Category Archives: Embryonic Stem Cells


The Rise of Biotech Startups: Advancing Science and Medicine … – Lexology

The COVID-19 pandemic has had a major impact on various industries globally, but the biotech industry has proven to be resilient. Initially, the pandemic caused a setback in the growth and financial stability of the biotech industry, but as the need for scientific breakthroughs, particularly in combating the virus, became more apparent, the biotechnology industry started to recover.

According to a study conducted by McKinsey, venture capitalist (VC) companies increased their investments in biotech startups from 2,200 globally in 2016 to 3,100 by 2021. This highlights the growing importance of investing in science, especially in the biotech industry.

Biotechnology has a wide range of applications that impact our daily lives in many ways. It plays a crucial role in developing food products, using genetically modified organisms, finding sustainable ways of procuring resources, and managing waste. It has the potential to improve our health and that of the planet.

Modern biotechnology has led to several breakthrough products and technologies that aim to reduce our environmental footprint, increase energy efficiency, and promote the use of cleaner energy. It has also contributed to feeding the hungry and enhancing industrial manufacturing processes.

The Biotechnology Revolution

The biotechnology industry has seen remarkable growth and progress over the past few years, with numerous startups making a big impact in different areas of the field. Here are some of the startups that have revolutionized the biotechnology industry:

Cell TherapyCellarity is a startup that has made a significant impact in drug discovery. Their approach involves targeting cell behavior rather than individual proteins. This approach to medicine is based on the understanding of how a disease impacts cell behavior rather than traditional methods of targeting the illness.

NeurologyBionaut Labs is a startup that has revolutionized the treatment of brain disorders through precision-targeted medicine. Their medical method involves the use of remote-controlled micro-robots, known as Bionauts, which have the potential to change the way central nervous system disorders are treated.

Tissue RegenerationEndogena Therapeutics is a clinical-stage biotech company that works on discovering and developing first-in-class endogenous regenerative medicines. Their goal is to repair and regenerate tissues and organs and treat degenerative conditions related to aging and genetic disorders.

Cellular BiologyGinkgo Bioworks believes that biology is the most advanced manufacturing technology on the planet. They aim to program cells to make everything from food to materials to medicine. Their research focuses on modifying microorganisms and they work with several partner companies to develop microbes for different purposes.

Genetic MedicinesPassage Bio is a startup that aims to transform the future through the power of gene therapy. Their R&D model focuses on changing the lives of patients with central nervous system disorders and their goal is to develop a portfolio of five life-transforming AAV-delivered therapeutics.

Gene TherapyKriya Therapeutics is a startup that is revolutionizing the process of how gene therapies are designed, developed, and manufactured. They aim to improve speed to market and reduce costs. Their research targets a wide range of diseases, including obesity and diabetes. Their strong commitment to reducing cost per dose and bringing their products to market faster sets them apart from their competitors.

Tissue RegenerationBiosplices mission is to restore health through first-in-class therapies that harness alternative splicing. The startup is studying ways to manipulate stem cells in order to prevent conditions such as skin diseases, bone and joint ailments, and even hair loss. They are investigating ways to make cells of aging people regenerate as fast as developing embryos do.

Artificial Intelligence in Drug DiscoveryAtomwise is a startup that utilizes artificial intelligence to revolutionize drug discovery. They use deep learning algorithms to analyze large datasets, allowing them to discover new drug candidates faster and more accurately than traditional methods.

Personalized Cancer TherapyNatera is a leading provider of cancer genomics and personalized medicine. Their technology helps to analyze cancer genomic information and personalize patient treatment accordingly. This has the potential to greatly improve patient outcomes and reduce the risk of side effects.

BioprintingOrganovo is a bioprinting company that creates functional human tissues for medical research and therapeutic applications. Their technology has the potential to revolutionize the way we approach disease and injury, as well as reduce the need for animal testing.

Precision AgricultureThe Climate Corporation is a subsidiary of Monsanto that provides farmers with customized data analysis to improve their crop yield and reduce waste. Their technology takes into account a variety of factors, including weather patterns and soil analysis, to provide farmers with the information they need to make informed decisions.

Synthetic BiologyAmyris is a synthetic biology company that uses engineered yeast to produce a variety of compounds, including fuels, fragrances, and personal care products. Their technology is designed to reduce the impact of human activities on the environment, as well as to provide sustainable alternatives to traditional products.

BiomaterialsEcovative Design creates sustainable materials from mushroom roots and agricultural waste. Their materials are being used in a variety of applications, including insulation, furniture, and packaging, and have the potential to greatly reduce the amount of waste generated by traditional materials.

These are just a few examples of the startups that have been instrumental in revolutionizing the biotechnology industry. With continued investment and innovation, it's exciting to see what the future holds for this rapidly growing field.

The Future of Biotech Startups

The biotech industry has seen significant growth in recent years, with increased funding from venture capitalists, partnerships, and IPOs. The amount of venture capital invested in the biotech sector reached $36.6 billion in 2020, with the majority of investments happening in the US, followed by Europe and China. Joint partnerships and ventures reached a total of $170.6 billion in 2020, with a likely much larger undisclosed value.

One reason for the growth of the biotech industry is the increased accessibility and affordability of technology. This, combined with growing investment interest, points to a bright future for the industry.

In addition, the future of biotech startups is expected to be more founder-led. This means that the person who cares most about the research, the founder, will have more control over the direction of the biotech startup. This shift is evident in the recent successful IPOs of biotech startups like Recursion Pharmaceuticals, AbCellera, Ginkgo Bioworks, and SQZ Biotech, which are all led by their creative and scientific founders. This trend is being acknowledged by investors, who are increasingly supportive of companies led by their founders.

Conclusion

The pandemic may have temporarily slowed down the growth of the biotech industry, but the world now recognizes the need for more investment in the field. Biotech startups have made significant contributions to the advancement of science and medicine, bringing new innovations in cell therapy, micro-robotics, tissue regeneration, cellular biology, and genetic medicine.

As the biotech industry continues to grow, we can expect even more groundbreaking innovations in the field. With increased investment from venture capitalists and accessible technology, the future of the biotech industry looks bright. Furthermore, startups in this industry are more likely to be led by their founders, who are driven by a passion for their research and a desire to make a real impact.

Read the original here:
The Rise of Biotech Startups: Advancing Science and Medicine ... - Lexology

The Global Advanced Therapy Medicinal Products CDMO Market … – GlobeNewswire

New York, Feb. 21, 2023 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Advanced Therapy Medicinal Products CDMO Market Size, Share & Industry Trends Analysis Report By Indication, By Product, By Phase, By Regional Outlook and Forecast, 2022 - 2028" - https://www.reportlinker.com/p06422807/?utm_source=GNW Advanced Therapy Medicinal Products (ATMPs) are advanced therapeutic medications that are focused on gene therapy or cell therapy.

CDMOs primarily support their clientele in the process of drug discovery through the provision of manufacturing capabilities and also help the pharmaceutical industry as a whole. The increase in the number of molecular drug approvals, the growing prevalence of infectious diseases, and the growing favorability for innovative therapeutics demand are inducing a rise in the number of CDMO setups in order to facilitate the quick development and production of therapies.

Because of this, the research, knowledge, and manufacturing capabilities of CDMOs are absolutely essential for moving the drug development process forward. Innovative treatments such as somatic cell therapy, gene therapy, and tissue-engineered products are all included in the category of advanced therapy medical products. It is expected that these therapies would deliver significant health advantages.

Medications derived through gene therapy contain genes that have been shown to have a curative, preventative, or diagnostic function. In most cases, they are used to treat a wide range of ailments, such as genetic disorders, cancer, or diseases that have a protracted course of treatment, and they function by introducing recombinant genes into the body. Additionally, a segment of DNA known as a recombinant gene is one that has been synthesized in the lab by combining strands of DNA derived from a variety of different sources.

COVID-19 Impact Analysis

Mesenchymal stem cells (MSCs), an ATMP, also offered a cutting-edge approach to treating the COVID-19 virus. Due to the challenging nature of the manufacturing process, the COVID-19 pandemic has had a substantial impact on the cell and gene therapy sector. Tissue engineering has significantly benefited from recent technology advancements. Damaged organs and tissues can be replaced or have their functionality restored with this technique. Similar to this, cell and gene therapy are attracting a lot of interest from patients in order to treat rare diseases, which are growing globally. Therefore, the pandemic affected the advanced therapy medicinal products CDMO market positively.

Market Growth Factors

Rising Need for CDMOS Due to Increasing Number of ATMP Clinical Trials

The growing number of clinical studies for advanced therapy medicinal products is one of the key factors driving the need for CDMOs. There were 3,579 gene, cell, and RNA therapies in development as of Q1 2022, according to a study by the American Society of Gene and Cell Therapy. According to the research, as of Q1 2021, the pipeline for gene cell therapy has grown by 16%. Genetically engineered cell therapies are being outperformed in the pipeline by CAR-T cell therapies. Furthermore, 98% of CAR-T cell treatments are still being developed for cancer-related indications. All these factors influence an increase in the number of CDMO and thus promote the growth of the advanced therapy medicinal products CDMO market.

Increasing efforts to develop novel therapies for various diseases

The effect of rising product demand around the world is a significant market trend that has prompted the development of novel therapeutic solutions. Over the course of the projection period, increasing product demand and significant increase in gene and cell therapies are anticipated to fuel growth opportunities for the market. CDMO assures the complete solution, starting with the planning of clinical trials and concluding with drug production. While CDMOs can prepare the drug, pharmaceutical and biopharmaceutical companies increase their research to develop innovative and efficient medicines. Therefore, each of these reasons contributes to the expansion of the advanced therapy medicinal products CDMO market.

Market Restraining Factors

Specific drawbacks of cell therapy methods of ATMP

Stem cell therapys primary limitation is that the cells of a single origin can only make cells of the same origin and type, for example, brain cells can only produce more brain cells. This is one of the procedures most significant downsides. The utilization of cell therapies would become more constrained as a result of these drawbacks. Since the use of stem cell therapy can result in the destruction of human embryos, one might expect to see a decline in the demand for these therapies. In addition, it is expected that the risk of contamination and the possibility of technological malfunctions may act as a barrier to the expansion of the automated cell therapy processing systems, which would hamper the growth of the advanced therapy medicinal products CDMO market.

Product Outlook

Based on product, the advanced therapy medicinal products CDMO market is segmented into gene therapy, cell therapy, tissue engineered and others. The cell therapy segment procured a considerable growth rate in the advanced therapy medicinal products CDMO market in 2021. New cell types are continuously being introduced to the domain of cellular therapies, which presents numerous chances for businesses to strengthen their market positions. The significant unmet need for cell therapy production, the recent approval of sophisticated medicines, and the demonstrated efficacy of these products are also drawing new players to the industry. These factors are therefore, propelling the expansion of the segment.

Phase Outlook

On the basis of phase, the advanced therapy medicinal products CDMO market is bifurcated into phase I, phase II, phase III, and phase IV. The phase I segment acquired the largest revenue share in the advanced therapy medicinal products CDMO market in 2021. The segments expansion can be attributed to rising R&D efforts and an increase in the number of advanced therapy human trials. Phase 1 assists in ensuring a drugs safety levels when it is given to a small group of patients in a variety of doses and dosing formats. The major goal of this phase is to ascertain the largest dose a patient may get without experiencing any negative effects.

Indication Outlook

By indication, the advanced therapy medicinal products CDMO market is fragmented into oncology, cardiology, central nervous system & musculoskeletal, infectious disease, dermatology, endocrine, metabolic, genetic, immunology & inflammation, ophthalmology, hematology, gastroenterology, and others. The oncology segment witnessed the maximum revenue share in the advanced therapy medicinal products CDMO market in 2021. The prevalence of the disease, the strategic actions made by key competitors, and the accessibility of cutting-edge medicines utilized to treat various cancer indications are all contributing factors to the segments rise. Oncology clinical trials include all phases of the process where Phase I trials determines dose and phase II analyses define efficacy in a single tumor type.

Regional Outlook

Region wise, the advanced therapy medicinal products CDMO market is analyzed across North America, Europe, Asia Pacific and LAMEA. The North America region recorded the highest revenue share in the advanced therapy medicinal products CDMO market in 2021. This can be due to rising interest in innovative therapies and rising outsourcing activities. The growing burden of diseases like cardiovascular, cancer, and certain rare genetic disorders have raised the levels of research and funding for the development of ATMPs that may serve as treatment methods for these diseases. It is projected that America will maintain its position as a leader in R&D for cutting-edge treatments in the coming years.

The major strategies followed by the market participants are Acquisitions. Based on the Analysis presented in the Cardinal matrix; Thermo Fisher Scientific, Inc. (Patheon, Inc.) and Lonza Group AG are the forerunners in the Advanced Therapy Medicinal Products CDMO Market. Companies such as AGC Biologics, Inc., WuXi Advanced Therapies, and Catalent, Inc. are some of the key innovators in Advanced Therapy Medicinal Products CDMO Market.

The market research report covers the analysis of key stake holders of the market. Key companies profiled in the report include Thermo Fisher Scientific, Inc. (Patheon, Inc.), AGC Biologics, Inc. (AGC, Inc.), Catalent, Inc., Minaris Regenerative Medicine GmbH (Resonac Holdings Corporation), WuXi AppTec Co., Ltd. (WuXi Advanced Therapies), Lonza Group AG, Celonic AG (JRS PHARMA GmbH & Co. KG), Rentschler Biopharma SE, and Bio Elpida (Polyplus-transfection SA.)

Recent Strategies Deployed in Advanced Therapy Medicinal Products CDMO Market

Acquisitions and Mergers:

Aug-2022: Catalent acquired Metrics Contract Services (Metrics), a US-based organization, primarily into providing contract development and manufacturing services for the medical sector. The acquisition advances Catalents ability to better serve its clients, particularly those clients with R & D pipelines having rare, orphan, diseases for oncology and other therapeutic areas.

Apr-2022: Catalent took over Erytechs cell Therapy Development and Manufacturing Facility in Princeton, New Jersey. The 30,900-square-foot manufacturing plants acquisition reflects Catalents devotion to fulfilling the growing demand for cell therapies.

Aug-2021: AGC Biologics acquired a commercial facility in Longmont, Colorado, USA from Novartis Gene Therapies. The acquisition expands AGCs manufacturing capacity supporting its global end-to-end Cell and Gene Therapy (C>) offerings and further expanding cell and gene therapy presence in the US.

Mar-2021: WuXi AppTec acquired OXGENE, a pioneering United Kingdom-based contract research, and development organization. Through this acquisition, the company aims to provide its customers with end-to-end aid in the development and creation of advanced cell and gene therapies.

Jul-2020: AGC took over MolMed, an Italy-based biotechnology company. The acquisition brings in MolMeds expertise and competence in development and GMP manufacturing services to AGC Biologics global CDMO service offerings.

Partnerships, Collaborations and Agreements:

Jan-2023: Catalent came into agreement with Sarepta Therapeutics, a US-based provider of precision genetic medicines. The commercial supply agreement involves Catalent manufacturing Sareptas gene therapy delandistrogene moxeparvovec (SRP-9001) meant for the treatment of Duchenne muscular dystrophy (DMD).

Aug-2022: AGC Biologics partnered with RoosterBio Inc., a leading supplier of human mesenchymal stem/stromal cells (hMSCs). The partnership involves cashing on RoosterBios media and cell products and AGCs gene and cell therapy manufacturing abilities, to develop an end-to-end solution for the production and expansion of exosome and hMSC therapeutics that help media and cell growth services.

Apr-2022: WuXi Advanced Therapies partnered with Bioprocessing Technology Institute, a Singapore-based research institute. The partnership involves accelerating cell and gene therapy products in the APAC region, and focuses on WuXi ATUs Tetracycline-Enabled Self-Silencing Adenovirus (TESSA) technology that enhances adeno-associated virus (AAV) yields and particle quality.

Feb-2021: Rentschler Biopharma SE signed an agreement with Cell and Gene Therapy Catapult (CGT Catapult), an independent center of excellence in innovation advancing the UKs cell and gene therapy industry. The agreement involves leveraging Catapults expertise to set up a manufacturing capability in advanced therapy medicinal products intended for clinical trial supply at Catapults manufacturing facility in Stevenage, England.

Nov-2020: Lonza came into partnership with Be The Match BioTherapies, an organization offering solutions for companies developing and commercializing cell and gene therapies. Through this partnership, the company aims to offer end-to-end solutions that advance the growth of cell and gene therapies throughout the CGT supply chain.

Feb-2020: Catalent signed a contract with Zumutor Biologics, a US-based biotechnology company, primarily into providing NK cell therapeutics. The agreement involves manufacturing Zumutors ZM008 meant for solid tumor treatment.

Product Launches and Expansions:

May-2020: WuXi Advanced Therapies launched the CAR-T Cell Therapy Platform. A platform intended for advanced therapy companies providing them with various capabilities including, regulatory and technical expertise, full in-process and release testing, robust quality control, etc. The new platform advances the time taken for cell and gene therapy development, at the same time offering greater definiteness.

Jan-2020: WuXi Advanced Therapies unveiled the associated virus (AAV) Vector Suspension Platform. The platform supports advancing the timeline for cell and gene therapy development, at the same time offering greater predictability.

Geographical Expansions:

Oct-2022: Lonza expanded its laboratory space at its facilities in Houston (US) and Geleen (NL). The capacity expansion is intended to expand the CGT process and analytical development. Moreover, the expansion reinforces Lonzas global process development service offerings.

May-2022: AGC Biologics expanded its production capacity at its plant in Colorado, US to cater to the strong demand for cell and gene therapy.

Mar-2021: AGC expanded its geographical footprint by installing new viral vector production equipment at its facility in Milan, Italy. The new equipment would allow AGC to implement a platform best suited for the large-scale manufacturing of viral vectors.

Scope of the Study

Market Segments covered in the Report:

By Indication

Oncology

Cardiology

Central Nervous System & Musculoskeletal

Infectious Disease

Dermatology

Endocrine, Metabolic, Genetic

Immunology & Inflammation

Ophthalmology

Hematology

Gastroenterology

Others

By Product

Gene Therapy

Cell Therapy

Tissue Engineered & Others

By Phase

Phase I

Phase II

Phase III

Phase IV

By Geography

North America

o US

o Canada

o Mexico

o Rest of North America

Europe

o Germany

o UK

o France

o Russia

o Spain

o Italy

o Rest of Europe

Asia Pacific

o China

o Japan

o India

o South Korea

o Singapore

o Malaysia

o Rest of Asia Pacific

LAMEA

o Brazil

o Argentina

o UAE

o Saudi Arabia

o South Africa

o Nigeria

o Rest of LAMEA

Companies Profiled

Thermo Fisher Scientific, Inc. (Patheon, Inc.)

See the original post here:
The Global Advanced Therapy Medicinal Products CDMO Market ... - GlobeNewswire

CRISPR Therapeutics vs Editas Medicine – Securities.io

Gene Editing Hype

Gene editing has for a while been hailed as the new frontier in medicine. The peak enthusiasm with investors on this topic was in early 2020, with the related stocks having cooled off since. No matter the market sentiment, gene editing is still a big deal for medical and pharmaceutical companies as well as patients and doctors.

Gene editing is the next step after gene therapies. Gene therapies add a healthy gene to the genome but leave in place the defective gene. Editing in contrast actually repairs the faulty gene.

Two of the leading firms in the sector are CRISPR Therapeutics and Editas Medicine.

Which one, if any, should you pick as an investment?

Many diseases are due to defective genes, leading to non-functional organs or biochemical processes. They are very often difficult to cure diseases. Infectious diseases can be solved by killing pathogens. Other problems can be solved through surgery or drugs. But when the point of failure is in every cell and requires the body to be changed at the DNA level, this is a lot harder.

For a long time, it was believed that the only solution was gene editing at the early embryo stage, to solve the problem when there is only one cell or at most a few hundred stem cells. And even then, inserting a new, functional gene in defective cells was tricky and prone to failure, as the random entry of the new gene could damage other parts of the genome.

This was until the CRISPR-Cas9 system was discovered. It can be used to target a specific place in the genome. And then to do almost anything molecular biologists want, from knocking-out a gene, entirely deleting it, or also editing it. It can also insert in a controlled fashion entirely new genetic sequences.

This changed everything. Previous methods were too crude to be efficient or safe for most patients. CRISPR brings molecular biology to the next level, allowing precise and in-vivo gene editing to become repeatable and predictable.

Beyond CRISPR-Cas9, researchers have also discovered CRISPR-Cas12. It has slightly different characteristics that might prove better in some cases, like editing multiple genes at once. Or for cell types that do not tolerate Cas-9 well.

While CRISPR Therapeutics favors Cas9, Editas Medicine favors a version of Cas12. If you are technically minded and want to learn more about the difference between the 2 CRISPR systems, I recommend reading this scientific publicationand this article.

The company was founded in 2013 under the name Inception Genomics and went public in 2016.

One of the founders of CRISPR Therapeutics is Emmanuel Charpentier, the discoverer of CRISPR-Cas9 and the Nobel prize of Chemistry in 2020 for that discovery. So it is safe to assume that the company has a crack team when it comes to the scientific side of CRISPR-based gene editing.

Its technology is based on CRISPR-Cas9, allowing for the edition of precisely targeted sections of the genome.

Editas Medicine was founded in 2013 and went public in 2016. It initially started working with Cas9 but is now focused on a proprietary version of Cas12 that they engineered: AsCas12a.

We have covered in detail the unique capacities of Cas-12a in a dedicated article. To resume it shortly:

CRISPR Therapeutics has made the most progress on 2 diseases, Beta-thalassemia and sickle cell diseases (SCD).

This uses an ex-vivo technique: stem cells from the patients are collected, modified/repaired with CRISPR-Cas9, and reintroduced in the body.

Both are under clinical trials in collaboration with Vertex. In June 2022, results from a clinical trial revealedthat 42/44 patients with thalassemia were free from the need for blood transfusion, with the 2 others requiring a lot less blood transfusion.

No serious adverse event was found in SCD patients. Two thalassemia patients had serious adverse events, which have since been healed.

Overall, the blood therapies using CRISPR-Cas9 seem to be a success, and the safety profile acceptable considering how life-threatening and difficult to live with are the diseases treated. You can learn more about the experience of the cured patientin this podcast interviewing one of the participants in the trial.

Another application of CRISPR Therapeutics technology is cancer treatment. The idea is to use modified immune system cells to attack cancer cells. Until now, cells from the patient had to be genetically modified, which took several weeks, which often can be too late for a patients quickly degrading health.

Instead, the company is developing a modified cell that can be manufactured in advance and fit all patients. The method to target the cancer cell is not new, but the possibility to start treatment immediately is. The option to produce a batch of products for hundreds of patients at once is also precious, as it can reduce the complexity and costs of this therapy.

The company has currently 8 candidates in the pipeline, of which 2 already in clinical trials.

CRISPR Therapeutics is also collaborated with the company ViaCyte to improve its product. ViaCyte is aiming to cure type-1 diabetes. This is a disease affecting 8 million peopleand requiring lifelong treatment with insulin.

The issue with ViaCytes current design is that it requires a lifetime of immuno-suppression treatments, which come with their own set of risks and issues. This in turn drastically reduced the size of ViaCytes market.

With the help of CRISPR, ViaCyte is aiming at turning its solution into a lifelong cure for all type-1 diabetes.

Promisingly, the same idea could be used for many other diseases where a specific type of cell needs to be replaced. This could include type-2 diabetes, affecting more than 6% of the worlds population, as well as hepatitis, cirrhosis, or other degenerative diseases.

Each of these 3 applications uses the ex-vivo approach of modifying cells in a lab and re-injecting them in the patients. This is not possible for some diseases, for example, muscular or pulmonary diseases. So CRISPR Therapeutics is also trying to modify the cells of the patients directly in the body, with so-called in-vivo techniques. This either uses viruses as vectors of mRNA techniques not dissimilar to mRNA vaccines.

This is targeting a wide array of diseases including muscular dystrophia and cystic fibrosis (both in partnership with Regeneron), hemophilia (in partnership with Bayer), and cardiac diseases.

In the long run, CRISPR Therapeutics expect the in-vivo technology to become their flagship product and the center of their commercial strategy, able to solve 90% of the most prevalent severe monogenic diseases (see page 35)

Overall, CRISPR therapeutic has done a lot of progress.

It is currently applying for commercialization of its blood therapy products which could concern as many as 30,000 patients in the US and EU. Approval is never a sure thing, but published data last summer of 2022 indicates life-changing efficiency and an acceptable safety profile. Likely, the product could be approved for severe cases at least. This should prove a strong catalyst for the stock as it would be the first product approval for CRISPR Therapeutic.

Further improvement could grow this market to 166,000 patients, or even 450,000 if the in-vivo method proves successful(see the linked presentation page 8).

The cancer treatment trials are still in the early stages, so impossible to predict the outcome. Preliminary data have been encouraging.

The diabetes treatments entered trial on 2ndFebruary 2022. So it is too soon to judge it, but results from this trial could be another strong catalyst for the stock in 2023.

Editas Medicine was previously working, through its EDIT-101 treatment, on curing blindness due to Leber congenital amaurosis 10. The phase 1/2 clinical trial went well, demonstrating the proof of concept.

However, Editas is now looking to license out its technology for this disease, and focus exclusively on its blood disease treatment. It seems the strategic reorientation is due to:

Editas is now focusing on Sickle Cell Disease (SCD), hence going into direct competition with CRISPR Therapeutics own gene editing treatment for SCD.

Editas strategy is counting on the engineered AsCas12a CRISPR system, delivering a superior editing efficiency and specificity than its competitors system using Cas9.

The company is using ASCas12a to activate the genes of ftal hemoglobin in adults, producing functional ftal hemoglobin to replace the one not working in cases of SCD.

The company have also programs at an early stage in oncology (cancer) in partnership with BMS and Immatics. Other organs are also researched, likely for in-vivo therapies. Little has been disclosed about these programs so far.

The initial trial for SCD treatment on 2 patients has shown a good safety profile in the results published on December 2022. The initial results are also demonstrating the proof of concept of the treatment, having increased significantly the hemoglobin levels in the patients blood and reduced or removed symptoms of the disease. Data from additional patients should be published in mid-2023.

The next step is including 40 patients in a clinical trial at phase 1/2, with the first results expected by the end of 2023.

CRISPR Therapeutics valuation in early 2023 has shrunk significantly from a peak of $13.7B in January 2021.

As the company does not have a commercialized product yet, it is reliant on its cash balance and deals with larger pharmaceutical companies.

For example, it register $912M of revenue from its collaboration with Vertex in 2021. This can be compared to $438M in R&D spending and $102M in general administrative spending in the same year. With only 500 employees, the company seems rather lean, efficient, and focused on innovation.

The company has approximately $2B in cash, which should cover the companys needs up to 2024. It has no significant debt or liabilities beyond current operational liabilities and leases for its manufacturing facilities.

Overall, the company finances are sounds, even if it might need to raise more money at one point if its sickle cell disease and thalassemia drugs are not quickly approved. In that respect, the elevated share price of 2021 should have been better utilized to raise funds than risking the current lower valuation.

Like most biotech companies, Editas Medicines valuation is quite lower than its peak at $5.6B in January 2021.

When it comes to the maturity of its portfolio, Editas is just launching now the 40+ patient trials that CRISPR Therapeutics has already finished. So it is likely lagging 1-2 years behind when discussing possible commercialization.

The company has been losing $193M in 2021, of which $142M was spent on R&D. As it currently has $507M in current assets, its liquidity is sufficient for the whole of 2023, even taking into account the extra cost of the incoming clinical trial.

Editas Medicine might need extra funding before reaching commercialization, but this will likely not be the cause of a serious dilution of shareholders, thanks to the solid current cash position. It issued shares worth $203M in 2020 and $249M in 2021, making good use of the then-higher share prices.

Overall, Editas Medicine is at an earlier stage than CRISPR Therapeutics. But thanks to its focused approach centered on only one treatment and disease, it has a similar risk profile when it comes to cash balance and risk of dilution.

CRISPR Therapeutics isthe leader of the sector, benefiting from its first mover advantage, having been founded by the discoverer of Cas9 technology. It also has a much wider portfolio, covering SCD but also another blood disease, cancer, and even diabetes. So its overall potential addressable market is much wider.

It is also more advanced in its clinical trial, having a realistic chance to see at least one product commercialized in a 12-24 months time frame.

Where CRISPR Therapeutics might be lacking, is in its reliance on Cas9 technology, which might be better understood, but slightly less efficient in the long run. It is difficult to judge if these technical differences will result in practical differences in therapeutic efficiency.

Editas Medicine is a trailblazer in turning Cas12a into a practical medical tool. By concentrating its effort on SCD, it is directly targeting CRISPR Therapeutics own SCD treatment. So a lot of the future success or failure of Editas will depend if its treatment for SCD proves superior to CRISPR Therapeutics.

Both company valuations can be considered somewhat equivalent, as CRISPR Therapeutics has a much higher valuation, but also a much more diverse pipeline. Especially as both share a similar risk profile with a large cash cushion enough to cover the next 1-2 years of spending.

It is also possible that both companies will reach commercialization, and share the SCD market on relatively equal terms.

For investors looking at a very innovative and focused company, Editas Medicine might be a favored choice.

For investors looking at a more spread R&D risk, CRISPR Therapeutics wider pipeline should prove more reassuring. The upside in the 4-6 years timeframe of CRISPR Therapeutics might be also larger, thanks to its venture into the very large diabetes market.

The rest is here:
CRISPR Therapeutics vs Editas Medicine - Securities.io

Embryonic Stem Cells – The Definitive Guide | Biology Dictionary

Adult stem cells maintain and repair tissues throughout the body

Embryonic stem cells are pluripotent cells derived from a 3 5 day old human embryo. They have the unique potential to develop into any of the other 200+ human cell types, and can significantly further our understanding of human development and diseases.

Embryonic stem cells also have important applications in drug development, and may one day be used to treat currently incurable conditions.

Stem cells are cells that have the potential to differentiate and give rise to other types of body cells. They are the basic materials from which all of the bodys specialized cells are made during whole-body development and, in adulthood, are used to maintain and repair body tissues. There are two types of human stem cells, and these are embryonic stem cells and adult stem cells.

Embryonic stem cells (ESCs) are stem cells derived from a 3 5 day old human embryo (AKA a blastocyst). ESCs are pluripotent, meaning they have the potential to become any of the other 200+ types of cells found in the human body. As the embryo develops, ESCs divide and differentiate to form the full complement of human body cells required for healthy function.

The first differentiation event in human embryos begins around 5 days after fertilization, so ESCs must be harvested before this time if they are to be used in medicine and research. At this early developmental stage, the cells of the embryo form an undifferentiated mass and have not yet taken on the characteristics or functions of specialized adult cells.

The ability of ESCs to develop into all other types of human cells makes them an invaluable research tool. Studies involving ESCs can advance our understanding of human development, disease treatment, and drug efficacy.

ESCs can be grown (or cultured) in a laboratory. When kept under the right conditions, stem cells will grow and divide indefinitely, without becoming differentiated. However, they will still maintain their ability to differentiate, making the ESC culture a convenient and renewable reservoir of human cells. When used in research, ECSs are converted into their desired cell types by manipulating the culture conditions.

Scientists can use stem cells to further their understanding of human development and diseases. By studying embryonic stem cells, researchers hope to learn how they differentiate to form tissues and organs, how diseases and conditions develop in these tissues, and how age affects their function.

Scientists can also use ESCs to test and develop new drugs and to help them identify new potential treatments for diseases like Parkinsons disease, heart failure, and spinal cord injuries.

ESCs have enormous potential in the development of restorative or regenerative medicine, in which damaged tissues are replaced by healthy ones. Currently, several stem cell therapies are possible and could be used to treat a variety of injuries and diseases. These include spinal cord injuries, retinal and macular degeneration, heart failure, type 1 diabetes, and tendon rupture.

However, research into the use of ESCs for regenerative medicine are ongoing, and better understanding is required before modern medicine can harness their full potential. In the future, scientists hope that stem cell therapies can be used to treat currently incurable or difficult to treat conditions, such as AIDS or certain types of cancer.

Currently, the most common stem cell therapy is multipotent hematopoietic stem cell (HSC) transplantation. This treatment involves the transplantation of hematopoietic (or blood) stem cells and is usually used to treat diseases affecting the blood cells, such as leukemia and anemia.

ESCs can also be used in the development of new drugs, which must be tested on living tissues to determine their efficacy and any possible side effects.

Stem cells cultured in the laboratory can be stimulated to differentiate into any type of human tissue, so they are commonly used in preclinical drug trials. Once the potential and risks of the new drug have been determined using stem cells, the treatment can be used in animal tests and, eventually, human clinical trials.

The discovery of ESCs has led to numerous breakthroughs in the field of medical research, and their potential as the basis for new therapies and drugs is enormous. However, there is ethical controversy surrounding the use of ESCs in research, primarily because harvesting these cells involves destroying a human embryo.

For those who believe that life begins at conception, this raises moral objections. Opponents of stem cell research believe that embryos have the same rights as any other human beings, and shouldnt be disposed of in the name of science.

Those who support the use of ESCs in medical research may argue that the embryos do not yet qualify as humans, as they are destroyed in the very early stages of development. ESCs are harvested at around day 5 of development when the embryo (or blastocyst) is nothing more than a mass of undifferentiated cells.

Embryos used as a source of ESCs are frequently obtained from IVF clinics, where they have been frozen following fertilization. Guidelines created by the National Institute of Health state that embryos can only be used for this purpose when they are no longer needed (meaning they will never be implanted in a womans uterus). Such embryos would eventually be discarded anyway, so it can be argued that they would be better used to advance medical research.

Adult stem cells (AKA somatic stem cells) are stem cells that are found in most adult tissues.

They can develop into other types of cells but, unlike, ESCs, they are not pluripotent (able to develop into any other type of cell). Adult stem cells are either multipotent (able to develop into a limited number of closely related cells) or unipotent (able to develop into just one type of cell).

Their main function is to maintain and repair the tissue in which they are found and to replace cells that die as a result of injury or disease.

Mesenchymal stem cells are found in many adult tissues, including the umbilical cord, bone marrow, and fat tissue. In the bone marrow, mesenchymal stem cells differentiate to form bone, cartilage, and fat cells.

Neural stem cells are found in the brain and develop into nerve cells and their supporting cells (glial cells).

Hematopoietic stem cells are found in the bone marrow and peripheral blood. They give rise to all kinds of blood cells, including red blood cells, white blood cells, and platelets.

Skin stem cells are found in the basal layer of the epidermis and form keratinocytes for the continuous regeneration of the epidermal layers.

Here is the original post:
Embryonic Stem Cells - The Definitive Guide | Biology Dictionary

Pluripotent embryonic stem cells and multipotent adult germline stem …

Title & authors Abstract Similar articles Cited by Publication types MeSH terms Related information LinkOut - more resources . 2010 Nov;16(11):846-55. doi: 10.1093/molehr/gaq060. Epub 2010 Jul 12.

Affiliations Expand

Item in Clipboard

S Meyeret al. Mol Hum Reprod. 2010 Nov.

Display options

Format Abstract PubMed PMID

Item in Clipboard

Display options

Format Abstract PubMed PMID

DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs).

Zovoilis A, Pantazi A, Smorag L, Opitz L, Riester GS, Wolf M, Zechner U, Holubowska A, Stewart CL, Engel W. Zovoilis A, et al. Mol Hum Reprod. 2010 Nov;16(11):793-803. doi: 10.1093/molehr/gaq053. Epub 2010 Jun 21. Mol Hum Reprod. 2010. PMID: 20566704

Zovoilis A, Nolte J, Drusenheimer N, Zechner U, Hada H, Guan K, Hasenfuss G, Nayernia K, Engel W. Zovoilis A, et al. Mol Hum Reprod. 2008 Sep;14(9):521-9. doi: 10.1093/molehr/gan044. Epub 2008 Aug 12. Mol Hum Reprod. 2008. PMID: 18697907

Nolte J, Michelmann HW, Wolf M, Wulf G, Nayernia K, Meinhardt A, Zechner U, Engel W. Nolte J, et al. Differentiation. 2010 Nov-Dec;80(4-5):184-94. doi: 10.1016/j.diff.2010.08.001. Epub 2010 Sep 1. Differentiation. 2010. PMID: 20810205

Kerr CL, Shamblott MJ, Gearhart JD. Kerr CL, et al. Methods Enzymol. 2006;419:400-26. doi: 10.1016/S0076-6879(06)19016-3. Methods Enzymol. 2006. PMID: 17141064 Review.

Petitte JN, Liu G, Yang Z. Petitte JN, et al. Mech Dev. 2004 Sep;121(9):1159-68. doi: 10.1016/j.mod.2004.05.003. Mech Dev. 2004. PMID: 15296979 Review.

Han Z, Zhang Q, Zhu Y, Chen J, Li W. Han Z, et al. Stem Cells Int. 2020 Jul 6;2020:8863539. doi: 10.1155/2020/8863539. eCollection 2020. Stem Cells Int. 2020. PMID: 32695182 Free PMC article. Review.

Kalasauskas D, Sorokin M, Sprang B, Elmasri A, Viehweg S, Salinas G, Opitz L, Rave-Fraenk M, Schulz-Schaeffer W, Kantelhardt SR, Giese A, Buzdin A, Kim EL. Kalasauskas D, et al. Cancers (Basel). 2020 Mar 1;12(3):570. doi: 10.3390/cancers12030570. Cancers (Basel). 2020. PMID: 32121554 Free PMC article.

Bai Y, Zhu C, Feng M, Wei H, Li L, Tian X, Zhao Z, Liu S, Ma N, Zhang X, Shi R, Fu C, Wu Z, Zhang S. Bai Y, et al. Stem Cell Res Ther. 2018 Jul 18;9(1):200. doi: 10.1186/s13287-018-0931-0. Stem Cell Res Ther. 2018. PMID: 30021628 Free PMC article.

Imamura M, Lin ZY, Okano H. Imamura M, et al. Reprod Med Biol. 2012 Jun 19;12(1):1-14. doi: 10.1007/s12522-012-0131-z. eCollection 2013 Jan. Reprod Med Biol. 2012. PMID: 29699125 Free PMC article. Review.

Saeidi S, Shapouri F, de Iongh RU, Casagranda F, Sutherland JM, Western PS, McLaughlin EA, Familari M, Hime GR. Saeidi S, et al. PLoS One. 2018 Jan 11;13(1):e0190925. doi: 10.1371/journal.pone.0190925. eCollection 2018. PLoS One. 2018. PMID: 29324788 Free PMC article.

Cite

Format: AMA APA MLA NLM

Read more here:
Pluripotent embryonic stem cells and multipotent adult germline stem ...

for Human Stem Cell Research – ahrq.gov

NICHD ADMINISTRATIVE SUPPLEMENTS FOR HUMAN EMBRYONIC STEM CELL RESEARCH RELEASE DATE: January 24, 2003 NOTICE: NOT-HD-03-005Update: July 7, 2009 This Notice is superseded by NIH-OD-09-116 NIH Guidelinesfor Human Stem Cell ResearchNational Institute of Child Health and Human Development (NICHD) (http://www.nichd.nih.gov/)The National Institute of Child Health and Human Development (NICHD) announces the availability of administrative supplements to NICHD grantees to conduct research using human embryonic stem cell lines (ESCs) in accordance with the NIH-wide announcement and guidancethat can be found athttps://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-006.html. The human ESCs to be used must be listed on the NIH Human Embryonic Stem Cell Registry (http://escr.nih.gov/). Principal Investigators of NICHD-funded R01, R37, and P01 grants may request an administrative supplement not to exceed $75,000 direct costs (three modules) per year for two years. There must be at least two years of funding remaining on the parent grant at the time the supplement is awarded. It is intended that awards will be initiated in FY 2003 and FY 2004. Requests must be submitted not later than July 1, 2003 for FY 2003 funding or July 1, 2004 for FY 2004 funding.The work proposed must be within the scope of the parent R01, R37 or P01 grant. For example, investigators may apply concepts and technologies being used on any nonhuman adult or embryonic cells in the funded project to the study of human ESCs. The proposed research can utilize the full range of cell biological, genetic or molecular approaches. The request for an administrative supplement must include a careful description of the work proposed, an explanation of the relationship to the parent grant, and a justification for the study. The NICHD intends to commit up to $500,000 direct costs per year for this initiative in FY 2003 and FY 2004. This is a one-time announcement. However, the NICHD may re-release the announcement depending upon the needs of the NICHD scientific community and the availability of funds. Requests will be reviewed by NICHD staff. Awards will be dependent upon the receipt of qualified requests and the availability of funds. Grantees may request funds for small items of equipment, supplies, purchase of human ESCs, and personnel to work with human ESCs. Funds may also be requested to support travel and other costs needed to acquire necessary expertise in the handling of human ESCs. Investigators must independently contact the human ESC providers listed on the NIH Registry and make arrangements to obtain the cell lines, including any required material transfer agreements (MTA). Applicants must indicate which human ESC lines will be used. A letter indicating that the provider has agreed to supply the human ESC line must be furnished either with the application (see below) or just prior to the award. The investigators also should either demonstrate prior ability to work with human ESCs or outline plans for obtaining training to culture human ESCs. The human ESC providers, other laboratories with ESC experience, or laboratory training courses on ESC methods are potential means of obtaining this training. Other means for acquiring human ESC expertise may be proposed. Application ProceduresIn order to apply for an administrative supplement, it is advisable to first discuss your request with the NICHD Program Director who manages your grant or with Dr. Tasca at the address below. After this discussion, send an original letter, co-signed by the business official of the grantee institution, to your Program Director, with one copy to Dr. Tasca (below) and one copy to Ms. Hancock (below). The letter (two page limit) should include: 1) an abstract of the proposed supplemental activity and how it is related to the parent grant; 2) a description of how the requested supplement will provide the resources and expertise necessary to design and perform the experiments using human ESCs; 3) the NIH code for the selected human ESC line(s); 4) details of the budget items requested and funding period; and 5) current contact information for the Principal Investigator, including postal and email addresses. Although these descriptions should be as concise as possible, sufficient detail must be provided to allow the NICHD to determine if the request qualifies as an administrative supplement. INQUIRIESDirect inquiries regarding program and scientific issues to: Dr. Richard J. Tasca Reproductive Sciences Branch Center for Population Research National Institute of Child Health and Human Development 6100 Executive Boulevard, Room 8B01, MSC 7510 Bethesda, MD 20892-7510 Telephone: (301) 435-6973 FAX: (301) 480-2389 Email: rt34g@nih.gov Direct questions about financial or grants management issues to: Kathy Hancock Grants Management Branch National Institute of Child Health and Human Development 6100 Executive Boulevard, Room 8A17, MSC 7510 Bethesda, MD 20892-7510 Telephone: (301) 496-5482 FAX: (301) 480-4782 Email: kh47d@nih.gov

Weekly TOC for this Announcement NIH Funding Opportunities and Notices

Read this article:
for Human Stem Cell Research - ahrq.gov

Single mutation helped separate human, Neanderthal brains – Big Think

How the modern human brain evolved, and how it differs from the brains of Neanderthals and other extinct hominin species, is an open question. Expansion of the neocortex was a key event in human brain evolution, and now researchers in Germany say they have identified a genetic mutation that drove this process.

Anneline Pinson of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden and her colleagues examined a gene called TKTL1, which is active in immature neurons in the fetal neocortex, and is also implicated in the proliferation of brain tumor cells.

TKTL1 encodes an enzyme consisting of 596 amino acid residues and is one of just a few genes whose DNA sequence differs between humans and extinct archaic hominins. In the Neanderthal genome, residue 317 is the amino acid lysine, but in humans, this has been substituted with arginine. Such seemingly tiny differences can matter greatly.

Pinson and her colleagues analyzed previously published human fetal transcriptome datasets, revealing TKTL1 is expressed in a specific population of neural stem cells in the developing nervous system from nine weeks of gestation onward, and that its levels then increase in the immature frontal lobe, but not other areas. The human fetal TKTL1 protein is a shorter form, however, containing only 540 residues, with the aforementioned substitution at position 261.

TKTL1 is not expressed in the embryonic mouse cortex, but when the researchers inserted the human gene into mouse embryos, it increased the number of stem cells that give rise to frontal cortex neurons, resulting in more newborn neurons at later stages of development. Insertion of the Neanderthal TKTL1 gene had no such effect.

Subscribe for counterintuitive, surprising, and impactful stories delivered to your inbox every Thursday

The researchers also inserted human TKTL1 into ferret embryos, which normally express the Neanderthal-like, lysine-containing variant of the gene. This, too, increased the number of neural progenitors and newborn neurons, leading to an expansion of the upper layers of the neocortex.

Conversely, deleting TKTL1 from human fetal brain tissue reduced the number of neural stem cells, and inserting the Neanderthal variant into lab-grown cerebral organoids reduced the number of stem cells and neurons derived from them.

Finally, Pinson and her colleagues determined the function of the TKTL1 enzyme. Their experiments showed that it promotes the synthesis of fatty acids that are inserted into the neural stem cell membrane, which are crucial for the outgrowth of their fibers and their proliferation.

These findings show that a mutation in the DNA sequence of the TKTL1 gene, causing a single amino acid substitution in the human protein sequence, is responsible for the observed effects on neural stem cell behavior. The researchers conclude that this simple genomic change may contribute to the differences in size and shape of the human and Neanderthal neocortex.

Brain development is an extremely complex process, however, and it is highly unlikely that a single genetic event was responsible for evolution of the human brain. Indeed, the process of human brain evolution likely involved many hundreds of genes and multiple different types of genetic events, including changes in non-coding DNA sequences, gene deletions and duplications, jumping genes, and other large-scale genomic changes.

Continued here:
Single mutation helped separate human, Neanderthal brains - Big Think

Regenerative Medicine Global Market to Surpass $40.7 Billion by 2030 at a CAGR of 12.75% – PR Newswire

DUBLIN, Sept. 7, 2022 /PRNewswire/ --The "Regenerative Medicine Global Market Opportunities And Strategies To 2031" report has been added to ResearchAndMarkets.com's offering.

This report describes and explains the global regenerative medicine market and covers 2016 to 2021, termed the historic period, and 2021 to 2026 termed the forecast period, along with further forecasts for the period 2026-2031. The report evaluates the market across each region and for the major economies within each region.

The global regenerative medicine market reached a value of nearly $7,282.2 million in 2020, having increased at a compound annual growth rate (CAGR) of 54.1% since 2015. The market is expected to grow from $7,282.2 million in 2020 to $22,373.7 million in 2025 at a rate of 25.2%. The market is then expected to grow at a CAGR of 12.7% from 2025 and reach $40,710.1 million in 2030.

Growth in the historic period in the regenerative medicine market resulted from rising prevalence of chronic diseases, emerging markets growth, implementation of the 21st century cures act, rapid growth in aging population, and the improvement in healthcare awareness and expenditure. The market was restrained by high cost of cell and gene therapies, ethical concerns related to the use of embryonic stem cells in research and development, and inadequate reimbursements.

Going forward, rising demand for organ transplantations, growth in healthcare expenditure, technological advancements in regenerative medicines, rising investments in regenerative medicine research, and changes in lifestyles. Factors that could hinder the growth of the market in the future include rising popularity of alternative therapies and natural remedies, low per capita healthcare expenditure, and tissue-engineered products and biomaterials are lagging in adoption.

The regenerative medicine market is also segmented by end-use into ambulatory surgical centers, hospitals and clinics, and others. The hospitals and clinics segment was the largest segment of the regenerative medicine market segmented by end-use, accounting for 63.8% of the total in 202o. Going forward, hospitals and clinics segment is expected to be the fastest growing segment in the regenerative medicine market segmented by end-use, at a CAGR of 25.3% during 2020-2025.

The regenerative medicine market is also segmented by application into musculoskeletal, oncology, dental, wound care and others. The oncology segment was the largest segment of the regenerative medicine market segmented by application, accounting for 60.0% of the total in 2020. Going forward, musculoskeletal segment is expected to be the fastest growing segment in the regenerative medicine market segmented by application, at a CAGR of 27.4% during 2020-2025.

North America was the largest region in the regenerative medicine market, accounting for 53.3% of the total in 2020. It was followed by the Western Europe, Asia Pacific, and then the other regions. Going forward, the fastest-growing regions in the regenerative medicine market will be Middle East and South America where growth will be at CAGRs of 72.4% and 71.9% respectively during 2020-2025. These will be followed by Eastern Europe and Asia Pacific, where the markets are expected to register CAGRs of 57.8% and 49.7% respectively during 2020-2025.

Market Trends And Strategies

Markets Covered:

Key Topics Covered:

1. Regenerative Medicine Market Executive Summary

2. Table of Contents

3. List of Figures

4. List of Tables

5. Report Structure

6. Introduction

7. Regenerative Medicine Market Characteristics

8. Regenerative Medicine Market Trends And Strategies

9. Impact Of COVID-19 On Regenerative Medicine

10. Global Regenerative Medicine Market Size And Growth

11. Global Regenerative Medicine Market Segmentation

12. Regenerative Medicine Market, Regional And Country Analysis

13. Asia-Pacific Regenerative Medicine Market

14. Western Europe Regenerative Medicine Market

15. Eastern Europe Regenerative Medicine Market

16. North America Regenerative Medicine Market

17. South America Regenerative Medicine Market

18. Middle East Regenerative Medicine Market

19. Africa Regenerative Medicine Market

20. Regenerative Medicine Global Market Competitive Landscape

21. Key Mergers And Acquisitions In The Regenerative Medicine Market

22. Regenerative Medicine Market Opportunities And Strategies

23. Regenerative Medicine Market, Conclusions And Recommendations

24. Appendix

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/bnpkzj

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

Logo: https://mma.prnewswire.com/media/539438/Research_and_Markets_Logo.jpg

SOURCE Research and Markets

Here is the original post:
Regenerative Medicine Global Market to Surpass $40.7 Billion by 2030 at a CAGR of 12.75% - PR Newswire

Scientists use stem cells to create synthetic mouse embryos – ABC News

Scientists have created synthetic mouse embryos from stem cells without a dad's sperm or a mom's egg and womb

ByLAURA UNGAR AP Science Writer

Scientists have created synthetic mouse embryos from stem cells without a dad's sperm or a mom's egg or womb.

The lab-created embryos mirror a natural mouse embryo up to 8 days after fertilization, containing the same structures, including one like a beating heart.

In the near term, researchers hope to use these so-called embryoids to better understand early stages of development and study mechanisms behind disease without the need for as many lab animals. The feat could also lay the foundation for creating synthetic human embryos for research in the future.

We are undoubtedly facing a new technological revolution, still very inefficient but with enormous potential, said Llus Montoliu, a research professor at the National Biotechnology Centre in Spain who is not part of the research. It is reminiscent of such spectacular scientific advances as the birth of Dolly the sheep and others.

A study published Thursday in the journal Nature, by Magdalena Zernicka-Goetz at the California Institute of Technology and her colleagues, was the latest to describe the synthetic mouse embryos. A similar study, by Jacob Hanna at the Weizmann Institute of Science in Israel and his colleagues, was published earlier this month in the journal Cell. Hanna was also a coauthor on the Nature paper.

Zernicka-Goetz, an expert in stem cell biology, said one reason to study the early stages of development is to get more insight into why the majority of human pregnancies are lost at an early stage and embryos created for in vitro fertilization fail to implant and develop in up to 70% of cases. Studying natural development is difficult for many reasons, she said, including the fact that very few human embryos are donated for research and scientists face ethical constraints.

Building embryo models is an alternative way to study these issues.

To create the synthetic embryos, or embryoids, described in the Nature paper, scientists combined embryonic stem cells and two other types of stem cells all from mice. They did this in the lab, using a particular type of dish that allowed the three types of cells to come together. While the embryoids they created werent all perfect, Zernicka-Goetz said, the best ones were indistinguishable from natural mouse embryos. Besides the heart-like structure, they also develop head-like structures.

This is really the first model that allows you to study brain development in the context of the whole developing mouse embryo, she said.

The roots of this work go back decades, and both Zernicka-Goetz and Hanna said their groups were working on this line of research for many years. Zernicka-Goetz said her group submitted its study to Nature in November.

Scientists said next steps include trying to coax the synthetic mouse embryos to develop past 8 days with the eventual goal of getting them to term, which is 20 days for a mouse.

At this point, they struggle to go past the 8 1/2-day mark, said Gianluca Amadei, a coauthor on the Nature paper based at the University of Cambridge. We think that we will be able to get them over the hump, so to speak, so they can continue developing.

The scientists expect that after about 11 days of development the embryo will fail without a placenta, but they hope researchers can someday also find a way to create a synthetic placenta. At this point, they don't know if they will be able to get the synthetic embryos all the way to term without a mouse womb.

Researchers said they dont see creating human versions of these synthetic embryos soon but do see it happening in time. Hanna called it the next obvious thing.

Other scientists have already used human stem cells to create a blastoid, a structure mimicking a pre-embryo, that can serve as a research alternative to a real one.

Such work is subject to ethical concerns. For decades, a 14-day rule on growing human embryos in the lab has guided researchers. Last year, the International Society for Stem Cell Research recommended relaxing the rule under limited circumstances.

Scientists stress that growing a baby from a synthetic human embryo is neither possible nor under consideration.

Perspective on this report is important since, without it, the headline that a mammalian embryo has been built in vitro can lead to the thought that the same can be done with humans soon, said developmental biologist Alfonso Martinez Arias of the Universitat Pompeu Fabra in Spain, whose group has developed alternative stem cell based models of animal development.

"In the future, similar experiments will be done with human cells and that, at some point, will yield similar results," he said. "This should encourage considerations of the ethics and societal impact of these experiments before they happen.

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institutes Department of Science Education. The AP is solely responsible for all content.

Excerpt from:
Scientists use stem cells to create synthetic mouse embryos - ABC News

See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight – University of Wisconsin-Madison

Tracing features in a large 3D electron microscopy dataset reveals a zebrafish blood stem cell (in green) and its surrounding niche support cells, a group photo method that will help researchers understand factors that contribute to blood stem cell health which could in turn help develop therapies for blood diseases and cancers. Image by Keunyoung Kim.

MADISON For the first time, researchers can get a high-resolution view of single blood stem cells thanks to a little help from microscopy and zebrafish.

Researchers at the University of WisconsinMadison and the University of California San Diego have developed a method for scientists to track a single blood stem cell in a live organism and then describe the ultrastructure, or architecture, of that same cell using electron microscopy. This new technique will aid researchers as they develop therapies for blood diseases and cancers.

Currently, we look at stem cells in tissues with a limited number of markers and at low resolution, but we are missing so much information, says Owen Tamplin, an assistant professor in UWMadisons Department of Cell & Regenerative Biology, a member of the Stem Cell & Regenerative Medicine Center, and a co-author on the new study, which was published Aug. 9 in eLife. Using our new techniques, we can now see not only the stem cell, but also all the surrounding niche cells that are in contact.

The niche is a microenvironment found within tissues like the bone marrow that contain the blood stem cells that support the blood system. The niche is where specialized interactions between blood stem cells and their neighboring cells occur every second, but these interactions are hard to track and not clearly understood.

As a part of the new study, Tamplin and his co-lead author, Mark Ellisman, a professor of neuroscience at UC San Diego, identified a way to integrate multiple types of microscopic imaging to investigate a cells niche. With the newly developed technique that uses confocal microscopy, X-ray microscopy, and serial block-face scanningelectron microscopy, researchers will now be able to track the once elusive cell-cell interactions occurring in this space.

This has allowed us to identify cell types in the microenvironment that we didnt even know interacted with stem cells, which is opening new research directions, Tamplin says.

As a part of this study, Tamplin, and his colleagues, including co-first authors Sobhika Agarwala and Keunyoung Kim, identified dopamine beta-hydroxylase positive ganglia cells, which were previously an uncharacterized cell type in the blood stem cell niche. This is crucial, as understanding the role of neurotransmitters like dopamine in regulating blood stem cells could lead to improved therapeutics.

Transplanted blood stem cells are used as a curative therapy for many blood diseases and cancers, but blood stem cells are very rare and difficult to locate in a living organism, Tamplin says. That makes it very challenging to characterize them and understand how they interact and connect with neighboring cells.

While blood stem cells are difficult to locate in most living organisms, the zebrafish larva, which is transparent, offers researchers a unique opportunity to view the inner workings of the blood stem cell niche more easily.

Thats the really nice thing about the zebrafish and being able to image the cells, Tamplin says of animals transparent quality. In mammals, blood stem cells develop in utero in the bone marrow, which makes it basically impossible to see those events happening in real time. But, with zebrafish you can actually watch the stem cell arrive through circulation, find the niche, attach to it, and then go in and lodge there.

While the zebrafish larva makes it easier to see blood stem cell development, specialized imaging is needed to find such small cells and then detail their ultrastructure. Tamplin and his colleagues spent over six years perfecting these imaging techniques. This allowed them to see and track the real-time development of a blood stem cell in the microenvironment of a live organism, then zoom in even further on the same cell using electron microscopy.

First, we identified single fluorescently labeledstem cells bylight sheet or confocal microscopy, Tamplin says. Next, we processed the same sample forserial block-face scanningelectron microscopy. We then aligned the 3D light and electron microscopy datasets. Byintersecting these different imaging techniques,we could see the ultrastructure of single rare cells deep inside a tissue. This also allowed us to find all the surrounding niche cellsthat contact a blood stem cell. We believe our approach will be broadly applicable for correlative light and electron microscopy in many systems.

Tamplin hopes that this approach can be used for many other types of stem cells, such as those in the gut, lung, and the tumor microenvironment, where rare cells need to be characterized at nanometer resolution. But, as a developmental biologist, Tamplin is especially excited to see how this work can improve researchers understanding of how the blood stem cell microenvironment forms.

I think this is really exciting because we generate all of our blood stem cells during embryonic development, and depending on what organism you are, a few hundred or maybe a few thousand of these stem cells will end up producing hundreds of billions of new blood cells every day throughout your life, Tamplin says. But we really dont know much about how stem cells first find their home in the niche where theyre going to be for the rest of the life of the organism. This research will really help us to understand how stem cells behave and function. A better understanding of stem cell behavior, and regulation by surrounding niche cells, could lead to improved stem cell-based therapies.

This research was supported by grants from the National Institutes of Health (R01HL142998, K01DK103908, 1U24NS120055-01, R24 GM137200) and the American Heart Association (19POST34380221).

The rest is here:
See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight - University of Wisconsin-Madison