Category Archives: Stem Cell Medical Center

Planarian genes that control stem cell biology identified

Public release date: 1-Mar-2012 [ | E-mail | Share ]

Contact: Nicole Giese Rura rura@wi.mit.edu 617-258-6851 Whitehead Institute for Biomedical Research

FINDINGS: Devising a novel method to identify potential genetic regulators in planarian stem cells, Whitehead Institute scientists have determined which of those genes affect the two main functions of stem cells. Three of the genes are particularly intriguing because they code for proteins similar to those known to regulate mammalian embryonic stem cells. Such genetic similarity makes planarians an even more attractive model for studying stem cell biology in vivo.

RELEVANCE: Stem cells may hold the promise to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics and nerve cells for patients with spinal cord injuries. With its renowned powers of regeneration and more than half of its genes having human homologs, the planarian seems like a logical choice for studying stem cell behavior. Yet, until now, scientists have been unable to efficiently identify the genes that regulate the planarian stem cell system.

CAMBRIDGE, Mass. Despite their unassuming appearance, the planarian flatworms in Whitehead Institute Member Peter Reddien's lab are revealing powerful new insights into the biology of stem cellsinsights that may eventually help such cells deliver on a promising role in regenerative medicine.

In this week's issue of the journal Cell Stem Cell, Reddien and scientists in his lab report on their development of a novel approach to identify and study the genes that control stem cell behavior in planarians. Intriguingly, at least one class of these genes has a counterpart in human embryonic stem cells.

"This is a huge step forward in establishing planarians as an in vivo system for which the roles of stem cell regulators can be dissected," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. "In the grand scheme of things for understanding stem cell biology, I think this is a beginning foray into seeking general principles that all animals utilize. I'd say we're at the beginning of that process."

Planarians (Schmidtea mediterranea) are tiny freshwater flatworms with the ability to reproduce through fission. After literally tearing themselves in half, the worms use stem cells, called cNeoblasts, to regrow any missing tissues and organs, ultimately forming two complete planarians in about a week.

Unlike muscle, nerve, or skin cells that are fully differentiated, certain stem cells, such as cNeoblasts and embryonic stem cells are pluripotent, having the ability to become almost cell type in the body. Researchers have long been interested in harnessing this capability to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics or nerve cells for patients with spinal cord injuries.

Several problems currently confound the therapeutic use of stem cells, including getting the stem cells to differentiate into the desired cell type in the appropriate location and having such cells successfully integrate with surrounding tissues, all without forming tumors. To solve these issues, researchers need a better understanding of how stem cells tick at the molecular level, particularly within the environment of a living organism. To date, a considerable amount of embryonic stem cell research has been conducted in the highly artificial environment of the Petri dish.

More here:
Planarian genes that control stem cell biology identified

Why This Top Supplement Stacks Up

(PRWEB) February 29, 2012

Stem Cell Worx has brought a much needed new breakthrough health supplement to market. Not only does this top supplement activate adult stem cells naturally, it is also delivered sublingually.

Combine these two powerful forces and you get a new age, natural health supplement that aligns with todays science.

CEO and Co-founder, Tony Sampson explains: Emerging science has enabled incredible medical breakthroughs to be made, particularly in the last 5 years. Now it's time for these breakthroughs to correlate into health and nutritional supplements. This is what has been achieved with the Stem Cell Worx Intraoral Spray.

"It is now acknowledged worldwide that adult stem cells are the bodys primary system of renewal and restoration. However, with age, the release rate of one's own adult stem cells from the bone marrow decreases significantly, leaving us more prone to aging, illness and disease. Therefore, it is extremely important one's own adult stems continue to be activated throughout each individual's life time, no matter what their age.

Adult stem cells are behind practically every success of stem cell treatment and therapies thus far, not embryonic stem cells. Our own adult stem cells are the future of our good health. They are the only known source for rebuilding the body and renewing health by restoring lost or degraded cells.

The key ingredients in the Stem Cell Worx Intraoral Spray are scientifically proven to activate our adult stem cells, strengthen our immune system and provide optimal support for the bodys own repair and renewal system. Having healthy stem cells and a strong immune system are the very essence of life and good health.

Adult stem cells, once in the blood stream, have the ability to seek out areas within the body where they are needed the most. They then migrate to those areas and start the repair and renewal process.

Ask Stem Cell Worx CEO and Co-Founder, Tony Sampson why and he explains, Our formulation is made from the highest grade of natural ingredients in the world and our delivery system of these nutrients is direct and unique compared to main stream applications like tablets and capsules. Spray this dietary supplement under the tongue, hold then swallow.

"It is scientifically proven and referenced that a sublingual delivery method enables 95% of all nutrients to be absorbed directly into the blood stream through the sub-mucosal membrane (that sits directly under the tongue) compared to just 10% - 20% absorption that tablets and capsules provide. "Most people dont know this and many Health Professionals and Health Companies dont want to acknowledge it," states Tony Sampson, Stem Cell Worx CEO and Co-Founder.

Read the original here:
Why This Top Supplement Stacks Up

Study Could Result In Egg Cell Production For Fertility Treatments

February 27, 2012

Researchers from Massachusetts General Hospital (MGH) have for the first time isolated stem cells that are capable of producing what appear to be normal egg cells or oocytes from the ovaries of reproductive age women.

According to BBC News Health and Science Reporter James Gallagher, the research demonstrates that it could be possible to someday create a virtually unlimited supply of human eggs to assist with fertility treatments and help women hoping to have a child.

Gallagher also said that the MGH researchers have shown that it is possible to find stem cells that spontaneously produce new eggs in laboratory conditions, and that additional research involving mice showed that these oocytes could be fertilized.

The AFP said that the discovery, which is detailed in the March issue of the journal Nature Medicine, suggests that women do not have a limited stock of eggs, and instead replaces it with the theory that the supply of these reproductive cells is “continuously replenished from precursor cells in the ovary.”

An MGH press release said that the study, which was spearheaded by Dr. Jonathan Tilly, director of the hospital’s Vincent Center for Reproductive Biology, is a follow up to earlier research, published eight years ago, which suggested that female mammals continued producing egg cells into adulthood.

“The 2004 report from Tilly’s team challenged the fundamental belief, held since the 1950s, that female mammals are born with a finite supply of eggs that is depleted throughout life and exhausted at menopause,” the MGH press release said.

“That paper and a 2005 follow-up published in Cell showing that bone marrow or blood cell transplants could restore oocyte production in adult female mice after fertility-destroying chemotherapy were controversial; but in the intervening years, several studies from the MGH-Vincent group and other researchers around the world have supported Tilly’s work and conclusions,” it added.

Tilly and his colleagues told Gallagher that they were able to find and isolate these egg-producing stem cells by searching for the protein DDX4, which is only found on the surface of this specific type of stem cell.

“When grown in the lab, the stem cells ‘spontaneously generated’ immature eggs – or oocytes, which looked and acted like oocytes in the body,” the BBC News reporter said. “The cells were ‘matured’ when surrounded by living human ovarian tissue, which had been grafted inside mice.”

“The primary objective of the current study was to prove that oocyte-producing stem cells do in fact exist in the ovaries of women during reproductive life, which we feel this study demonstrates very clearly,” Tilly added. “The discovery of oocyte precursor cells in adult human ovaries, coupled with the fact that these cells share the same characteristic features of their mouse counterparts that produce fully functional eggs, opens the door for development of unprecedented technologies to overcome infertility in women and perhaps even delay the timing of ovarian failure.”

In addition to Tilly, co-author Dr. Yasushi Takai, formerly a research fellow at MGH and currently a faculty member at Saitama Medical University in Japan; Dr. Yvonne White and Dr. Dori Woods of the MGH Vincent Center for Reproductive Biology; and Dr. Osamu Ishihara and Hiroyuki Seki of Saitama Medical University.

On the Net:

Source: RedOrbit Staff & Wire Reports

Read the original post:
Study Could Result In Egg Cell Production For Fertility Treatments

Stem cell advance offers hope for infertility

By The Wall Street Journal

February 26, 2012

BOSTON -- Researchers said they have transformed stem cells isolated from women's ovaries into viable-looking eggs, a provocative experiment that might suggest new ways for treating infertility.

Biologists have long held that women are born with a finite supply of eggs that gets depleted with age. The latest experiment, published in Nature Medicine, describes how rare stem cells found in the ovary could potentially be coaxed into rejuvenating the natural egg supply.

Men produce sperm all their life. Now, women "are no longer faced with the idea that there's a fixed bank account of eggs at birth with only withdrawals and no deposits," said Jonathan Tilly, a reproductive biologist at Massachusetts General Hospital in Boston and lead author of the paper. The study was funded by the National Institutes of Health and other groups.

The research is at an early stage, and the quest for practical applications could founder on many obstacles. The human egg is an unstable cell prone to genetic error. Creating eggs from stem cells could enhance those risks.

"When you amplify stem cells in culture they can become unstable," said David Albertini, a reproductive biologist at the University of Kansas Medical Center, who was not involved in the study. "There's a difference between Mother Nature doing this" and attempting it in a lab.

Underpinning the new approach is Tilly's discovery that the ovaries of reproductive-age women harbor tiny quantities of stem cells that can potentially be isolated and then cultured in the lab to become oocytes, or normal, immature egg cells.

The goal would be that instead of freezing and storing a woman's eggs for use at a later date, doctors would extract and freeze a small piece of her ovarian tissue containing stem cells -- a potentially less-invasive and faster procedure. Freezing and thawing could also damage stem cells less than they would eggs, which hold a lot more water.

Infertility affects seven million, or 12 percent, of all women in the US, according to the Centers for Disease Control and Prevention. About half seek treatment, few get it, and not all are successful. Some procedures can be lengthy, expensive and unpleasant.

The ovary of a female fetus at five months holds seven million eggs, but that number drops to one million at birth and 300,000 or fewer by puberty. The supply keeps falling and gets exhausted at menopause, typically when a woman is in her late 40s or early 50s. Biologists have believed there was no way to increase the supply of eggs.

Read more: http://online.wsj.com/article/SB10001424052970204653604577247363486004218.html

Reader Reaction We reserve the right to remove any content at any time from this Community, including without limitation if it violates the Community Rules. We ask that you report content that you in good faith believe violates the above rules by clicking the Flag link next to the offending comment. New comments are only accepted for two weeks from the date of publication.

See the original post:
Stem cell advance offers hope for infertility

BrainStorm Featured on CNBC

NEW YORK & PETACH TIKVAH, Israel--(BUSINESS WIRE)--

BrainStorm Cell Therapeutics Inc. (OTCBB: BCLI.OB - News), a developer of innovative stem cell technologies for neurodegenerative disorders, announced that NurOwn™, its autologous stem cell therapy for amyotrophic lateral sclerosis (ALS), or Lou Gehrig's Disease, was profiled yesterday on CNBC. In the Feature Story about the impact of Iran's nuclear threat, Israeli business and scientific leaders were interviewed about Israel's thriving economy and cutting edge technologies. Among those leaders that met with CNBC were Brainstorm’s President Mr. Chaim Lebovits and Prof. Dimitrios Karussis, Principal Investigator of Brainstorm's Phase I/II clinical trial currently underway at the Hadassah Medical Center in Jerusalem.

Brainstorm recently announced positive initial results from the clinical trial, resulting in approval from Hadassah's Helsinki committee to proceed with the trial. Accordingly, additional patients have been enrolled in the study, and Brainstorm will announce additional results in the coming months.

To see the video online, follow the link at: http://video.cnbc.com/gallery/?video=3000074883

To read the Feature Story online, follow the link at: http://www.cnbc.com/id/46484576

Safe Harbor Statement
Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. The potential risks and uncertainties include risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect the technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. The Company does not undertake any obligation to update forward-looking statements made by us.

Read the original:
BrainStorm Featured on CNBC

Maven Semantic: Embryonic Stem Cells Research Database

DUBLIN--(BUSINESS WIRE)--

Maven Semantic (http://www.mavensemantic.com) announces updates to their Embryonic Stem Cells research database.

The new database is now available to marketing, business development, competitor intelligence, KOL, medical affairs and related departments in the life sciences sector.

The database currently tags 27,000 individuals working in Embryonic Stem Cells. http://bit.ly/zc0cU4.

Top 10 Countries for Embryonic Stem Cells Research (ranked by number of senior researchers)

Leading organisations in Embryonic Stem Cells research include:

Albert Einstein College of Medicine Baylor College of Medicine Brigham and Women's Hospital California Institute of Technology Chinese Academy of Sciences Cornell University Dana-Farber Cancer Institute Duke University Medical Center Fred Hutchinson Cancer Research Center Genome Institute of Singapore Harvard Medical School Howard Hughes Medical Institute Hubrecht Laboratory Indiana University School of Medicine Institut Pasteur Institute for Frontier Medical Sciences Institute of Human Genetics Institute of Molecular Embryology and Genetics Johns Hopkins University School of Medicine Karolinska Institute Keio University School of Medicine Lund University Mount Sinai Hospital New York University School of Medicine Seoul National University University College London University of Cambridge University of Chicago University of Massachusetts Medical School University of Michigan University of Pennsylvania University of Toronto University of Tsukuba Weill Medical College of Cornell University Zhejiang University

The database also includes pharmaceutical companies, biotech companies, CROs, hospitals, government labs and other organisations active in the Embryonic Stem Cells research field.

Sample companies in database include:

AgResearch Ltd Amgen Inc Axiogenesis AG Cellartis AB Cellular Dynamics International, Inc Chugai Pharmaceutical Co., Ltd DNAVEC Corporation ES Cell International Pte Ltd F. Hoffmann-La Roche Ltd Genentech, Inc GENPHARM INTERNATIONAL, INC Geron Corporation Hayashibara Biochemical Laboratories, Inc Illumina, Inc Ingenium Pharmaceuticals AG Invitrogen Corporation Japan Science and Technology Corp KENNEDY KRIEGER, INC Regeneron Pharmaceuticals, Inc

What is Maven:

- Largest database of international medical professionals, with over 6,000,000 people and over 500,000 medical organisations;

- All records are downloadable to excel or in-house database, with email, postal address and phone contacts;

- Profile and segment the entire database using over 47,000 diseases and therapeutic areas

For more information visit http://www.mavensemantic.com/

Original post:
Maven Semantic: Embryonic Stem Cells Research Database

Memory formation triggered by stem cell development

Public release date: 23-Feb-2012
[ | E-mail | Share ]

Contact: RIKEN Brain Science Promotion Division
pr@brain.riken.jp
81-484-679-757
RIKEN

Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

They found that specific neurons in a brain region called the dentate gyrus serve distinct roles in memory formation depending on whether the neural stem cells that produced them were of old versus young age.

The study will appear in the March 30 issue of Cell and links the cellular basis of memory formation to the birth of new neurons -- a finding that could unlock a new class of drug targets to treat memory disorders.

The findings also suggest that an imbalance between young and old neurons in the brain could disrupt normal memory formation during post-traumatic stress disorder (PTSD) and aging. "In animals, traumatic experiences and aging often lead to decline of the birth of new neurons in the dentate gyrus. In humans, recent studies found dentate gyrus dysfunction and related memory impairments during normal aging," said the study's senior author Susumu Tonegawa, 1987 Nobel Laureate and Director of the RIKEN-MIT Center.

Other authors include Toshiaki Nakashiba and researchers from the RIKEN-MIT Center and Picower Institute at MIT; the laboratory of Michael S. Fanselow at the University of California at Los Angeles; and the laboratory of Chris J. McBain at the National Institute of Child Health and Human Development.

In the study, the authors tested mice in two types of memory processes. Pattern separation is the process by which the brain distinguishes differences between similar events, like remembering two Madeleine cookies with different tastes. In contrast, pattern completion is used to recall detailed content of memories based on limited clues, like recalling who one was with when remembering the taste of the Madeleine cookies.

Pattern separation forms distinct new memories based on differences between experiences; pattern completion retrieves memories by detecting similarities. Individuals with brain injury or trauma may be unable to recall people they see every day. Others with PTSD are unable to forget terrible events. "Impaired pattern separation due to the loss of young neurons may shift the balance in favor of pattern completion, which may underlie recurrent traumatic memory recall observed in PTSD patients," Tonegawa said.

Neuroscientists have long thought these two opposing and potentially competing processes occur in different neural circuits. The dentate gyrus, a structure with remarkable plasticity within the nervous system and its role in conditions from depression to epilepsy to traumatic brain injury -- was thought to be engaged in pattern separation and the CA3 region in pattern completion. Instead, the MIT researchers found that dentate gyrus neurons may perform pattern separation or completion depending on the age of their cells.

The MIT researchers assessed pattern separation in mice who learned to distinguish between two similar but distinct chambers: one safe and the other associated with an unpleasant foot shock. To test their pattern completion abilities, the mice were given limited cues to escape a maze they had previously learned to negotiate. Normal mice were compared with mice lacking either young neurons or old neurons. The mice exhibited defects in pattern completion or separation depending on which set of neurons was removed.

"By studying mice genetically modified to block neuronal communication from old neurons -- or by wiping out their adult-born young neurons -- we found that old neurons were dispensable for pattern separation, whereas young neurons were required for it," co-author Toshiaki Nakashiba said. "Our data also demonstrated that mice devoid of old neurons were defective in pattern completion, suggesting that the balance between pattern separation and completion may be altered as a result of loss of old neurons."

###

The work was supported by the RIKEN-MIT Center for Neural Circuit Genetics, Howard Hughes Medical Institute, Otsuka Maryland Research Institute, Picower Foundation and the National Institutes of Health.

[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Link:
Memory formation triggered by stem cell development

Carrboro man to get stem cell transplant

Published: Feb 22, 2012 02:00 AM
Modified: Feb 20, 2012 10:41 PM


Carrboro man to get stem cell transplant
Treatment a first at UNC

BY ELIZABETH SWARINGEN, Special to The Chapel Hill News

CHAPEL HILL - Three infusions of your own stem cells - each infusion over a 21-day hospitalization - can seem daunting. But, when it's your best chance for beating a recurrence of testicular cancer, you look forward to it."It doesn't seem intimidating to me at all," said David Alston, 42, of Carrboro. "You don't normally think of stem cell bone marrow transplants as treatment for testicular cancer, but it has been done in New York with success. I'm pleased it's available to me here at UNC Hospitals."This month Alston is having the first triple-tandem transplant done in an adult at UNC Hospitals.The process involves harvesting and freezing his own stem cells, receiving high-dose chemotherapy to attack the cancer, then having the stem cells infused over three back-to-back hospitalizations."He's young and otherwise healthy, and we think this is the right thing for him," said Dr. Paul M. Armistead, assistant professor of medicine in the Division of Hematology/Oncology, a member of the UNC Lineberger Comprehensive Cancer Center and leader of Alston's transplant team. "This is his best chance for being cured."Alston, a Charlotte native, was diagnosed with aggressive testicular cancer in March 2011 after experiencing an "avalanche of symptoms.""I didn't have a lump, but I had some weird back pain and loss of feeling in one leg," David said. "By the time I had some scans, we found lymph node involvement in a lot of places. Essentially, the cancer had gone on vacation all over my body."Testicular cancer is one of the more curable cancers, often cured in the first round of chemotherapy, said Dr. Kim Rathmell, associate professor of medicine, a member of UNC Lineberger Comprehensive Cancer Center and Alston's medical oncologist.Aggressive chemotherapy sent the cancer into remission, and by August Alston returned to his long-time job at Weaver Street Market in Chapel Hill's Southern Village.Routine blood test results in December surprised everyone: the cancer was back."Because of the way David's cancer came back, a more aggressive approach than chemotherapy alone was needed," said Rathmell, adding how hard it was knowing Alston faced treatment again. "I shop that store, and I had seen him back at work."Dr. Matthew Milowsky, who participated in the development of the triple-tandem transplant for testicular cancer at Memorial Sloan Kettering in New York City, joined UNC Lineberger Comprehensive Cancer Center last fall as co-director of UNC's urologic oncology program. Rathmell quickly recruited him to Alston's team."We have everything we need here at UNC to treat David," Rathmell said. "Had David come to us five years ago, when this recommended treatment was newer and we didn't have local expertise, I would likely have referred him elsewhere. Today, we are very comfortable doing this transplant here. And it's a total team approach."In January, Alston began receiving two types of chemotherapy to mobilize his stem cells in preparation for collection.This chemotherapy featured one less drug than what he endured after initial diagnosis and yielded fewer side effects."It was night and day difference," he said, remembering the physical and mental side effects that sent him into the ICU last spring. "By comparison, what I'm doing in preparation for the transplant has been rather effortless."But the process is complicated and has many moving parts."David will have five chemotherapy infusions administered by two separate medical teams that have to work together through a lot of logistics about what happens when," said Armistead. "That David is organized and intelligent and sends a lot of questions to Dr. Rathmell and me via email, he's helping himself stay on top of things. Having a patient who is fully aware of what's going on has kept us on our toes and helped us develop and coordinate a more fool-proof system."Still, as a single, stubbornly independent man, Alston needed help and support. Luckily, his mother, Barbara Alston, a retired medical professional from Concord, is by his side.Both are staying at SECU Family House, the 40-bedroom hospital hospitality house minutes from UNC Hospitals for seriously ill adult patients and their family member caregivers.The Alstons will stay at Family House during the nine weeks total that David is expected to be hospitalized. He will join her between transplants and for post-transplant monitoring."It's a comfort being here at Family House," Barbara Alston said. "If we need something, it's taken care of, both here and at the hospital. I'm assured David's getting the care he needs. I'm helping him whenever and wherever I can."SECU Family House will play an even larger role in Alston's recovery post-transplant, both Rathmell and Armistead agreed."This treatment is intense, and David will be more in the hospital than out," Rathmell said. "He will need a solid support system, and he has that with his mother. It's a fragile time, and she has his best interest at heart.""Post-transplant David will need to be monitored closely because his immune system will be very weak," Armistead said. "His mother's medical background is a bonus. The Family House folks are used to immune-suppressed patients and can get them to the hospital quickly if needed."Alston has kept himself swimming in information to minimize the fear and mystery. Barbara has been the great translator when his own efforts didn't yield the level of detail he needed."The constant learning gives it all a degree of routine that took some of the scariness away," Alston said. "But you can't be too independent or too brainy when you have cancer."Cancer blows you out of the water, but it leaves you with valuable insight," he said. "How you deal with cancer is self-guided and you learn things about yourself and your personality that you never knew. It's the ultimate in snatching the silver lining from a cloud."

Elizabeth Swaringen wrote this article for UNC Health Care.

See the rest here:
Carrboro man to get stem cell transplant

Cancer Stem Cell Research Drives Growth in RBCC’s Target Market

NOKOMIS, Fla.--(BUSINESS WIRE)--

Research into Cancer Stem Cells (CSC) is on the rise, fueling industry growth that Rainbow Coral Corp. (OTCBB: RBCC.OB - News) expects to translate into demand for n3D cell growth technologies.

RBCC is finalizing an equity funding agreement with n3D Biosciences, the maker of a revolutionary new system that allows scientists to grow three-dimensional cell cultures more easily than ever before. The device, called the Bio-Assembler, could have an extraordinary impact on cell research worldwide, and RBCC expects to find a strong market for the device once its funding agreement with n3D is finalized.

Many cancers, including breast, prostate, pancreatic, colon, brain, and lung cancers, contain a subset of stem-like cells understood to play a critical role in the development and progression of the disease. Research suggests that these cells, called Cancer Stem Cells, are able to “seed” new tumor formation and drive metastasis.

Because these cells are believed to be at the root of the development and spread of cancer, they’re quickly becoming the center of cancer diagnostics and biomarkers. CSCs are resistant to a number of chemotherapy drugs and radiotherapy, and approximately 20 different strategies are currently being pursued in the hope of selectively targeting CSCs. This creates a huge opening for new companies and technologies dedicated to streamlining cellular research.

RBCC believes that the Bio-Assembler could allow researchers to dramatically shorten the development timeline for new CSC drugs and treatments, potentially proving very lucrative to the company.

For more information on Rainbow BioSciences, please visit http://www.rainbowbiosciences.com/investors.

Rainbow BioSciences will develop new medical and research technology innovations to compete alongside companies such as Celgene Corp. (NASDAQ: CELG), Cardinal Health, Inc. (NYSE: CAH), Abbott Laboratories (NYSE: ABT) and Affymax, Inc. (NASDAQ: AFFY).

Follow us on Twitter at www.twitter.com/RBCCinfo.

About Rainbow BioSciences

Rainbow BioSciences is a division of Rainbow Coral Corp. (OTCBB: RBCC). The company continually seeks out new partnerships with biotechnology developers to deliver profitable new medical technologies and innovations. For more information on our growth-oriented business initiatives, please visit our website at [www.rainbowbiosciences.com]. For investment information and performance data on the company, please visit www.RainbowBioSciences.com/investors.

Notice Regarding Forward-Looking Statements

Safe Harbor Statement under the Private Securities Litigation Reform Act of 1995: This news release contains forward-looking information within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, including statements that include the words "believes," "expects," "anticipate" or similar expressions. Such forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause the actual results, performance or achievements of the company to differ materially from those expressed or implied by such forward-looking statements. In addition, description of anyone's past success, either financial or strategic, is no guarantee of future success. This news release speaks as of the date first set forth above and the company assumes no responsibility to update the information included herein for events occurring after the date hereof.

Read more:
Cancer Stem Cell Research Drives Growth in RBCC’s Target Market

Editor’s move sparks backlash

Bioethicist Glenn McGee’s new job raised questions of conflict of interest at the journal he founded.

J. WILSON/KRT/NEWSCOM

The field of bioethics is embroiled in a period of soul-searching, sparked by a startling career move by one of its biggest names.

Glenn McGee is the editor-in-chief of the American Journal of Bioethics (AJOB), the most cited bioethics journal, which he founded in 1999. Since December 2011, he has also been president for ethics and strategic initiatives at CellTex Therapeutics in Houston, Texas, a controversial company involved in providing customers with unproven stem-cell therapies. A CellTex press release says that “Dr McGee’s responsibilities will include ensuring that all of the firm’s work, centered on adult stem cells, will meet the highest ethical standards of the medical and scientific communities.”

Although McGee has said he will leave the journal on 1 March, many bioethicists have criticized him, the journal’s editorial board and its publisher, London-based Taylor and Francis. They argue that in holding both posts, McGee has a conflict of interest between his responsibilities to the journal and his new employer’s desire to promote the clinical application of stem-cell treatments that are not approved by the US Food and Drug Administration.

“Imagine if the Editor of the New England Journal of Medicine took a job as Vice President at Merck, and the Mass Medical Society asked him to stay on as Editor, opining that the conflicts of interest would be manageable. One might rightly wonder, ‘What are these people smoking?’,” says John Lantos, director of the Children’s Mercy Bioethics Center in Kansas City, Missouri, and a past president of the American Society for Bioethics and Humanities.

More broadly, bioethicists are questioning whether it can ever be acceptable to work for companies, which, they argue, may be using the appointment to present a veneer of ethical probity. The episode brings to a head concerns that have emerged among bioethicists over the past decade, says Insoo Hyun, a stem-cell bioethicist at Case Western Reserve University in Cleveland, Ohio. “It’s a perfect storm,” he says.

McGee is a leading voice on one side of the debate, arguing that bioethics must have practical relevance. For the past three years he has been chair of bioethics at the non-profit Center for Practical Bioethics in Kansas City, where he ran a course for those who might go on to chair hospital ethics committees or serve as ethical advisers to corporations.

But during McGee’s tenure as editor-in-chief of the AJOB, four editors are known to have resigned from the editorial board because of differences in opinion over how the journal handles conflicts of interest. Two left this month, including Lantos, who wrote on his blog that he will no longer work with the journal because of McGee’s simultaneous employment at the AJOB and CellTex, and frustration over the lack of a clear conflict-of-interest policy at the AJOB. In response to Nature’s questions about the situation, Taylor and Francis responded that it “is grateful for Dr McGee’s editorship of AJOB” and “supportive of Glenn’s decision to step down”.

On 17 February, McGee announced that he is merely acting in an advisory capacity at the journal until 1 March, when its new editors-in-chief take over. They are David Magnus, director of the Center for Biomedical Ethics at Stanford University, California, and Summer Johnson McGee, director of graduate studies at the Center for Practical Bioethics and the journal’s current executive editor. She is also Glenn McGee’s wife.

“Mainstream bioethics is no longer speaking truth to power.”

Responding to questions from Nature, Summer Johnson McGee says that the journal has a conflict-of-interest policy that requires editors to withdraw from reviewing a manuscript if they perceive a conflict. She calls allegations that her appointment results from her relationship with her husband “baseless and sexist”. “David Magnus and I were hired by our publisher, not by my husband.” Magnus says that at least a dozen editorial board members have supported his and Summer Johnson McGee’s appointments. Two even indicated that Glenn McGee should have been able to retain an advisory or editorial role.

Other bioethicists’ blogs and Twitter feeds about the episode have expressed concerns, however. Leigh Turner of the University of Minnesota, Minneapolis, called on the entire editorial board of the AJOB to resign for allowing the situation to persist. And many say that McGee’s move illustrates a broader problem. “Mainstream bioethics is no longer speaking truth to power,” complains Jan Helge Solbakk at the University of Oslo. “Instead it has become the handmaiden of the medico-industrial complex, and of bioscience and technology.”

So how should companies get their advice on bioethics? Magnus never takes cash from industry for advising or speaking — “I’m a hardass about that” — but he believes that bioethicists can work for industry as long as they give up their academic positions, including posts on journal editorial boards.

Working for a respected company may be acceptable to some bioethicists, but McGee’s new employer comes with a great deal of baggage. CellTex, which was founded last year and as yet has no website, licenses stem-cell technology from Seoul-based RNL Bio. The South Korean company has made a business out of taking fat cells from people, processing them in a way that they say increases the number of mesenchymal stem cells, and then reinjecting them in an effort to treat conditions such as spinal cord injury.

McGee already had a connection with RNL Bio. In 2010, two patients died following injections of RNL’s cells. McGee, working for stem-cell lobby group the International Cellular Medicine Society, based in Salem, Oregon, helped to conduct an investigation into the company. This concluded that only one of the two cases was likely to be related to the injections, and because the patient understood the risk the company was not culpable.

Jin Han Hong, the then president of RNL’s US subsidiary, admitted in 2010 that there was no clinical-trial evidence proving that these treatments are effective (Nature 468, 485; 2010). As treatment with RNL’s stem cells is not approved in the United States or South Korea, for the procedures the company sends patients to China or Japan, where regulations are less strictly enforced. Using RNL’s methods, CellTex is banking stem cells that have gone on to be used in a number of patients, including Rick Perry, governor of Texas (Nature 477, 377–378; 2011). CellTex says that it does not conduct medical procedures itself.

When Nature contacted McGee to put the criticisms to him, he directed us to previous statements indicating that he wants to put CellTex on firmer ethical ground by having it conduct clinical trials that meet standards set by the International Society for Stem Cell Research, based in Deerfield, Illinois, which represents most mainstream stem-cell researchers around the world.

Hyun warns that working directly for business can be fraught with danger, however good a bioethicist’s intentions. In 2005, he helped to craft the informed consent procedure for egg donations used in a cloning procedure by disgraced Korean stem-cell scientist Woo Suk Hwang. Following Hwang’s claim, later proved fraudulent, that he had cloned human embryos and harvested stem cells from them, it emerged that he had ignored the consent procedure for egg donations (Nature 438, 536–537; 2005), leading to embarrassment for Hyun.

“I know first hand how difficult it is to separate conflict of interest — to maintain the role of bioethicist,” says Hyun. “I know you need to not be too chummy with enterprises trying to speed ahead in stem cells.”

Read this article:
Editor’s move sparks backlash