First Stem Cell Study of Bipolar Disorder Yields Promising Results

Contact Information

Available for logged-in reporters only

Newswise ANN ARBOR, Mich. What makes a person bipolar, prone to manic highs and deep, depressed lows? Why does bipolar disorder run so strongly in families, even though no single gene is to blame? And why is it so hard to find new treatments for a condition that affects 200 million people worldwide?

New stem cell research published by scientists from the University of Michigan Medical School, and fueled by the Heinz C. Prechter Bipolar Research Fund, may help scientists find answers to these questions.

The team used skin from people with bipolar disorder to derive the first-ever stem cell lines specific to the condition. In a new paper in Translational Psychiatry, they report how they transformed the stem cells into neurons, similar to those found in the brain and compared them to cells derived from people without bipolar disorder.

The comparison revealed very specific differences in how these neurons behave and communicate with each other, and identified striking differences in how the neurons respond to lithium, the most common treatment for bipolar disorder.

Its the first time scientists have directly measured differences in brain cell formation and function between people with bipolar disorder and those without.

The researchers are from the Medical Schools Department of Cell & Developmental Biology and Department of Psychiatry, and U-Ms Depression Center.

Stem cells as a window on bipolar disorder The team used a type of stem cell called induced pluripotent stem cells, or iPSCs. By taking small samples of skin cells and exposing them to carefully controlled conditions, the team coaxed them to turn into stem cells that held the potential to become any type of cell. With further coaxing, the cells became neurons.

This gives us a model that we can use to examine how cells behave as they develop into neurons. Already, we see that cells from people with bipolar disorder are different in how often they express certain genes, how they differentiate into neurons, how they communicate, and how they respond to lithium, says Sue OShea, Ph.D., the experienced U-M stem cell specialist who co-led the work.

Read more here:
First Stem Cell Study of Bipolar Disorder Yields Promising Results

Related Post