Important step towards stem cell-based treatment for stroke

PUBLIC RELEASE DATE:

25-Oct-2013

Contact: Zaal Kokaia Zaal.Kokaia@med.lu.se 46-705-365-917 Lund University

Brain infarction or stroke is caused by a blood clot blocking a blood vessel in the brain, which leads to interruption of blood flow and shortage of oxygen. Now a reserach group at Lund University, Sweden, has taken an important step towards a treatment for stroke using stem cells.

The research group shows in a new study, published in the scientific journal Brain, that so-called induced pluripotent stem cells have developed to mature nerve cells at two months after transplantation into the stroke-injured cerebral cortex of rats. These nerve cells have established contact with other important structures in the brain. The transplantation gave rise to improvement of the animals' mobility. The results are from studies in animals but the scientists are hopeful.

---The results are promising and represent a very early but important step towards a stem cell-based treatment for stroke in patients. However, it is important to underscore that further experimental studies are necessary to translate these findings into the clinic in a responsible way, says Olle Lindvall, senior consultant and professor of neurology and one of the scientists responsible for the study.

In Sweden, about 30 000 people are affected with stroke every year and many of these patients will exhibit long-lasting handicap and will never fully recover. Following a stroke, nerve cells in the brain die and if these cells could be replaced by new healthy cells, this approach might be developed into a treatment. At Lund Stem Cell Center, Zaal Kokaia's and Olle Lindvall's research group is working with the aim to develop a stem cell-based method to treat patients with stroke.

The cerebral cortex is often damaged following a stroke, which underlies many of the symptoms such as paresis and speech problems. With the method used by the Lund scientists it should be possible to generate nerve cells for transplantation from the patient's own skin cells.

The research group has first reprogrammed skin cells from an adult human to induced pluripotent stem cells and then induced these cells to become mature nerve cells characteristic for the cerebral cortex.

---By using the method of induced pluripotent stem cells we have been able to generate cells which express those markers which are typical for nerve cells in the cerebral cortex and we have also shown that the new nerve cells are functional, says Zaal Kokaia, professor of experimental medical research.

Read the rest here:
Important step towards stem cell-based treatment for stroke

Related Posts