to gain a lions share of the global Global Gene Therapy market? Which region is foretold to create the most number of opportunities in the global Global Gene Therapy market? Which are the top players currently operating in the global Global Gene Therapy market? How will the market situation change over the next few years? What are the common business tactics adopted by players? What is the growth outlook of the global Global Gene Therapy market?

Request For [emailprotected] https://www.absolutemarketsinsights.com/request_for_customization.php?id=308

About Us:

Absolute Markets Insights assists in providing accurate and latest trends related to consumer demand, consumer behavior, sales, and growth opportunities, for the better understanding of the market, thus helping in product designing, featuring, and demanding forecasts. Our experts provide you the end-products that can provide transparency, actionable data, cross-channel deployment program, performance, accurate testing capabilities and the ability to promote ongoing optimization.

From the in-depth analysis and segregation, we serve our clients to fulfill their immediate as well as ongoing research requirements. Minute analysis impact large decisions and thereby the source of business intelligence (BI) plays an important role, which keeps us upgraded with current and upcoming market scenarios.

Contact Us:

Company: Absolute Markets Insights

Email id: [emailprotected]

Phone: +91-740-024-2424

Contact Name: Shreyas Tanna

The Work Lab,

Model Colony, Shivajinagar, Pune, MH, 411016

Website: https://www.absolutemarketsinsights.com/

Link:
Exclusive Report on Global Gene Therapy Market Analysis Report 2021 and Forecast to 2029 with different segments, Key players KSU | The Sentinel...

Stem Cells- Definition, Properties, Types, Uses, Challenges

Biology Educational Videos

Last Updated on October 12, 2020 by Sagar Aryal

Stem cells are unique cells present in the body that have the potential to differentiate into various cell types or divide indefinitely to produce other stem cells.

Figure: Stem Cell Renewal and Differentiation. Image Source: Maharaj Institute of Immune Regenerative Medicine.

All the stem cells found throughout all living systems have three important properties. These properties can be visualized in vitro by a process called clonogenic assays, where a single cell is assessed for its ability to differentiate.

The following are some properties of stem cells:

Figure: Techniques for generating embryonic stem cell cultures. Image Source: John Wiley & Sons, Inc. (Nico Heins et al.)

Depending on the source of the stem cells or where they are present, stem cells are divided into various types;

Figure: Human Embryonic Stem Cells Differentiation. Image created with biorender.com

Figure: Preliminary Evidence of Plasticity Among Nonhuman Adult Stem Cells. Image Source: NIH Stem Cell Information.

Figure: Progress in therapies based on iPSCs. Image Source: Nature Reviews Genetics (R. Grant Rowe & George Q. Daley).

Figure: Mesenchymal stem cells (MSCs). Image Source: PromoCell GmbH.

Some of the common and well-known examples of stem cell research are:

Stem cell research has been used in various areas because of their properties. Some of the common applications of stem cells research include;

Because of different ethical and other issues related to stem cell research, there are some limitations or challenges of stem cell research. Some of these are:

Read more:
Stem Cells- Definition, Properties, Types, Uses, Challenges

Experts Predict the Hottest Life Science Tech in 2021 and Beyond – The Scientist

Through the social and economic disruption that COVID-19 caused in 2020, the biomedical research community rose to the challenge and accomplished unprecedented feats of scientific acumen. With a new year ahead of us, even as the pandemic grinds on, we at The Scientist thought it was an opportune time to ask what might be on the life science innovation radar for 2021 and beyond. We tapped three members of the independent judging panel that helped name our Top 10 Innovations of 2020 to share their thoughts (via email) on the year ahead.

Paul Blainey: Value is shifting from the impact of individual technologies (mass spectrometry, cloning, sequencing, PCR, induced pluripotent stem cells, next generation sequencing, genome editing, etc.) to impact across technologies. In 2021, I think researchers will increasingly leverage multiple technologies together in order to generate new insights, as well as become more technology-agnostic as multiple technologies present plausible paths toward research goals.

Kim Kamdar: Partially in reaction to the COVID-19 pandemic, one 2021 headline will be the continued innovation focused on consumerization of healthcare, which is redefining how consumers engage with providers across each stage of care. Consumers are even selective about their healthcare choices now, and the retail powerhouses like CVS and Walmart have and will continue to develop solutions to meet the needs of their customers. While this was already underway prior to the pandemic, the crisis has spurred on this activity with the goal of making healthcare more accessible and affordable and ultimately delivering on better health outcomes for all Americans.

Robert Meagher: I think this is easymRNA delivery. This is something that has been in development for years for numerous applications, but the successful development and FDA emergency use authorization of two COVID-19 vaccines based on this technology shines a very bright spotlight on this technology. The vaccine trials and now widespread use of the vaccines will give developers a lot of data about the technology, and sets a baseline for understanding safety and side effects when considering future therapeutic applications outside of infectious disease.

PB:Single-cell technology is here to stay, although its use will continue to change. One analogy to be drawn is the shift we saw from the popularity ofde novo genome sequencing (during the human genome project and the early part of the NGS [next-generation sequencing] era to the rich array of re-sequencing applications practiced today. I expect new ways to use single-cell technology will continue to be discovered for some time to come.

KK: Innovation in single-cell technology has the potential to transform biological research driving to a level of resolution that provides a more nuanced picture of complex biology. Cost has been a key barrier for broader adoption of single-cell analysis. As better technology is developed, cost will be reduced and there will be an explosion in single-cell research. This dynamic will also allow for broader adoption of single-cell technology from translational research to clinical applications particularly in oncology and immunology.

RM: Yesthere is continuing innovation in this space, and room for continued innovation. One area that we have seen development recently, and I see it continuing, is to study single cells not just in isolation, but coupled with spatial information: understanding single cells and their interactions with their neighbors. I also wonder if the COVID-19 pandemic will spur increased interest in applying single-cell techniques to problems in infectious disease, immunology, and microbiology. A lot of the existing methods for single-cell RNA analysis (for example) work well for human or mammalian cells, but dont work for bacteria or viruses.

PB: The promises of CRISPR and gene editing are extraordinary. I cant wait to see how that field continues to develop.

KK: Much of the CRISPR technology focus since it was unveiled in 2012 has been on its utility to modify genes in human cells with the goal of treating genetic disease. More recently, scientists have shown the potential of using the CRISPR gene-editing technology for treatment of viral disease (essentially a programmable anti-viral that could be used to treat diseases like HIV, HBV, SARS, etc. . . .). These findings, published in Nature Communications, showed that CRISPR can be used to eliminate simian immunodeficiency virus (SIV) in rhesus macaque monkeys. If replicated in humans, in studies that will be initiated this year, CRISPR could be utilized to address HIV/AIDS and potentially make a major impact by moving a chronic disease to one with a functional cure.

PB: New therapeutic modalities that expand the addressable set of diseases are particularly exciting. Cell-based therapies offer versatile platforms for biological engineering that leverage the power of human biology. It is also encouraging to see somatic cell genome editing technology advance toward the clinic for the treatment of serious diseases.

The level of innovation that occurred in 2020 to combat COVID-19 will provide a more rapid, focused, and actionable reaction to future pandemics.

Kim Kamdar, Domain Associates

RM: Besides the great success with mRNA-based vaccines that sets the stage for other clinical technologies based on mRNA delivery, the other area that is really in the spotlight this year is diagnostics. There are a lot of labs and companies, both small and large, that have some really innovative products and ideas for portable and point-of-care diagnostics. For a long time, this was often thought of in terms of a problem for the developing world, or resource-limited locations: think, for example, of diagnostics for neglected tropical diseases. But the COVID-19 pandemic and the associated need for diagnostic testing on a massive scale has caused us to rethink what resource-limited means, and to understand the challenge posed by bottlenecks in supply chains, skilled personnel, and high-complexity laboratory facility. There has been a lot of foundational research over the past couple of decades in rapid, portable, easy-to-use diagnostics, but translating these to clinically useful products often seemed to stall, I suspect for lack of a lucrative market for such tests. But we are now starting to see FDA [emergency use authorization for] home-based tests and other novel diagnostic technologies to address needs with the COVID-19 pandemic, and I suspect that this paves the way for these technologies to start being applied to other diagnostic testing needs.

PB: Seeing the suffering and destruction wrought by COVID-19, it is obvious that we need to be prepared with more extensive, equitable, and better-coordinated response plans going forward. While rapid vaccine development and testing were two bright spots last year, there are so many important areas that demand progress. As we learn about how important details become in a crisisno matter how small or mundanediagnostic technologies and the calibration of public health measures are two areas that merit major focus.

KK: The life science community response to the COVID-19 pandemic has already proven to be light-years ahead of previous responses particularly in areas such as vaccine development and diagnostics. It took more than a year to sequence the genome of the SARS virus in 2002. The COVID-19 genome was sequenced in under a month from the first case being identified. Scientists and clinicians were able to turn that initial information to multiple approved vaccines at a blazing speed. Utilizing messenger RNA (mRNA) as a new therapeutic modality for vaccine development has now been validated. Vaccine science has been forever changed. The pandemic has also focused a much-needed level of attention to diagnostics, forcing a rethink of how to increase access, affordability, and actionability of diagnostic testing. The level of innovation that occurred in 2020 to combat COVID-19 will provide a more rapid, focused, and actionable reaction to future pandemics. In addition, the elevation of a science advisor (Dr. Eric Lander) to a cabinet level position in the Biden administration bodes well for our future ability to ground in data and as President Biden himself framed, refresh and reinvigorate our national science and technology strategy to set us on a strong course for the next 75 years, so that our children and grandchildren may inhabit a healthier, safer, more just, peaceful, and prosperous world.

RM: One thing that really kick-started research to address COVID-19 was the early availability of the complete genome sequence of the SARS-CoV-2 virus, and the ongoing timely deposition of new sequences in nearreal-time as isolates were sequenced. This is in contrast to cases where deposition of large number of sequences may lag an outbreak by months or even years. I foresee the nearreal-time sharing of sequence information to become the new standard. Making the virus itself widely and inexpensively available, in inactivated form, as well as well-characterized synthetic viral RNA standards and proteins also helped spur research.

A trend Im less fond of is the rapid publication of nonpeer reviewed results as preprints online. Theres a great benefit to getting new information out to the community ASAP, but unfortunately I think the rush to get preprints up in some cases results in spreading misleading information. This problem is compounded with uncritical, breathless press releases accompanying the posting of preprints, as opposed to waiting for peer-review acceptance of a manuscript to issue a press release. I think the solution may lie in journals considering innovative approaches to speeding up peer review, or a way to at least perform a basic check for rigor prior to posting a preliminary version of the manuscript. Right now the extremes are: post an unreviewed preprint, or wait months or even years with multiple rounds of peer review including extensive additional experiments to satisfy the curiosity of multiple reviewers for high impact publications. Is there a way to prevent manuscripts from being published as preprints with obvious methodological errors or errors in statistical analysis, while also enabling interesting, well-done yet not fully polished manuscripts to be available to the community?

Paul Blaineyis an associate professor of biological engineering at MIT and a core member of the Broad Institute of MIT and Harvard University. The Blainey lab integrates new microfluidic, optical, molecular, and computational tools for application in biology and medicine. The group emphasizes quantitative single-cell and single-molecule approaches, aiming to enable studies that generate data with the power to reveal the workings of natural and engineered biological systems across a range of scales. Blainey has a financial interest in several companies that develop and/or apply life science technologies: 10X Genomics, GALT, Celsius Therapeutics, Next Generation Diagnostics, Cache DNA, and Concerto Biosciences.

Kim Kamdaris managing partner at Domain Associates, a healthcare-focused venture fund creating and investing in biopharma, device, and diagnostic companies. She began her career as a scientist and pursued drug-discovery research at Novartis/Syngenta for nine years.

Robert Meagheris a principal member of Technical Staff at Sandia National Laboratories. His main research interest is the development of novel techniques and devices for nucleic acid analysis, particularly applied to problems in infectious disease, biodefense, and microbial communities. Most recently this has led to approaches for simplified molecular diagnostics for emerging viral pathogens that are suitable for use at the point of need or in the developing world. Meaghers comments represent his professional opinion but do not necessarily represent the views of the US Department of Energy or the United States government.

Read more from the original source:
Experts Predict the Hottest Life Science Tech in 2021 and Beyond - The Scientist

Bone Therapeutics, Rigenerand Ink Cell Therapy Deal – Contract Pharma

Bone Therapeutics, a cell therapy company addressing unmet medical needs in orthopedics and other diseases, and Rigenerand SRL, a biotech company that both develops and manufactures medicinal products for cell therapy applications, primarily for regenerative medicine and oncology, have signed an agreement for a process development partnership. Allogeneic mesenchymal stem cell (MSC) therapies are currently being developed at a fast pace and are evaluated in numerous clinical studies covering diverse therapeutic areas such as bone and cartilage conditions, liver, cardiovascular and autoimmune diseases in which MSCs could have a significant positive effect. Advances in process development to scale up these therapies could have major impacts for both their approval and commercial viability. This will be essential to bring these therapies to market to benefit patients as quickly as possible, said Miguel Forte, chief executive officer, Bone Therapeutics. While Bone Therapeutics is driving on its existing clinical development programs, we have signed a first formal agreement with Rigenerand as a fellow MSC-based organization. This will result in both companies sharing extensive expertise in the process development and manufacturing of MSCs and cell and gene therapy medicinal products. Bone Therapeutics also selected Rigenerand to partner with for their additional experience with wider process development of advanced therapy medicinal products (ATMPs), including the conditioning and editing of MSCs. The scope of collaborations between Bone Therapeutics and Rigenerand aims to focus on different aspects of product and process development for Bone Therapeutics expanding therapeutic portfolio. Rigenerand will contribute to improving the processes involved in the development and manufacture of Bone Therapeutics MSC based allogeneic differentiated cell therapy products as they advance towards patients. The first collaboration between the two organizations will initially focus on augmented professional bone-forming cellscells that are differentiated and programmed for a specific task. There is also potential for Bone Therapeutics to broaden its therapeutic targets and explore new mechanisms of action with potential gene modifications for its therapeutic portfolio. In addition to Rigenerands MSC expertise, Bone Therapeutics also selected Rigenerand as a partner for Rigenerands GMP manufacturing facility. This facility, situated in Modena, Italy, has been designed to host a number of types of development processes for ATMPs. These include somatic, tissue engineered and gene therapy processes. These multiple areas of Rigenerand capabilities enable critical development of new processes and implementation of the gene modification of existing processes. In addition, Rigenerand has built considerable experience in cGMP manufacturing of MSC-based medicinal products, including those that are genetically modified. Process development and manufacturing is a key part of the development for ATMPs internationally. Navigating these therapies through the clinical development phase and into the market requires a carefully considered process development pathway, said Massimo Dominici, scientific founder, Rigenerand, professor of medical oncology, and former president of the International Society for Cell & Gene Therapy (ISCT). This pathway needs to be flexible, as both the market and materials of these therapies continues to evolve alongside an improved clinical efficacy. Giorgio Mari, chief executive officer, Rigenerand, said, Rigenerand will offer considerable input from its experience of MSC-based therapies to enable Bone Therapeutics to keep and further accelerate the pace in development of the product processes of its MSC based allogeneic differentiated cell therapy as they advance towards patients. We will continue to use our MSC expertise in the development of Rigenerands own products, as well as in process development and manufacturing cell and gene therapies for partner organizations across the globe.

Original post:
Bone Therapeutics, Rigenerand Ink Cell Therapy Deal - Contract Pharma