Category Archives: Embryonic Stem Cells


Introducing Dr Freya Storer – new Research Associate in Developmental Biology – Imperial College London

We interviewed Dr Freya Storer - a new Research Associate in Developmental Biology who joined us in February.

Can you tell me a little about your background?

I was born into a family of contrasting interests. My father studied engineering and now works in intellectual property, whilst my mother studied languages, going on to teach French and Italian. Being surrounded by different passions has always helped me to explore topics using a holistic approach.

Although I am a British national, I had a largely European upbringing. Due to my fathers job, we moved around, after a brief period in the UK, we moved to Normandy (France) and later to Bavaria (Germany). It was only as I left for university that I established myself back in the UK, and even then, it hasnt been static. The freedom to move and explore education through different cultures has been a privilege and lends itself to the collaborative nature of academia.

Can you tell us a bit about your study prior to now?

My interest in biosciences was nurtured at the University of Bristol, where I read Cellular and Molecular Medicine, a course that married genetic mechanisms with microbiology and disease. It established a broad foundation on techniques to study cellular processes, applying them to diverse medical contexts from cancer metastasis to pathogen-host evasion tactics. It was during my final year project that I was first introduced to the organism that I work with today.

Drosophila melanogaster, a well-characterised invertebrate model, has been central to many discoveries in the field of genetics and comes with an array of technical possibilities. In my bachelors, I worked with Prof. Will Wood and Dr Andrew Davidson on a project investigating the key regulators of actin during debris clearance by Drosophila embryonic haemocytes. Thanks to this opportunity, I pursued a research masters in a neighbouring lab, under Dr Marc Amoyel, where I studied how differing translation initiation mechanisms might drive the decision of stem cell fate in the Drosophila testis niche.

Having committed myself to the fruit fly, I ventured into the field of neuroscience during my PhD at the Dementia Research Institute in Cardiff. With the support of Dr Gaynor Smith, I identified two genes that may regulate the immune responses of the brain contributing to Alzheimers pathology. Most recently, I worked with Dr Peter Lawrence and Dr Jose Casal at Cambridge University, where we studied the distribution of Frizzled during pupal development to understand the mechanisms that govern planar cell polarity.

What is your new role at Imperial?

I recently joined Dr Tony Southalls team as the newest Research Associate. Here, I am working on a unique project to understand the genetic factors that mediate neuronal cell fate plasticity. We have come far since Waddingtons landscape model of cell differentiation, with increasing evidence suggesting that cells may in fact (under certain conditions) return to an earlier state. We hope to use novel tools, such as adapted CRISPR methods and DamID to explore how the shift between eu- and hetero-chromatin states, through most translational modifications, can restrict plasticity. Research is a core part of my position, but I am also devoted to cultivating a friendly and inspiring learning environment for aspiring researchers and students.

What motivated you to work in this area?

My project incorporates all my experience and interests, combining my extensive knowledge of cellular mechanisms and development, with Drosophila biology. It means it feels familiar, but I am also learning something new in epigenetics, a complex research field which I have always been captured by and wanted to study. I am also honoured to work with Dr Tony Southall, who has already made tremendous progress in the field and designed numerous innovative tools to study it. I believe it is easy to be motivated to study biosciences, as it satisfies a curiosity for the natural world with the possibility of contributing to new therapies that may solve devastating diseases.

What attracted you to working in Life Sciences at Imperial?

I was excited to be a part of the rich history of discovery that has produced so many internationally renowned and impactful scientists, from Nobel laureates to pioneering female scientists such as Helen Porter and Winifred Watkins. The project I am working on feels meaningful and I feel privileged to share the halls with some of todays brilliant minds, who inspire me to go beyond my expectations of research. I am arriving at an exciting time in Imperials evolution, with the introduction of the White City Campus expanding the possibilities for entrepreneurship and multidisciplinary research. Beyond that, London is home to a large community of geneticists and entomologists, providing a space for collaboration and the sharing of ideas.

Tell us an interesting/unusual fact about yourself.

Other than my obvious enthusiasm for science and research, I love music. I am an avid listener but have also enjoyed performing in bands as a singer/keyboardist.

View post:
Introducing Dr Freya Storer - new Research Associate in Developmental Biology - Imperial College London

What!! Mice born to two biological fathers in Japan: Report – Hindustan Times

Japanese scientists have created a mice with two biological fathers, according to a report from The Guardian. This breakthrough could have significant implications for same-sex couples looking to have biological children. Additionally, the technique may also be useful in treating severe forms of infertility, including Turner's syndrome, a condition where one copy of the X chromosome is missing or partially missing, which was the primary motivation of the research, according to the scientists.

Also Read | Scientifically Speaking | Could drunk mice help people get sober quicker?

This is the first case of making robust mammal oocytes from male cells, said Katsuhiko Hayashi, who led the work at Kyushu University in Japan.

While scientists have previously used complex genetic engineering techniques to create mice with two biological fathers, a significant headway has now been achieved. For the first time, viable eggs have been successfully cultivated from male cells, making the process less complicated and more accessible.

Also Read | Babies' gut microbiome is not affected by vaginal microbiome: Study

In order to produce viable eggs from male cells, the study required a series of complex procedures. The first step involved reprogramming male skin cells into a state similar to that of stem cells, known as induced pluripotent stem (iPS) cells.

The Y chromosome of these cells was then removed, and an X chromosome from another cell was inserted, resulting in iPS cells that possessed two identical X chromosomes. This technique allowed the researchers to create viable eggs with an XX chromosome combination, despite starting with male XY cells.

Also Read | Risk of early death varies on different factors in epilepsy: Study

The trick of this, the biggest trick, is the duplication of the X chromosome, said Hayashi. We really tried to establish a system to duplicate the X chromosome.

After undergoing the complex process of transforming male skin cells into viable eggs, the cells were grown in a specialized culture system called an ovary organoid. This system was designed to mimic the conditions present in a mouse ovary. When the eggs were fertilized with normal sperm, the researchers were able to obtain approximately 600 embryos, which were then implanted into surrogate mice.

This resulted in the successful birth of seven mouse pups. However, the efficiency of the process was found to be lower than that achieved using normal female-derived eggs, with only around 1% of the embryos resulting in a live birth compared to around 5% with traditional eggs.

The study noted that human cells require longer periods of cultivation to produce a mature egg, which can increase the risk of acquiring unwanted genetic changes. The translation of this technique to human cells would require a substantial leap in research, especially considering that scientists are still working to create lab-grown human eggs from female cells.

Professor Amander Clark of the University of California, Los Angeles, who works on lab-grown gametes, said that translating the work into human cells would be a "huge leap" because scientists have yet to create lab-grown human eggs from female cells.

Scientists have created human egg precursors, but the cells have stopped developing before meiosis, a critical step in cell division required for the development of mature eggs and sperm.Were poised at this bottleneck at the moment, Clark said

She stressed that the next steps are an engineering challenge and getting through that could be 10 years or 20 years.

Trainee Content Producer at Hindustan Times Digital Stream. India's regional languages attract me.

See the original post:
What!! Mice born to two biological fathers in Japan: Report - Hindustan Times

‘The Biggest Challenge Is To Find Out How 98% of DNA Regulates … – Kashmir Life

A young geneticist, Dr Rais A Gania was surprised to see his takeaways from his PhD were part of the text well before he entered the classroom as a teacher. Credited for identifying a particular enzyme that helps in crucial DNA copying, he is serving the IUSTs molecular medicine centre. In a freewheeling interview, he opens up about his research and future plans

KASHMIR LIFE (KL): You studied in Kashmir and worked in different universities all over the world. How was your learning curve and what were the challenges you faced?

DR RAIS A GANAI (DRAG): I was born and brought up in the Posh-Kirri village of Anantnag. I did my primary schooling at Government Primary School in the same village. Later, I went to the Government Middle in the nearby Hugam village. Later, my father suggested me to complete further studies in Srinagar, as he was working at the University of Kashmir. Then, I went to the Starland High School Zakura and completed my matriculation there.

In Srinagar, I found it very difficult to compete with students because of the language barrier, as the medium of instruction was different. It was a challenging task to learn English and Urdu languages. It took me a lot of time to cope with the level of the students.

Then I completed my 10+2 from Soura Higher Secondary School. Afterwards, I went to the Islamia College of Science and Commerce, where from I completed my graduation. Even though there was not an ample structure at that time but the laboratories were well established. Attendance of labs was mandatory, due to which my scientific temper got developed.

After that, I was selected at the University of Kashmir for a couple of courses but I chose to study Biotechnology. After completing the Masters degree in Biotechnology, I went to the Indian Institute of Science (IISc), Bangalore, where I worked under the mentorship of Prof Umesh Varshney and worked intensely on various Biotechnological challenges. He invested a lot of money, time and effort and taught me many new things due to which my interest in the research further deepened. During this time a few of my research papers were published.

Then I went to Sweden in 2009 for my PhD and completed it in 2015 and later got an international Postdoc fellowship offer in Sweden amounting to Rs 2.5 crore. I used that fellowship and immigrated to the USA. There I joined the NewYork based Howard Huges Medical Institute. I did research there for almost 2-3 years under the well-known researcher Danny Reinberg.

Then I came back to Kashmir as a Ramanujan Fellow. Initially, I joined the Central University of Kashmir and later moved to the IUSTs Watson-Crick Centre for Molecular Medicine in 2020.

KL: The work on genetics has been going on in all major universities throughout the world. However, we still have not understood the gene fully. What are the various challenges in understanding the gene, and what are the different goalposts we still have to reach?

DRAG: The gene is actually a small DNA sequence made of sugar bases like Adenine, Guanine, Thymine, and Cytosine (A, G, T, C). They are about 3 billion sugar bases called Nucleotides (made of Deoxyribose sugar, the Phosphate group, and the Nitrogen base) in a DNA molecule arranged in a chain structure. All the Nucleotides in a DNA molecule do not constitute genes, but only 1-2 per cent makes the genes and the rest 98-99 per cent of the base pairs do not attribute to the genes.

Scientists have identified most of the genes in our body and their functioning but the functioning of the rest 98 per cent of the non-genomic sequences (regulatory sequences) is still not known. We only know that these contain non-genomic sequences that regulate the genes, but the biggest challenge is to find out how 98 per cent of DNA regulates the 1 per cent of DNA.

The other major challenge was to understand the three-dimensional structure of DNA and its arrangement inside the cell. The chromosomes are arranged in compartmental structures. How and when these compartments are formed is yet to be discovered. How these genes are activated and repressed in the cells is still a challenge.

The actual structure of a DNA molecule has a three-dimensional chromatin architecture. These DNA molecules are present on the chromosomes. Our body contains 46 chromosomes in each cell that are intertwined inside the cell. The intertwined structure of chromosomes helps in the better expression of genes during cell division and cell formation. All the required genes express together and activate simultaneously in order to form a complete cell.

KL: What was your PhD all about and what were the major takeaways from your research?

DRAG: As I mentioned that DNA is a small molecule contained in a cell. A cell contains two meters of intertwined DNA, which if stretched is equivalent to at least four times the distance between the sun and the earth. During cell division and cell multiplication, this DNA is replicated/ duplicated which has to be very accurate. Genetic defects during cell division cause mutations/errors, which lead to genetic diseases, metabolic disorders, or even cancer.

During my PhD, my research was about the role of an enzyme called DNA polymerase in DNA replication. This enzyme reads, copies, and then makes the exact copy of a parent DNA molecule. The three billion nucleotides of a DNA molecule in a cell are copied accurately without any error or defect with the help of this enzyme. Besides, it also rectifies the errors, which are caused during cell division and helps in errorless duplication. Thus, the DNA polymerase enzyme not only plays a role in DNA replication but also fixes the errors caused during DNA replication, if any.

I also studied the functioning of various other enzymes but the pivotal research was about DNA polymerase. The majority of DNA polymerase enzymes look like, if I can say, a right-hand structure, containing a thumb, a palm, and fingers. The DNA polymerase, we studied has an additional domain called the P-domain, unlike the other DNA-Polymerase enzymes which only have three domains. The majority of DNA-Polymerase enzymes require a scaffold or support (called PCNA) for DNA copy and replication, but the DNA-polymerase we studied does not require PCNA rather it has the inbuilt P-domain that helps in DNA synthesis and thus does not require an outside scaffold. This was the biggest takeaway from my PhD research.

To my surprise, I later found when I was at the Central University of Kashmir, that our work and findings were published in textbooks, and are being taught to students in different Universities all over the world. It was a very difficult project to work on because nobody prior to us had worked on this. Our work was then published in the Journal Nature Structural and Molecular Biology, which now is a part of the textbooks and is being taught.

KL: What was your Post-doctorate research about, and what were your accomplishments and learnings during that period?

DRAG: I mostly studied two things during my Postdoc research, the role of epigenetic factors in the development, and the development of stem cells into the cardiomyocyte.

I actually wanted to expand and diversify my expertise, so I shifted to the field of epigenetics.

Under epigenetics, we study how the genes present in the DNA are regulated. Let us understand it this way if we have two monozygotic twins and one of them is raised by the adopted parents and the other by the natural parents. Technically, after 30 years of age, both should be identical because of the principle of monozygotic nature, but because of the environmental effects, they would have developed variations over time. It is because the influence of environmental conditions affects the development of an individual and that regulates the body. Thus, the effect of an environment on the development over time, beyond the genetic basis and beyond DNA is called epigenetics.

There are thousands of genes on a DNA molecule and there are specific factors that actually regulate the functioning of these genes. I also worked on these factors.

DNA is wrapped around by the histone proteins. These proteins contain chemical modifications or tags that determine the function of the DNA sequence. I worked on early embryonic development, particularly on stem cells. I studied how differentiated development takes place from a single cell into different kinds of complex organs i.e., how a stem cell is transformed into a cardiomyocyte.

KL: How could you make lawmen understand this differentiation of a stem cell into different complex organs? What really controls this differentiation of cells? Is this also part of epigenetics?

DRAG: Nobody really knows how embryonic development occurs as it is not easy to study this field. People have now started research on it.

During embryonic development, the fusion of egg and sperm results in the formation of a Zygote, which later undergoes the 2-cell stage and the 4-cell stage, and so on. From day one of development certain genes are activated which stimulates the Zygote division and this division activates other genes, which then cause muscle cell formation. More and more genes get activated that guide the muscle cells to transform into different complex organs. It is mostly like this, but there is still ambiguity on how embryonic development takes place through different stages of development.

KL: What is your role at the IUSTs Watson-Crick Centre for Molecular Medicine and what are the different domains you are working on?

DRAG: I am establishing my lab here for research purposes. Besides, I am also the coordinator of the B Voc course on the Medical Lab and Molecular Diagnostic Technology. I teach students also. I guide students on how to do diagnostic tests and the process of opening diagnostic clinics.

The primary part of my job at the Watson-Crick Centre is to do research along with my students who work with me on the continuation of my PhD research work. We are studying the role of DNA polymerase enzyme other than the role of DNA synthesis.

Secondarily, we are also studying epigenetics. Epigenetic marks at different positions of a DNA molecule, other than the normal positions cause diseases like cancer, and developmental and neurodegenerative diseases, among others. Therefore, our aim is to research epigenetics in detail in order to develop drugs for the treatment of these diseases.

Mujtaba Hussain processed the interview

See the original post here:
'The Biggest Challenge Is To Find Out How 98% of DNA Regulates ... - Kashmir Life

What a startups woolly mammoth meatball tells us about the future of meat – The Indian Express

While this will be a one-off creation, perhaps garner publicity for the food-tech company, founder Tim Noakesmith told the AP that through the mammoth meatball, the company hoped to start a conversation around global meat consumption.

Cultivated meat also called cultured or cell-based meat is made from animal cells but livestock does not need to be killed in order to produce it. Notably, it is different from plant-based meat substitutes in that it actually uses animal DNA to recreate in a lab the taste and texture of meat. Plant-based substitutes, on the other hand, try and mimic the taste and texture of meat using other plant-based alternatives.

For the woolly mammoth project, Vow worked with Prof Ernst Wolvetang, at the University of Queenslands Australian Institute for Bioengineering, The Guardian reported. The aim was to create the mammoth muscle protein from available DNA. Prof Wolvetangs team took the DNA sequence for mammoth myoglobin, a key muscle protein in giving the meat its flavour, and filled in any gaps using the DNA of the African elephant, the closest living relative of the extinct woolly mammoth.

The prepared DNA sequence was then placed in myoblast (embryonic precursor to muscle cells) stem cells from a sheep, which soon replicated in the right lab conditions to grow to the nearly 20 billion cells subsequently used by the company to create the mammoth meatball.

It was ridiculously easy and fast, Prof Wolvetang told The Guardian. We did this in a couple of weeks. Initially, the idea was to produce dodo meat. However, the DNA sequences required for that do not exist.

The mammoth meatball has not been tasted by anyone, even its creators. Nor does Vow plan to put it into commercial production. Instead, the idea has been to use the meatball to start a much-needed conversation.

We wanted to get people excited about the future of food being different to potentially what we had before. That there are things that are unique and better than the meats that were necessarily eating now, and we thought the mammoth would be a conversation starter and get people excited about this new future, Noakesmith told the AP.

But also the woolly mammoth has been traditionally a symbol of loss. We know now that it died from climate change. And so what we wanted to do was see if we could create something that was a symbol of a more exciting future thats not only better for us, but also better for the planet, he added.

Multiple studies have pointed out the massive impact that the global meat industry has on the environment. According to the Food and Agriculture Organization of the United Nations (FAO), global meat consumption has increased significantly in recent decades, with per capita consumption almost doubling since the early 1960s.

This means that roughly 14.5 per cent of global emissions of greenhouse gases are attributable to livestock farming. This includes not just carbon dioxide but also methane and nitrous oxide, which scientists say have a climate warming potential of anywhere between 25 times and 300 times higher than that of carbon dioxide.

Most greenhouse gas emissions from plant-based foods are lower than those linked to animal-based foods.

Experts say that if cultivated/cultured meat is widely adopted, it could vastly reduce the environmental impact of global meat production in the future.

By cultivating beef, pork, chicken, and seafood, we can have the most impact in terms of reducing emissions from conventional animal agriculture and satisfying growing global demand for meat while meeting our climate targets, Seren Kell, science and technology manager at Good Food Institute, a nonprofit that promotes plant- and cell-based alternatives to animal products, told the AP.

This is because cultivated meat uses much less land and water than livestock, and produces no methane emissions. The industry can run on energy produced purely from renewable sources. While the woolly mammoth meatball is, as was planned, an unconventional idea, most of the industry has been focussing on commonly consumed meats like pork, chicken and beef.

However, there is a long way to go before cultivated meat becomes mainstream across the world. Currently, Singapore is the only country to have approved cell-based meat for consumption. Vow hopes to enter the market later this year, with its quail-based meat product.

More than getting regulatory approvals, for cultivated meat to really take off, there has to be a massive, global-scale behavioural and cultural change. We have a behaviour change problem when it comes to meat consumption, George Peppou, CEO of Vow, told The Guardian.

Projects such as Vows woolly mammoth meatball help draw attention and start conversations on the possibilities of cultivated meat. (This) will open up new conversations about cultivated meats extraordinary potential to produce more sustainable foods, Kell told the media.

See the rest here:
What a startups woolly mammoth meatball tells us about the future of meat - The Indian Express

First-of-its-kind stem cell study sheds light on Klinefelter syndrome – Medical Xpress

This article has been reviewed according to ScienceX's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

proofread

The impact of X overdosage on the global transcriptomes of Saudi and ENA KS-iPSCs. A) Venn diagram showing the DEGs shared in the contrast 47,XXY Vs. 46,XY in iPSCs generated from ENA and Saudi KS patients. B) Gene Ontology analysis on common DEGs using the GO enriched for Biological Processes (BP), Molecular Functions (MF), and Cellular components (CC). C) KEGG enrichment analysis and D) MGI Mammalian phenotype disease pathway analysis on Saudi and ENA common DEGs. Credit: Endocrine Connections (2023). DOI: 10.1530/EC-22-0515

In a research partnership between King Abdullah University of Science and Technology (KAUST), King Abdulaziz University, Jeddah (KAU), and King Abdulaziz University Hospital, Jeddah (KAUH), scientists have conducted a first-of-its-kind study in the Kingdom that compares stem cells derived from a unique cohort of Saudi Klinefelter patients with a group of North American and European descent.

Klinefelter is a chromosomal disease characterized by an extra chromosome X in the cells of males. Frequent clinical features of the syndrome are infertility, intellectual disability, metabolic syndrome and type 2 diabetes among others, and one out of every six hundred Saudi males are affected.

However, the MENA population is largely underrepresented when it comes to studying the impact of the genomic background on disease susceptibility and prognosis. The majority of studies involving the use of iPSCs have been performed using North American and European patients.

The KAUST-KAU-HAUH study addresses this gap using a "patient-derived induced pluripotent stem cells" (iPSC)-based disease modeling study aimed at understanding the molecular basis of Klinefelter syndrome. By using skin, blood, hair or urine-derived cell samples with the iPSC approach, it is possible to bring the patient's cells back to the embryonic state in which they developed, and use them to model the onset and progression of diseases "in a dish."

"The Kingdom is benefitting from the world-class collaboration between our three leading research entities," said Vice President for Research Pierre Magistretti, Distinguished Professor and director of the KAUST Smart-Health Initiative. "The iPSC technology is revolutionizing the study of the molecular mechanisms of diseases as it provides a way to work on human cells derived from patients."

Magistretti added that the platform for iPSC that KAUST scientists have developed allow for unique collaborations with clinical centers such as KAU KAUH and with the support of KAUST Smart-Health Initiative.

The results from this first joint Saudi study demonstrate the existence of a subset of genes residing on the X chromosome, whose dysregulation specifically characterizes Klinefelter syndrome, regardless of the geographical area of origin, ethnicity and genetic makeup.

"This Saudi iPSC cohort will serve as an ideal cellular platform to explore further work into chromosomal diseases," said Antonio Adamo, assistant professor and principal investigator in the Stem Cell and Diseases Laboratory at KAUST. "For example, it would be particularly interesting modeling neurodevelopment and anatomical changes affecting gray and white matters, features typically observed in Klinefelter Syndrome."

This cellular platform will be used to generate the so-called "mini-brains," three-dimensional cultures of patient-derived cells resembling the human brain that can be used to study the molecular mechanisms underlying the neurodevelopmental features of the disease. The findings yield an in vitro model suitable for the development of personalized medicine applications.

The findings are published in the journal Endocrine Connections.

More information: Veronica Astro et al, A transcriptomic signature of X chromosome overdosage in Saudi Klinefelter syndrome induced pluripotent stem cells, Endocrine Connections (2023). DOI: 10.1530/EC-22-0515

See the article here:
First-of-its-kind stem cell study sheds light on Klinefelter syndrome - Medical Xpress

Scientists inject stem cells into the brain of Parkinsons patient – Freethink

A new stem cell therapy for Parkinsons disease has just been administered to a person for the first time and if it works as hoped, it could revolutionize how doctors treat the disease.

[W]e maybe have a treatment that we can offer to patientsin the beginning of the disease, like a one time treatment, and that will last for the rest of the patients life and make it possible to reduce the medication that patients otherwise need, said principal investigator Gesine Paul-Visse from Swedens Lund University.

The challenge: An estimated 8.5 million people are living with Parkinsons, a progressive neurodegenerative disorder caused by the loss of the brain neurons that produce the chemical dopamine, which helps coordinate movement.

The shortage of dopamine leads to the hallmark symptoms of Parkinsons, including tremors, stiffness, and impaired coordination. Medications can increase dopamine levels, but they can also cause side effects, interfere with other meds, and become less effective over time.

The use of stem cells will, in theory, enable us to make unlimited amounts of dopamine neurons.

The idea: Rather than relying on meds, Paul-Visse and her collaborators in Sweden and the UK hope to actually replace dopamine-producing nerve cells in the brains of Parkinsons patients using embryonic stem cells, which can develop into almost any type of cell in the body.

For their therapy, STEM-PD, the researchers programmed stem cells sourced from donated embryos to turn into dopamine nerve cells. When transplanted into the brains of rodent models of Parkinsons, the cells developed as hoped, and the animals motor symptoms were reversed.

The researchers have now administered the treatment to a person for the first time, and by the end of their newly launched STEM-PD trial, eight people with moderate Parkinsons will undergo the therapy.

Looking ahead: The trials primary goal is to assess the safety of STEM-PD, but the researchers will also be looking to see if the therapy improves symptoms, reduces the need for medication, or leads to the development of new dopamine-producing neurons in the brain.

The efficacy of the treatment wont be apparent right away, though.

These cells that we are transplanting are actually immature, so they need some time to mature in the adult brain, and that will take at least a year, maybe even longer, said Paul-Visse. So we wont expect to see any changes before in one years time.

The big picture: Treatments that work in animals often dont translate to people, but if STEM-PD proves safe and effective, the impact could be huge, given that stem cells can be duplicated an unlimited number of times.

The use of stem cells will, in theory, enable us to make unlimited amounts of dopamine neurons and thus opens the prospect of producing this therapy to a wide patient population, said clinical lead Roger Barker from the University of Cambridge. This could transform the way we treat Parkinsons disease.

Wed love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at tips@freethink.com.

Read the rest here:
Scientists inject stem cells into the brain of Parkinsons patient - Freethink

How organoids are advancing the understanding of chronic kidney … – Nature.com

Kidney-like structures called organoids can be grown from stem cells.Credit: Xia Lab

Ryuichi Nishinakamuras quest to build a transplantable kidney began in the 1990s, when the nephrologist found he had little to offer his patients. At times he was ridiculed for setting such an unrealistic goal, but I was very naive and young, so I just went forward, recalls Nishinakamura, who is now a stem-cell biologist at Kumamoto University in Japan.

But the discoveries of human embryonic stem cells in 1998 and of a way to create induced pluripotent stem (iPS) cells in 2006 made the task of growing fresh kidneys seem more achievable. Many investigators differentiated various types of kidney cell from iPS cells and grew kidney organoids tiny, organ-like structures with multiple types of kidney cell that partly mimic kidney structure and function. In 2013, Nishinakamuras lab achieved one of the early milestones, demonstrating both mouse and human kidney organoids1. Many labs are now producing ever-more functional organoids that are proving useful in modelling kidney development and disease.

Part of Nature Outlook: Chronic kidney disease

But Nishinakamuras goal of a transplantable human kidney is still many years away. We do have kidney in a dish, says Melissa Little, a developmental biologist at the Murdoch Childrens Research Institute in Melbourne, Australia. But will it be useful if we transplant it? Thats a much bigger question.

We are at a bottleneck, says Yun Xia, a stem-cell biologist at Nanyang Technological University in Singapore, who sees an enormous gap between todays research and what people need. Like many of her colleagues, Xia worries that to keep its credibility with funders and the public, organoid research needs to show progress towards treatments. Some groups are working towards auxiliary kidneys, which would be a fraction of the size of a normal kidney but could still stabilize a persons health.

The kidney is an exceptionally tricky organ to replicate in a lab. Youve got 2530 distinct cell types with functional roles that have to be anatomically placed in the right position for the organ to work, says Little. By contrast, the heart is thought to have only nine major cell types2.

The kidneys functional unit for removing waste from the blood, the nephron, is an intricate and precisely organized structure. The first step in filtering the blood takes place in networks of small blood vessels called glomeruli. The resulting filtrate then passes through a series of tubes, in which various solutes are exchanged with blood vessels, before ending up in a branching tree of collecting ducts that funnels the waste to the ureter and out towards the bladder. For a kidney to function, it is not enough to simply have the right cells they must also be arranged correctly.

A number of daunting obstacles remain on the road to a transplantable kidney. One of the biggest is immaturity of the cells, which typically resemble progenitor cells from the first or second trimester of human development, limiting their functionality.

There has been steady progress on this front. In 2022, for instance, Little and her colleagues demonstrated more functional human proximal tubule cells, which she calls the powerhouses of the kidney3. The lab of nephrologist Joseph Bonventre at Brigham and Womens Hospital in Boston, Massachusetts, did the same that year for the collecting ducts two main functional cell types4.

Researchers have also worked out how to boost their ability to create kidney organoids in volume, another key requirement for potential treatments. For example, researchers in the Netherlands have grown sheets of iPS-cell-derived nephrons at a large scale5.

Like other forms of tissue derived from pluripotent stem cells, kidney organoids can include undesired off-target cells such as muscle neurons, and researchers need to follow precise protocols to guard against the appearance of tumour cells. General advances in the stem-cell field are minimizing these challenges.

Forming a vasculature, however, is a much greater hurdle. A fully developed and precisely structured blood system is needed to keep the flows of blood and urine exchanging correctly throughout the nephron. This has not been achieved in experimental systems, says Jamie Davies, a developmental biologist and tissue engineer at the University of Edinburgh, UK. Instead, the vasculature generally remains in a primitive state and soon dies out.

Organoids transplanted into immunodeficient mice do attract blood vessels from the host animal, allowing nephrons to start filtering the blood and generating urine, says Nishinakamura. However, the urine has nowhere to go, so transplants typically fail at that stage, he says.

The push to build better organoids based on iPS cells has vastly increased researchers understanding of kidney development and disease. Compared with cell cultures, organoids already offer enhanced models of kidney disease particularly for genetic illnesses in children. For example, the crucial cells that wrap around glomerulus capillaries and begin the filtering process, called podocytes, are rubbish in 2D cell cultures but much better representations in 3D organoids, Little says.

Organoid models also readily display the characteristic cysts of autosomal dominant polycystic kidney disease the most prevalent genetic kidney disease and one subject to intense research. One 2022 study reported a scalable human kidney organoid platform that enabled the testing of hundreds of small-molecule drugs against this condition6.

Researchers are now able to grow kidney organoids with more-functional cells.Credit: J. M. Vanslambrouck et al. Nature Commun. 13, 5943 (2022).

Diabetes is the largest driver of chronic disease in adults but a formidable task to model, because the condition impairs the blood vessels that are difficult to reproduce in organoids. Moreover, says Xia, kidney organoids, like many cell cultures, are generally bathed in high levels of glucose, making it hard to pick out the effects of the raised blood glucose levels generated in diabetes.

Kidney organoids show great promise in drug testing. Many drug candidates fail testing because they cause kidney damage, but this is not picked up in 2D cell cultures because they often lose their sensitivity, says Bonventre. For example, he says, the protein KIM-1 is a strong biomarker for damage to proximal tubule cells in vivo but not in 2D cell culture. If kidney organoids can display the same KIM-1 gene-expression patterns that are seen in vivo, they will provide excellent toxicity models, he says. His lab is studying such organoid-based models.

Using organoids based on iPS cells as a treatment for kidney disease is far from the first cell-based therapy to be proposed. Many clinical trials have tested the effect of mesenchymal stem cells (multipotent stem cells found in tissue, such as bone marrow), with mixed results. Most researchers agree that although these cells might secrete factors that help with kidney repair, they dont structurally improve the kidney. One long-studied alternative technique that selects, enhances and reinserts kidney cells from people with kidney disease is being examined in a phase III clinical trial sponsored by the biotechnology company ProKidney in Winston-Salem, North Carolina.

But injecting iPS-cell-based organoid-derived cells alone into kidneys doesnt seem to be a promising strategy, says Nishinakamura. Such cells might secrete factors that improve kidney function, much as mesenchymal stem cells are thought to do, he says. But these progenitor cells are unlikely to stay and play happily within the kidney; its not clear where the cells might go, or if and how they then mature.

Organoid-derived cells might help when it comes to improving transplants of donated kidneys, says Nria Montserrat, a stem-cell biologist at the Institute for Bioengineering of Catalonia in Barcelona, Spain. She is testing that hypothesis in collaboration with Cyril Moers, a transplant surgeon at the University of Groningen in the Netherlands. Donated organs are often maintained before transplant by being perfused in a liquid bath rather than frozen. Moers hopes that adding organoid-derived cells to these baths will allow these organs to be preserved better, evaluated more accurately and (eventually) made healthier before transplant. Montserrats lab is running pilot experiments with human organoid cells released into perfused pig kidneys.

More broadly, a number of groups are studying the potential for transplanting a more substantial set of organoid tissues into people with kidney disease. Little wants to create what she calls an auxiliary kidney, designed to connect to a persons failing kidney.

In her labs unpublished experiments, human kidney organoids transplanted into immunocompromised mice successfully gather blood vessels and start filtering urine. Getting all those nephrons to connect to the underlying kidney will be the challenge, she says. If the nephrons connect into the existing kidney itself, then the urine will go out the way all of the urine goes. Youre essentially freeloading on the anatomy of the existing patient kidney, even though that patients kidney is pretty sick.

More from Nature Outlooks

Biotechnology company Trestle Biotherapeutics in San Diego, California, is also developing a transplantable auxiliary kidney. Co-founder and developmental biologist Alice Chen says that this tissue might end up in another location, such as below the existing kidney near the bladder. Trestle is growing organoids about 100 times the size of those commonly reported in the scientific literature, she says, and is seeing encouraging progress in how these tissues engraft in mice, connect to the host circulation and continue to mature.

The start-up was launched with the view that a bioengineered kidney will demand industrial-scale expertise in many fast-evolving disciplines, including stem-cell science and 3D bioprinting. We had to pull all of that brainpower, those technologies and those ideas together, says Chen.

Most people with kidney disease are hoping for treatments that let them live their lives replacing or minimizing dialysis, or postponing the immediate need for a donated kidney rather than for a complete bioengineered organ. Were not creating an entire organ, we need to create some sort of tissue that can return 1020% function to these patients, Chen says. And that is achievable.

Some research groups are using organoids as potential sources of cells for hybrid external devices with bioengineered 3D scaffolds, designed to act like improved dialysis systems.

In one such effort, Bonventre hopes to make a device with a sub-population of just two types of cell: proximal tubule cells and collecting duct cells. Other types of kidney cells remain important, he says, but achieving every function of a normal kidney seems like a distant goal. Lets not shoot for a galaxy thats three billion light years away, he says. Lets try to get to the Moon first, and maybe Mars.

But Nishinakamura remains fixed on his original dream of a complete kidney, which he thinks is needed more than ever for the millions of people whose chronic kidney disease steadily progresses towards end-stage renal disease. Im always telling my graduate students, Dont say it is impossible.

Read more from the original source:
How organoids are advancing the understanding of chronic kidney ... - Nature.com

Why CRISPR babies are still too risky embryo studies highlight … – Nature.com

A human embryo at the 16-cell stage sits on the tip of a pin. Researchers say genome-editing techniques are still not safe enough to be used in embryos destined for reproduction.Credit: Dr Yorgos Nikas/Science Photo Library

More than four years after the first children with edited genomes were born, genome-editing techniques are still not safe enough to be used in human embryos that are destined for reproduction, organizers of the Third International Summit on Human Genome Editing announced at the conclusion of the meeting.

Heritable human genome editing remains unacceptable at this time, they said in a statement issued on 8 March. Preclinical evidence for the safety and efficacy of heritable human genome editing has not been established, nor has societal discussion and policy debate been concluded.

Beyond CRISPR babies: how human genome editing is moving on after scandal

The statement came at the end of a day of discussion and debate in London about the potential of altering the genomes of either embryos or reproductive cells, called gametes, in ways that would be passed down to future generations. Many of the talks at the meeting were focused on technical and scientific challenges, such as the uncertain consequences of breaking both strands of the DNA double helix a necessary step in some forms of genome editing in embryos.

In addition to those challenges, society must grapple with questions about whether the technology should be deployed, organisers said: Governance frameworks and ethical principles for the responsible use of heritable human genome editing are not in place.

Some researchers have argued that heritable genome editing could help people who carry genetic diseases to avoid passing those conditions on to their children. In many cases, this can already be done by combining in vitro fertilization (IVF) with testing of the resulting embryos for a given genetic disorder. But that is not always an option, such as when all a couples embryos will inevitably inherit the genetic disorder, or when all available embryos happen to carry the responsible genes.

In addition to broader concerns about ethics and social justice, editing embryos would require a safe and effective genome-editing platform to minimize the chances of harming the embryo, the resulting child, and that childs descendants. Most research on genome editing in embryos, however, has been done using animal models such as mice, which might not accurately reflect what happens in human embryos. And although potential genome-editing therapies have been widely studied in adult human cells, embryos might respond differently than adult cells to the DNA damage caused by some genome editing tools.

Only a handful of laboratories have directly tried to edit the genomes of human embryos using the popular editing system CRISPR-Cas9, and several of these presented concerning results at the summit.

CRISPR gene editing in human embryos wreaks chromosomal mayhem

The Cas9 enzyme works by breaking both strands of DNA at a site designated by a guiding piece of RNA. The cell then repairs that DNA break, either by using an error-prone mechanism that stitches the two ends together but sometimes deletes or inserts a few DNA letters in the process, or by replacing the missing DNA with a sequence copied from a template provided by the researcher. DNA breaks created by Cas9 in embryos are usually repaired using the error-prone pathway, rather than using the template DNA, said Deitrich Egli, a stem cell biologist at Columbia University in New York City, at the conference.

Egli and other researchers also reported on the consequences of the double-strand breaks made by Cas9. Developmental biologist Kathy Niakan at the University of Cambridge, UK, recounted her labs experience with the apparent loss of large regions of chromosomes that occurred when using CRISPR-Cas9 to edit human embryos1. Shoukhrat Mitalipov, a reproductive biologist at Oregon Health & Science University in Portland, also said that his laboratory had found large DNA deletions at the editing site in human embryos, and that these deletions might not be detected using standard tests2.

Can human embryos at this stage really tolerate this kind of intervention? asked Dagan Wells, a reproductive geneticist at the University of Oxford, UK, who also reported concerning responses to DNA breaks in human embryos. About 40% of the embryos in one of his genome-editing studies failed to repair broken DNA. Over one-third of those embryos continued to develop, he said, resulting in the loss or gain of pieces of chromosomes in some cells. That could risk the health of offspring if such embryos were allowed to develop further. These results are really a warning, he said.

There are newer variations on CRISPR-Cas9 editing that do not break both strands of the DNA helix. Base editing, for example, can convert one single DNA letter to another, and a technique called prime editing allows researchers to insert DNA sequences more predictably than CRISPR-Cas9 editing. Neither of these methods cause double-strand breaks, but they have not been as thoroughly studied and optimized as CRISPR-Cas9. At the summit, developmental biologist Yuyu Niu at the Kunming University of Science and Technology in China reported that one kind of base editor did not cause off-target DNA mutations in rhesus macaque (Macaca mulatta) embryos, but it did cause unwanted RNA mutations3.

Super-precise CRISPR tool enhanced by enzyme engineering

An alternative to editing embryos would be to instead edit gametes, such as eggs and sperm, or the stem cells that give rise to them. This would also sidestep concerns that efforts to edit embryos might not succeed in all cells of the embryo, resulting in offspring that contain a mixture of edited and unedited cells. Several researchers at the summit reported progress towards generating gametes in the laboratory, but doing this with human cells destined for reproductive uses still poses challenges.

The summit organizers urged that researchers continue to explore each of these options, even as policy makers and the public grapple with what restrictions should be placed on heritable genome editing.. We are still keen that the research goes ahead, said developmental biologist Robin Lovell-Badge of the Francis Crick Institute in London, who chaired the organizing committee for the summit. In parallel, there has to be more debate about whether the technique is ever used.

Read this article:
Why CRISPR babies are still too risky embryo studies highlight ... - Nature.com

Study reveals limitations in evaluating gene editing technology in … – OHSU News

Gene editing technologies hold promise in preventing and treating debilitating inherited diseases, however new research from Oregon Health & Science University reveals limitations that must be overcome before gene-editing to establish a pregnancy can be deemed safe or effective. (OHSU/Sara Hottman)

A commonly used scientific method to analyze a tiny amount of DNA in early human embryos fails to accurately reflect gene edits, according to new research led by scientists at Oregon Health & Science University.

The study, published today in the journal Nature Communications, involved sequencing the genomes of early human embryos that had undergone genome editing using the gene-editing tool CRISPR. The work calls into question the accuracy of a DNA-reading procedure that relies on amplifying a small amount of DNA for purposes of genetic testing.

In addition, the study reveals that gene editing to correct disease-causing mutations in early human embryos can also lead to unintended and potentially harmful changes in the genome.

Together, the findings raise a new scientific basis for caution for any scientist who may be poised to use genetically edited embryos to establish pregnancies. Although gene editing technologies hold promise in preventing and treating debilitating inherited diseases, the new study reveals limitations that must be overcome before gene-editing to establish a pregnancy can be deemed safe or effective.

Shoukhrat Mitalipov, Ph.D. (OHSU)

It tells you how little we know about editing the genome, and particularly how cells respond to the DNA damage that CRISPR induces, said senior author Shoukhrat Mitalipov, Ph.D., director of the OHSU Center for Embryonic Cell and Gene Therapyand, professor of obstetrics and gynecology, molecular and cellular biosciences, OHSU School of Medicine, OHSU Oregon National Primate Research Center. Gene repair has great potential, but these new results show that we have a lot of work to do.

The findings come during the Third International Summit on Human Genome Editing in London. On the eve of the last international summit, held in Hong Kong in November 2018, a Chinese scientist revealed the birth of the worlds first babies resulting from gene-edited embryos through an experiment that generated global condemnation.

Interview with Shoukhrat Mitalipov, Ph.D., in the Mitalipovlab at OHSU. (OHSU/Sara Hottman)

Before an edited embryo can be transferred to establish a pregnancy, it is important to make sure the procedure worked as intended.

Because early human embryos consist of just a few cells, its not possible to collect enough genetic material to effectively analyze them. Instead, scientists interpret data from a small sample of DNA taken from a few or even a single cell, which then must be multiplied millions of times during a process known as whole genome amplification.

The same process known as preimplantation genetic testing, or PGT is often used to screen human embryos for various genetic conditions in patients undergoing in vitro fertilization.

Paula Amato, M.D.,(OHSU)

Whole genome amplification has limitations that reduce the accuracy of genetic testing, said senior co-author Paula Amato, M.D., professor of obstetrics and gynecology in the OHSU School of Medicine.

The concern is that we might be misdiagnosing embryos, Amato said.

Amato, who uses in vitro fertilization to treat patients struggling with infertility as well as to prevent the transmission of inherited diseases, said PGT using more advanced technology is still clinically useful for detecting chromosomal abnormalities and genetic disorders caused by a single gene mutation transmitted from parent to child.

The study highlights the challenges of establishing the safety of gene-editing techniques.

We may not be able to reliably predict that this embryo will result in a healthy baby, Mitalipov said. Thats a major problem.

To overcome these issues, OHSU researchers, along with collaborators with research institutions in South Korea and China, established embryonic stem cell lines from gene-edited embryos. Embryonic stem cells grow indefinitely and provide ample DNA material that does not require whole genome amplification to analyze.

Researchers say the discovery highlights the error-prone nature of whole genome amplification and the need to verify edits in embryos by establishing embryonic stem cell lines.

Using embryonic stem cells, the new study verifies the process of gene repair that Mitalipovs lab developed; the findings were published in the journal Naturein 2017 and verifiedin 2018.

In that study, scientists cut a specific target sequence on a mutant gene known to be carried by a sperm donor.

Researchers found that human embryos repair these breaks, using the normal copy of the gene from the other parent as a template. Mitalipov and co-authors confirmed that this process, known as gene conversion, occurs regularly in early human embryos following a double-strand break in their DNA. Such a repair, if used to establish a pregnancy through in vitro fertilization and embryo transfer, could theoretically prevent a known familial disease from being passed on to the child, as well as all future generations of the family.

In the study published in 2017, the OHSU researchers targeted a gene known to cause a deadly heart disease.

In this new publication, researchers targeted other discrete mutations using donated sperm and eggs, including one mutation known to cause hypertrophic cardiomyopathy, a condition in which the heart muscle becomes abnormally thick, and a different one associated with high cholesterol. In each case an enzyme known as Cas9, used in tandem with CRISPR, induced a double-strand break in DNA at the precise site of the mutation.

In addition to replicating and confirming the gene-repair mechanism reported in 2017, the new study examines what happens in the genome beyond the specific site where the mutant gene is repaired. And thats where a problem can occur.

In this paper we asked, how extensive is that gene conversion repair mechanism? Amato said. It turns out that it can be very lengthy.

Extensive copying of the genome, from one parent to the other, creates a scenario known as loss of heterozygosity.

Every human being shares two versions, or alleles, of every gene on the human genome one contributed from each parent. Most of the time, the alleles are identical, given 99.9% of any individuals DNA sequence is shared with the rest of humanity. In some cases, however, one parent will carry a recessive disease-causing mutation thats normally canceled out by the other parents dominant healthy version of the same gene.

These polymorphisms in the genetic code can be critically important. For example, a gene may encode a protein that protects against specific types of cancer.

If you have one abnormal copy of a recessive mutation, that may pose no risk, Amato said. But if you have loss of heterozygosity leading to two mutant copies of the same tumor suppressor gene, now youre at significantly increased risk for cancer.

The more genetic code thats copied, the greater the risk of dangerous genetic changes. In the new study, scientists measured gene conversion tracts ranging from a relatively small segment to as large as 18,600 base pairs of DNA.

In effect, the repair of one known mutation may create more problems than it solves.

If youre cutting in the middle of a chromosome, there could be 2,000 genes there, Mitalipov said. Youre fixing one tiny spot, but all these thousands of genes upstream and downstream may be affected.

The finding suggests that much more research is needed to understand the mechanism at work in gene-editing before using it clinically to establish a pregnancy.

Studies conducted at the OHSU Center for Embryonic Cell and Gene Therapy were supported by OHSU institutional funds and a grant from the Burroughs Wellcome Fund.

Original post:
Study reveals limitations in evaluating gene editing technology in ... - OHSU News

Stem Cell Assay Market :How the Market will perform in Upcoming … – Digital Journal

The Stem Cell Assay Market Industry research projection to 2023-2030 offers thorough industry data to help companies create growth plans and make smarter business choices based on predictions and market trends. The dynamic market structure, the product offerings of major players, their challenges, technical innovation, impediments and barriers, data on communication and sales, sales by country, risk, prospects, the competitive environment, growth strategy, and others are among the marketing variables covered in the study. It goes into great detail regarding the present and future conditions of the market. The report examines a range of elements, such as technology advancements, technological levels, and the various business models employed by the markets leading competitors at the moment.

Stem cells are the most fundamental type of biological cells. They have the ability to develop into multiple cell types and can multiply into more of the same type of stem cell. Adult stem cells and embryonic stem cells are the two different kinds of stem cells. These cells can be found in the bone marrow, adipose tissue, and blood, among other body parts. Also harvested from umbilical cord blood are stem cells. Two processesobligatory asymmetric replication and stochastic differentiationare used to maintain the bodys stem cell population. The introduction of stem cells has demonstrated promising outcomes in the treatment of numerous disorders, including cancer. Stem cells play a significant role in the bodys natural healing process.

Get Sample Report With Covid-19 Impact Analysis: https://www.coherentmarketinsights.com/insight/request-sample/1632

List of Key players in the global Stem Cell Assay Market: Merck & Co., Thermo Fisher Scientific, GE Healthcare, Agilent Technologies, Bio-Rad Laboratories, Promega Corporation, Cell Biolabs, PerkinElmer, Miltenyi Biotec, HemoGenix, Bio-Techne Corporation, STEMCELL Technologies, and Cellular Dynamics International.

SWOT Analysis of Global Stem Cell Assay Market

The report focuses on revenue analysis and SWOT analysis in addition to market share analysis of businesses, detailed profiles, product/service overviews, and business overviews to better correlate market competitiveness.

Information source and Research Methodology:

Using both primary (surveys and interviews) and secondary (industry body databases, dependable paid sources, and trade periodicals) data collection techniques, our researchers put the study together. A complete qualitative and quantitative analysis is included in the report. The research covers growth trends, micro- and macroeconomic indicators, as well as legislation and governmental programmes.

Buy This Premium Report With Amazing Offer : https://www.coherentmarketinsights.com/insight/buy-now/1632

Purchasing the Stem Cell Assay Market for the Following Reasons:

The study looks at new market trends as well as the chance that different trends will have an impact on growth.The report also covers the elements, difficulties, and chances that will significantly affect the worldwide Stem Cell Assay market.Standards and technological instruments that take the Stem Cell Assay industrys predicted expansion into account.To forecast future growth rates, the research comprises a thorough analysis of market information as well as past and present growth trends.In order to produce forecasts for the future growth, the research comprises a thorough review of market statistics as well as historical and present growth conditions.

What are the goals of the report?

This market report displays the estimated market size for the Stem Cell Assay Market Industry at the end of the projected period.The research also examines historical and contemporary market sizes.The graphs display the compound annual growth rate (CAGR) and year-over-year growth (percent) for the specified forecast time.The study includes a market overview, geographic scope, segmentation, and financial results of the major rivals.The research evaluates the current situation of the industry inNorth America, Asia Pacific, Europe, Latin America, the Middle East, and Africa,as well as future growth opportunities.The study examines the future periods growth rate, market size, and market worth.

Some of the Key Questions Answered in this Report:

Table of Content

Chapter 1 Industry Overview1.1 Definition1.2 Assumptions1.3 Research Scope1.4 Market Analysis by Regions1.5 Market Size Analysis from 2023 to 203011.6 COVID-19 Outbreak: Stem Cell Assay Industry Impact

Chapter 2 Stem Cell Assay Competition by Types, Applications, and Top Regions and Countries2.1Market (Volume and Value) by Type2.3Market (Volume and Value) by Regions

Chapter 3 Production Market Analysis3.1 Global Production Market Analysis3.2 Regional Production Market Analysis

Chapter 4 Stem Cell Assay Sales, Consumption, Export, Import by Regions (2016-2022)Chapter 5 North AmericaIndustry Market AnalysisChapter 6 East Asia Stem Cell Assay Market AnalysisChapter 7 EuropeIndustry Market AnalysisChapter 8 South Asia Stem Cell Assay Market AnalysisChapter 9 Southeast Asia Market AnalysisChapter 10 Middle East Stem Cell Assay Market AnalysisChapter 11 Africa Market AnalysisChapter 12 Oceania Market AnalysisChapter 13 South America Stem Cell Assay Market AnalysisChapter 14 Company Profiles and Key Figures in Stem Cell Assay BusinessChapter 15 Stem Cell Assay Market Forecast (2023-2030)Chapter 16 ConclusionsResearch MethodologyContinued.

Buy This Premium Report With Amazing Offer : https://www.coherentmarketinsights.com/insight/buy-now/1632

Finally, the report majorly enlightens the key growth and limiting factors which majorly targets at the center of the market affecting the growth and its development in either positive or negative extent. The report also specifies the impact of regulations and policies implemented by the administration over the current growth and upcoming opportunities that may lead to the market development escalation. The Stem Cell Assay Market report offers a superior vision of the global market, which will help clients to manage the business precisely with better growth and expansion compared to its contenders in the market.

Read Our More Report:

Cell surface markers detection market

Car t cell therapy market

Bovine plasma market

Gmp protein e coli contract manufacturing market

About Coherent Market Insights

Coherent Market Insights is a global market intelligence and consulting organization that provides syndicated research reports, customized research reports, and consulting services. We are known for our actionable insights and authentic reports in various domains including aerospace and defense, agriculture, food and beverages, automotive, chemicals and materials, and virtually all domains and an exhaustive list of sub-domains under the sun. We create value for clients through our highly reliable and accurate reports. We are also committed in playing a leading role in offering insights in various sectors post-COVID-19 and continue to deliver measurable, sustainable results for our clients.

Contact:

Mr Shah

Coherent Market Insights533 Airport Boulevard, Suite 400,Burlingame, CA 94010, United States.Email: [emailprotected]United States of America: +1-206-701-6702United Kingdom: +44-020-8133-4027Japan: +050-5539-1737India: +91-848-285-0837

Go here to see the original:
Stem Cell Assay Market :How the Market will perform in Upcoming ... - Digital Journal