Learning About Cancer by Studying Stem Cells

Contact Information

Available for logged-in reporters only

Newswise Normally, when a cell becomes damaged or doesnt divide properly, the bodys natural recycling process breaks it down and it dies. Sometimes, though, the damage is to the genes that control a cell, and the result is out-of-control division. When this happens, a cancer cell is born.

New insights into how cancer cells arise and develop into tumors have come from researchers funded by the National Institutes of Health. Some of them are exploring the process by studying stem cells.

Modeling Early Pancreatic Cancer

Despite decades of progress in the detection, treatment and prevention of many types of cancer, the long-term survival rate for pancreatic cancer remains very low. One reason is that pancreatic cancer rarely produces symptoms until it has spread in the body.

The late stage at diagnosis also poses problems for researchers who want to study the early development of pancreatic cancer, according to Kenneth Zaret of the University of Pennsylvania School of Medicine. Thats because pancreatic cancer cells taken from people and then used to form tumors in animal models immediately produce the aggressive, advanced cancers from which they were derived.

Zarets lab has focused on understanding how transcription factors-proteins that control which genes in a cell are expressed-work in stem cells. His team recently explored the idea of reprogramming cancer cells so they act like embryonic stem cells, which can become just about any type of cell in the body. Because transcription factors in embryonic stem cells guide early organ development, the researchers thought that forcing cancer cells back to an embryonic state might allow the transcription factors to reproduce the early stages of cancer. This could then provide a model for studying the early development of pancreatic cancer.

Using tumor tissue from people with pancreatic cancer, Zaret and his colleagues succeeded in turning a sample of cancer cells back to an early, stem cell-like state. When used to create tumors in mice, these so-called induced pluripotent stem (iPS) cells formed early stage tumors and slowly progressed to invasive disease.

The human tumors grown in mice also secreted a wide range of proteins that are indicative of cell networks known to drive pancreatic cancer progression, as well as some not previously known to be associated with the disease. Were setting up collaborations to test these markers for their utility in screening human blood samples and see if they function as markers for detecting or predicting pancreatic cancer in humans, said Zaret.

The rest is here:
Learning About Cancer by Studying Stem Cells

Related Post