Category Archives: Stem Cell Treatment

Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial

ROCKVILLE, Md., June 19, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the first patient to receive stem cell transplantation in both regions of the spinal cord has been treated in the ongoing Phase I trial of its spinal cord neural stem cells in amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). This is also the 16th patient to be treated in the trial altogether and the first patient returning to the trial for a second treatment. In this treatment, the patient received five injections in the cervical (upper back) region of the spinal cord, in addition to the ten he received previously in the lumbar (lower back) region of the spine, for a total of 15 injections. This is the highest number of injections in the trial so far. Patient 16 is also the first patient in the world to receive stem cell transplants in both the lumbar and cervical regions of the spinal cord in an FDA-approved trial. Two additional previously-treated patients are expected to return to the trial this summer in this cohort, provided they continue to meet the inclusion requirements. The trial is taking place at Emory University Hospital in Atlanta, Georgia.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"Transplanting the first of the returning patients represents a major milestone in the trial," said Dr. Karl Johe, PhD, Neuralstem's Chairman and Chief Scientific Officer. "The ability to safely administer multiple dosings to these patients is a key enabling step in administering the maximum safe dose. Not only are we dosing patients for a second time in this cohort, we are now dosing in both the lumbar and cervical regions of the spinal cord for the first time, where the stem cell therapy could support both walking and breathing."

About the Trial

The Phase I trial to assess the safety of Neuralstem's spinal cord neural stem cells and intraspinal transplantation method in ALS patients has been underway since January 2010. The trial is designed to enroll up to 18 patients. The first 12 patients were each transplanted in the lumbar (lower back) region of the spine, beginning with non-ambulatory and advancing to ambulatory cohorts.

The trial then advanced to transplantation in the cervical (upper back) region of the spine. The first cohort of three was treated in the cervical region only. The current cohort of three will receive injections in both the cervical and lumbar regions of the spinal cord. In an amendment to the trial design, The Food and Drug Administration (FDA) approved the return of previously-treated patients to this cohort. The first of these returning patients was just treated. The entire 18-patient trial concludes six months after the final surgery.

About Neuralstem

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.

Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company has received approval from the FDA to conduct a Phase Ib safety trial evaluating NSI-189, its first neurogenic small molecule compound, for the treatment of major depressive disorder (MDD). Additional indications could include CTE (chronic traumatic encephalopathy), Alzheimer's disease, anxiety, and memory disorders.

See the original post here:
Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial

Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Jeremy Moore jeremy.moore@aacr.org 215-446-7109 American Association for Cancer Research

LAKE TAHOE, Nev. Results of some preclinical trials have shown that low doses of the antidiabetic drug metformin may effectively destroy cancer stem cells, a group of cells that are considered to be responsible for tumor initiation and, because they are resistant to standard chemotherapies, tumor relapse.

In addition, when metformin was combined with a standard chemotherapy used for pancreatic cancer, the combination treatment was able to efficiently eradicate both cancer stem cells and more differentiated cancer cells, which form the bulk of the tumor, according to data presented by Christopher Heeschen, M.D., Ph.D., at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, held in Lake Tahoe, Nev., from June 18-21, 2012. Heeschen is professor for experimental medicine at the Spanish National Cancer Research Centre in Madrid, Spain.

Most clinical trials of pancreatic cancer conducted during the last 15 years have failed to show marked improvement in median survival, suggesting that the selected approaches were not sufficient for several reasons, according to Heeschen. In recent years, researchers have identified cancer stem cells which, as opposed to the cancer cells that make up the bulk of the tumor, are a small subset of cells that are resistant to conventional therapy.

"Therefore, efficiently targeting these cells will be crucial for achieving higher cure rates in patients with pancreatic cancer," he said. "Our newly emerging data now indicate that metformin, a widely used and well-tolerated drug for the treatment of diabetes, is capable of efficiently eliminating these cells."

Specifically, the researchers found that metformin-pretreated cancer stem cells were particularly sensitive to alterations to their metabolism through the activation of AMPK. In fact, metformin treatment resulted in the death of cancer stem cells. In contrast, treatment of more differentiated cancer cells with metformin only arrested the cells' growth.

"As the cancer stem cells represent the root of pancreatic cancer, their extinction by reprogramming their metabolism with metformin in combination with the stalling of the proliferation of more differentiated cells should result in tumor regression and long-term, progression-free survival," Heeschen said.

The researchers generated data to support this idea when they treated immunocompromised mice implanted with a diverse set of patient-derived tumors with a combination of metformin and gemcitabine, the standard chemotherapeutic treatment for pancreatic cancer. They found that the treatment resulted in reduced tumor burden and the prevention of relapse as compared with treatment with either drug alone.

"Intriguingly, in all tumors treated with metformin to date, relapse of disease was efficiently prevented and there were no noticeable adverse effects," Heeschen said.

See the original post here:
Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

State Awards $9.8 Million For Stem Cell Projects

Gov. Dannel P. Malloy Monday announced $9.8 million in grants to 19 stem cell research projects in the state. The Connecticut Stem Cell Research Advisory Committee had selected the recipients at its grant review meeting last Tuesday in Farmington.

"Connecticut's continued support of stem cell research has allowed for exciting and innovative research to take place right here in our state," Malloy said in a statement. "The research projects funded by these grants allow scientists to do revolutionary work that puts Connecticut at the forefront of bioscience industry."

Of the 19 grants, 13 grants totaling $7.25 million were awarded to Yale scientists, five went to University of Connecticut researchers, and one went to a collaboration between Wesleyan and UConn scientists.

The largest grant, $1.8 million, was awarded to D. Eugene Redmond of Yale. Redmond has focused on cellular repair in the nervous system and how it relates to Parkinson's disease.

UConn's Stormy Chamberlain, an assistant professor of genetics and developmental biology at the UConn Health Center, received a $450,000 grant to develop new therapies for Prader-Willi syndrome and Angelman Syndrome, both rare genetic disorders. Children born with Prader-Willi Syndrome have difficulty feeding and develop poor muscle tone, and starting about age 2, they develop an insatiable appetite that lasts for their lifetime. People with Angelman Syndrome suffer speech difficulties, seizures, problems with motor control and balance, and serious intellectual disabilities

Although Chamberlain generally focuses on Angelman Syndrome, the three-year project also will include Prader-Willi because the causes of the two disorders are similar. Angelman Syndrome is caused by the deletion of genes on a certain chromosome on the mother's side, while Prader-Willi Syndrome is caused by the deletion of genes in same chromosome on the father's side.

Chamberlain estimates that she's one of 30 researchers in the U.S. who studies Angelman Syndrome.

"The state funding really helps rare diseases because the foundations that typically fund their research are limited," she said, adding that support often is limited to fundraisers organized by families of those with the conditions.

A stem cell education outreach program, run by Laura Grabel, a professor of biology at Wesleyan, and Ren-He Xu, a professor of genetics at UConn, received $500,000. Grabel said the program, which has been in operation since 2006, holds workshops and retreats for stem cell researchers and educates the general public by sending speakers to schools and various organizations. The program also has representatives speak to high school science teachers about incorporating stem cell science in their curricula.

Although the program was started partly because of the controversy over the use of stem cells, Grabel said "we've seen very little pushback it's been very positive."

Link:
State Awards $9.8 Million For Stem Cell Projects

Chicago woman cured of sickle cell disease

ScienceDaily (June 18, 2012) Chicagoan Ieshea Thomas is the first Midwest patient to receive a successful stem cell transplant to cure her sickle cell disease without chemotherapy in preparation for the transplant.

University of Illinois Hospital & Health Sciences System physicians performed the procedure using medication to suppress her immune system and one small dose of total body radiation right before the transplant.

The transplant technique is relatively uncommon and is a much more tolerable treatment for patients with aggressive sickle cell disease who often have underlying organ disease and other complications, says Dr. Damiano Rondelli, professor of medicine at UIC, who performed Thomas's transplant.

The procedure initially allows a patient's own bone marrow to coexist with that of the donor. Since the patient's bone marrow is not completely destroyed by chemotherapy or radiation prior to transplant, part of the immune defense survives, lessening the risk of infection. The goal is for the transplanted stem cells to gradually take over the bone marrow's role to produce red blood cells -- normal, healthy ones.

Thomas, 33, had her first sickle cell crisis when she was just 8 months old. Her disease became progressively worse as an adult, particularly after the birth of her daughter. She has spent most of her adult life in and out of hospitals with severe pain and has relied on repeated red blood cell transfusions. Her sickle cell disease also caused bone damage requiring two hip replacements.

"I just want to be at home with my daughter every day and every night," said Thomas, who depends on family to help care for her daughter during her frequent hospitalizations.

This type of stem cell transplant is only possible for patients who have a healthy sibling who is a compatible donor.

Thomas' sister was a match and agreed to donate blood stem cells through a process called leukapheresis. Several days prior to leukapheresis, Thomas' sister was given drugs to increase the number of stem cells released into the bloodstream. Her blood was then processed through a machine that collects white cells, including stem cells. The stem cells were frozen until the transplant.

Last Nov. 23, four bags of frozen stem cells were delivered to the hospital's blood and marrow transplant unit. One by one, the bags were thawed and hung on an IV pole for infusion into Thomas. The procedure took approximately one hour. Her 13-year-old daughter, Miayatha, was at her bedside.

Six months after the transplant, Thomas is cured of sickle cell disease and no longer requires blood transfusions.

More:
Chicago woman cured of sickle cell disease

Royal Oak Veterinarian Dr. Simon First in Michigan to Offer In-House Adult Pet Stem Cell Therapy

ROYAL OAK, Mich., June 17, 2012 (GLOBE NEWSWIRE) -- Woodside Animal Hospital announced they have added both stem cell therapy and cold laser therapy to their suite of services. These two cutting edge treatments are done entirely in-house, no third-party lab work is required. Royal Oak veterinarian Dr. John Simon is the first Michigan veterinarian to provide pets with in-house adult stem cell therapy. The stem cells are derived from the pet's fat deposits and absolutely no embryonic tissue is used.

"As a holistic veterinarian, I am committed to providing high quality, cutting-edge care that combines traditional veterinary care with advanced holistic treatments," said Dr. Simon. "Our in-house stem cell therapy and cold laser therapy procedures alleviate pain in limping dogs and promote internal healing following an injury. I also recommend these procedures for pets with osteoarthritis."

Cold laser therapy is a non-surgical approach to pain management. Holistic equine veterinarians have used the procedure for over 20 years to treat injuries and joint pain. Today, veterinarians are using cold laser therapy to provide natural pain relief for injured pets.

According to Dr. Simon, cold laser therapy works by using a low-level energy beam to penetrate just below the skin's surface. Injured cells use the laser's energy to repair cellular damage. This provides relief for pain and swelling following a soft tissue injury, such as a ligament, tendon or muscle strain.

"Cold laser therapy is a revolutionary treatment for natural pain management in animals," said the Royal Oak veterinarian. "Laser therapy allows for advanced pain management, especially for pets suffering from chronic conditions or soft tissue injuries."

Woodside Animal Hospital also provides in-house pet stem cell therapy. This treatment uses adult stem cells collected from a dog's fat deposits to promote the growth of new soft tissue and cartilage. By performing the whole procedure in the clinic, the stem cells can be harvested and re-injected on the same day.

"Our in-house pet stem cell therapy is an affordable, same-day treatment that helps dogs suffering from joint pain, osteoarthritis, soft tissue injuries and hip dysplasia," said Dr. Simon. "As pets age, it's natural that their range of movement becomes restricted. While oral joint care supplements and prescription painkillers can help, medication alone cannot restore a full range of movement. Our treatments help restore activity and movement."

In addition to cold laser therapy and stem cell therapy, Dr. Simon also provides holistic treatments for cancer in dogs, cat and dog rashes, and dietary needs. The Royal Oak practice is a full-service animal hospital with wellness care, vaccinations and surgical procedures.

Dr. Simon is active in the greater Detroit veterinary community, serving as the past president of the Oakland County Veterinary Medical Association and as a board member for the Southeastern Michigan Veterinary Medical Association (SEMVMA).

Read more from the original source:
Royal Oak Veterinarian Dr. Simon First in Michigan to Offer In-House Adult Pet Stem Cell Therapy

Stroke Treatment Using Stem Cells Shows Early Promise In Controversial Trial

Featured Article Main Category: Stroke Also Included In: Stem Cell Research;Neurology / Neuroscience Article Date: 17 Jun 2012 - 6:00 PDT

Current ratings for: 'Stroke Treatment Using Stem Cells Shows Early Promise In Controversial Trial'

4 (1 votes)

The hope is that the treatment, by repairing damaged brain tissue, will one day help stroke patients regain some movement and ability to speak. Even small improvements can make a big difference to a person who has been robbed of the ability to wash, dress and feed themselves.

The PISCES trial (Pilot Investigation of Stem Cells in Stroke) study, which is based in Scotland at the Institute of Neurological Sciences, Southern General Hospital, Greater Glasgow and Clyde NHS Board, is the first in the world to evaluate genetically engineered neural stem cells in people with disabling ischemic stroke.

The researchers presented the interim results at the 10th Annual Meeting of the International Society for Stem Cell Research (ISSR), which took place from 13 to 16 June 2012, in Yokohama, Japan.

The lead investigator of the trial is Professor Keith Muir, SINAPSE Professor of Clinical Imaging, Division of Clinical Neurosciences at the University of Glasgow. He told the press:

"We remain pleased and encouraged by the data emerging from the PISCES study to date."

The Phase I trial, which started towards the end of 2010, and follows five years of repeated regulatory rebuffs, is testing the safety of ReN001, a genetically engineered neural stem cell line made by UK biotech ReNeuron.

The trial is controversial because the stem cell line originated nearly ten years ago, from the tissue of a 12-week fetus.

Continue reading here:
Stroke Treatment Using Stem Cells Shows Early Promise In Controversial Trial

Stem cell treatment offers hope to those sickened after getting bone marrow

wwltv.com

Posted on June 15, 2012 at 5:53 PM

Updated yesterday at 7:35 PM

Meg Farris / Eyewitness News Email: mfarris@wwltv.com | Twitter: @megfarriswwl

NEWORLEANS- She was only in kindergarten when doctors gave her family the bad news.

Now she's one of the first in Louisiana to try a new treatment for people who get gravely ill after a bone marrow transplant.

The last three years of Sami Smith's life have been physically and emotionally painful.

"I literally, they try to scare me and they can't, because I've been through the scariest thing that you can," said Smith, 9, of Ponchatoula.

Her mother noticed she was napping more and bruising. Doctors diagnosed AML, a type of leukemia or blood cancer. Had she not gotten to the doctor then, she would not have made it much longer. A Child's Wish sent her to Disney World. The good news, one of her teen sisters Mary Hannah, 13, was a good bone marrow match. The transplant worked and Sami was cancer free.

Then devastating news. Sami got a condition called GvHD (Graft-versus-host disease) where the new marrow launches a painful attack on the recipient's body. It's the leading cause of transplant-related death.

Original post:
Stem cell treatment offers hope to those sickened after getting bone marrow

Researchers urge EU not to cut stem cell funding

* European Parliament debating funding for 2014 to 2020

* Scientists fear cuts to embryonic stem cell research

* Experts say cutting funds would hold back entire field

LONDON, June 15 (Reuters) - Leading scientists, biomedical research bodies and patient groups urged the European Parliament on Friday to maintain vital European Union funding for studies using embryonic stem cells.

Hailing the field as "one of the most exciting and promising" in modern biomedical research, the group said they feared research grants currently under review may be under threat from pro-life European parliamentarians who say public funds should not be spent on embryonic stem cell work.

"(EU) Commission funding must be available to continue to support scientists investigating all types of stem cells - including human embryonic stem cells - with potential to make advances in regenerative medicine," they wrote in an open letter released by the Wellcome Trust, a charitable health foundation.

The European Parliament is currently debating the future outline of Horizon (Euronext: HOR.NX - news) 2020, the EU's programme for research and innovation which will run from 2014 to 2020.

Draft rules provide for stem cell research funding, including embryonic stem cells but some member states have been lobbying for embryonic stem cell research to be excluded.

Many scientists believe stem cell research has the potential to lead to the development of treatments for a whole host of diseases including incurable neurodegenerative illnesses such as Parkinson's, motor neurone disease and multiple sclerosis, as well as type 1 diabetes, various serious heart conditions, liver damage, spinal cord damage and blindness.

Europe (Chicago Options: ^REURUSD - news) , and particularly Britain, is considered a world leader in stem cell research. The experts, from charities, funding bodies and patient groups, said if Europe is to hold on to this competitive edge, it is crucial to maintain funding for all stem cell research.

Read the original here:
Researchers urge EU not to cut stem cell funding

Gazette.Net: Osiris scores approval down under for stem cell drug

Osiris Therapeutics has won a second nations imprimatur for its stem cell treatment for a deadly complication of bone marrow transplants in children.

Following Canada's lead last month, New Zealand this week gave the Columbia company marketing approval for Prochymal to treat pediatric graft-vs.-host disease, Osiris reported. Canada was the first internationally recognized regulatory body to approve a stem cell drug.

The disease kills up to 80 percent of children who contract it, many within weeks of diagnosis.

"With each of our approvals it becomes clearer that the time for life-saving stem cell therapies in the practice of medicine has arrived, and we are humbled to have a leading role, CEO C. Randal Mills said in a company statement.

More cases of the disease are expected "as the demographic profile of our transplant population evolves," Hans Klingemann, professor of medicine and director of the Bone Marrow & Hematopoietic Stem Cell Transplant Program at Tufts University School of Medicine, said in the statement. "Effective strategies to manage the often lethal consequences of [graft-vs.-host disease] reduce the overall risk to transplantation ..."

Osiris applied for marketing approval in New Zealand in May 2011 and was given priority review the following month.

Besides Canada and New Zealand, Prochymal is available in the U.S. and several other nations under special patient circumstances.

The company also is testing the drug as a treatment for Crohns disease, heart attacks and type 1 diabetes.

In other Maryland bioscience industry news:

Sanaria, working with University of Maryland researchers, has won a three-year federal grant worth almost $3 million to genetically engineer mosquitoes for the Rockville biotech's malaria vaccine manufacturing program.

View original post here:
Gazette.Net: Osiris scores approval down under for stem cell drug

Six new U-M stem cell lines now publicly available to help researchers find treatments for disease

Lines in US registry will help studies on Huntington's disease, hemophilia & more

ANN ARBOR, Mich., June 14, 2012 /PRNewswire-USNewswire/ --Six new human embryonic stem cell lines derived at the University of Michigan have just been placed on the U.S. National Institutes of Health's registry, making the cells available for federally-funded research.

U-M now has a total of eight cell lines on the registry, including five that carry genetic mutations for serious diseases such as the severe bleeding disorder hemophilia B, the fatal brain disorder Huntington's disease and the heart condition called hypertrophic cardiomyopathy, which causes sudden death in athletes and others.

Researchers at U-M and around the country can now begin using the stem cell lines to study the origins of these diseases and potential treatments. Two of the cell lines are believed to be the first in the world bearing that particular disease gene.

The three U-M stem cell lines now in the registry that do not carry disease genes are also useful for general studies and as comparisons for stem cells with disease genes. In all, there are 163 stem cell lines in the federal registry, most of them without major disease genes.

Each of the lines was derived from a cluster of about 30 cells removed from a donated five-day-old embryo roughly the size of the period at the end of this sentence. The embryos carrying disease genes were created for reproductive purposes, tested and found to be affected with a genetic disorder, deemed not suitable for implantation and would have otherwise been discarded if not donated by the couples who donated them.

Some came from couples having fertility treatment at U-M's Center for Reproductive Medicine, others from as far away as Portland, OR. Some were never frozen, which may mean that the stem cells will have unique characteristics and utilities.

The full list of U-M-derived stem cell lines accepted to the NIH registry includes:

More:
Six new U-M stem cell lines now publicly available to help researchers find treatments for disease