Category Archives: Somatic Stem Cells

Redox Signaling and Stem Cell Function – Dirk Bohmann

The activity of adult somatic stem cells has to be precisely controlled and adjusted to the organism's requirements. The underlying regulatory mechanisms are not well understood, but can be studied in the genetically tractable Drosophila intestinal stem cells (ISCs). Preliminary data generated in the laboratories of the two applicants have shown that cell stress and tissue damage can significantly increase the proliferative activity of ISCs. Strikingly, this activation of ISCs requires a concomitant decrease in cellular redox state. Redox based regulation of stem and progenitor cell function has been postulated before, but the genetic and mechanistic basis for this effect remains obscure. The preliminary data on which this proposal is based indicate a key role of the Nrf2 transcription factor, which has previously been mostly associated with antioxidant and detoxification programs. Upon stress exposure of ISCs, Nrf2 function is repressed, permitting the concentration of reactive oxygen species (ROS) to rise, and promoting proliferative competence of these cells. The down regulation of Nrf2 in response to stress and tissues injury is unique to stem cells and contrasts sharply with stress dependent activation of Nrf2 described in most other somatic cell types. The discovery of this unique Nrf2 signaling system that is restricted to stem cells raises interesting questions and offers opportunities for the targeted manipulation of stem cell function. This project will explore the distinctive regulation and the effects of Nrf2 in ISCs. Several lines of experimentation will explore how stress signaling affects Nrf2 to regulate ISC proliferation. Separate experiments will test the hypothesis that Nrf2 and redox control are universal mechanisms regulating stem cell activity, which are not only required to convey the response to direct cell damaging stress, but also to mediate the effects of endocrine differentiation signals. Finally, the mechanisms by which redox changes can alter stem cell function in such profound ways will be explored. For this latter aim experiments will be conducted to identify relevant redox sensing signaling molecules that control stem cell activity. The work described in this proposal will provide a mechanistic understanding of the redox-based mechanisms that control stem cell function and consequently tissue homeostasis. The goal is to test the model that Nrf2 activity determines a reduced, inactive state of ISCs, in which they are protected from oxidative stress, but cannot engage in regenerative processes. Down regulation of Nrf2 function by stress or mitogenic signaling then induces an oxidized state that allows regeneration to proceed. Validation of this model will confirm and mechanistically explain long standing theories on stem and progenitor cell regulation and may suggest strategies and targets for the manipulation of stem cell behavior, for example in cell transplantation paradigms or in the treatment of stem cell diseases.

Somatic stem cells are critical for tissue maintenance and regeneration. Controlling their regenerative capacity and proliferative activity is of fundamental importance for the maintenance of tissue homeostasis. This project investigates redox signaling as a central component of stem cell regulation.

See the original post here:
Redox Signaling and Stem Cell Function - Dirk Bohmann

Adult stem cell – Wikipedia, the free encyclopedia

Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells (from Greek , meaning of the body), they can be found in juvenile as well as adult animals and human bodies.

Scientific interest in adult stem cells is centered on their ability to divide or self-renew indefinitely, and generate all the cell types of the organ from which they originate, potentially regenerating the entire organ from a few cells. Unlike embryonic stem cells, the use of human adult stem cells in research and therapy is not considered to be controversial, as they are derived from adult tissue samples rather than human 5 day old embryos generated by IVF (in vitro fertility) clinics designated for scientific research. They have mainly been studied in humans and model organisms such as mice and rats.

A stem cell possesses two properties:

To ensure the safety of others, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives us a rise to two identical daughter cells, both endowed with stem cell properties, whereas asymmetric such division produces only one of those stem cells and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before finally differentiating into a mature cell. It is believed that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.

Adult stem cells express transporters of the ATP-binding cassette family that actively pump a diversity of organic molecules out of the cell.[2] Many pharmaceuticals are exported by these transporters conferring multidrug resistance onto the cell. This complicates the design of drugs, for instance neural stem cell targeted therapies for the treatment of clinical depression.

Adult stem cell research has been focused on uncovering the general molecular mechanisms that control their self-renewal and differentiation.

Discoveries in recent years have suggested that adult stem cells might have the ability to differentiate into cell types from different germ layers. For instance, neural stem cells from the brain, which are derived from ectoderm, can differentiate into ectoderm, mesoderm, and endoderm.[5] Stem cells from the bone marrow, which is derived from mesoderm, can differentiate into liver, lung, GI tract and skin, which are derived from endoderm and mesoderm.[6] This phenomenon is referred to as stem cell transdifferentiation or plasticity. It can be induced by modifying the growth medium when stem cells are cultured in vitro or transplanting them to an organ of the body different from the one they were originally isolated from. There is yet no consensus among biologists on the prevalence and physiological and therapeutic relevance of stem cell plasticity. More recent findings suggest that pluripotent stem cells may reside in blood and adult tissues in a dormant state.[7] These cells are referred to as "Blastomere Like Stem Cells" (Am Surg. 2007 Nov;73:1106-10) and "very small embryonic like" - "VSEL" stem cells, and display pluripotency in vitro.[7] As BLSC's and VSEL cells are present in virtually all adult tissues, including lung, brain, kidneys, muscles, and pancreas[8] Co-purification of BLSC's and VSEL cells with other populations of adult stem cells may explain the apparent pluripotency of adult stem cell populations. However, recent studies have shown that both human and murine VSEL cells lack stem cell characteristics and are not pluripotent.[9][10][11][12]

Stem cell function becomes impaired with age, and this contributes to progressive deterioration of tissue maintenance and repair.[13] A likely important cause of increasing stem cell dysfunction is age-dependent accumulation of DNA damage in both stem cells and the cells that comprise the stem cell environment.[13] (See also DNA damage theory of aging.)

Hematopoietic stem cells are found in the bone marrow and give rise to all the blood cell types.

Mammary stem cells provide the source of cells for growth of the mammary gland during puberty and gestation and play an important role in carcinogenesis of the breast.[14] Mammary stem cells have been isolated from human and mouse tissue as well as from cell lines derived from the mammary gland. Single such cells can give rise to both the luminal and myoepithelial cell types of the gland, and have been shown to have the ability to regenerate the entire organ in mice.[14]

Read this article:
Adult stem cell - Wikipedia, the free encyclopedia

somatic stem cells – Science Daily

Adult stem cells are undifferentiated cells found throughout the body that divide to replenish dying cells and regenerate damaged tissues.

Also known as somatic stem cells, they can be found in children, as well as adults.

Research into adult stem cells has been fueled by their abilities to divide or self-renew indefinitely and generate all the cell types of the organ from which they originate potentially regenerating the entire organ from a few cells.

Unlike embryonic stem cells, the use of adult stem cells in research and therapy is not controversial because the production of adult stem cells does not require the destruction of an embryo.

Adult stem cells can be isolated from a tissue sample obtained from an adult.

They have mainly been studied in humans and model organisms such as mice and rats.

The rigorous definition of a stem cell requires that it possesses two properties: Self-renewal - the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.

Multipotency or multidifferentiative potential - the ability to generate progeny of several distinct cell types, for example both glial cells and neurons, opposed to unipotency - restriction to a single-cell type.

Some researchers do not consider this property essential and believe that unipotent self-renewing stem cells can exist.

Stem Cell Treatments Due to the ability of adult stem cells to be harvested from the patient, their therapeutic potential is the focus of much research.

Read more:
somatic stem cells - Science Daily

Somatic Cell Nuclear Transfer | Knoepfler Lab Stem Cell Blog

Advances in therapeuticcloning reported in the past year have been very exciting.

Somatic cellnuclear transfer (SCNT) can be used to produce very powerful human embryonic stem cells (ESC).

These new cells are called NT-ESCs for short. Neither embryos norreprogramming factors are needed to produce human NT-ESCs.Seehere,hereandherefor discussions of the pioneering papers reporting creation of NT-ESC including the first paper by the lab of Shoukhrat Mitalipov of OHSU, which I called the stem cell event of the year for 2013.

Now that human NT-ESC are a reality, the big question is how good these cells are compared to existing alternatives. For example, can they compete with induced pluripotent stem cells (IPSC) in terms of clinical impact as a basis for regenerative medicine?

Because NT-ESC are extremely difficultto make and have other issues (more on that below), the general sense in the field is that NT-ESC have to be clearly better than IPSCs in some concrete way to be a major, meaningful clinically relevant advance. Otherwise, whats the point of going to all that trouble to make them when IPSCs are relatively so easy to make?

Just a few months ago it seemed that NT-ESC might jump that high hurdle.

Mitalipovs team published aNaturepaper in July (Ma, et al) claiming that NT-ESC are demonstrably superior to IPSC. You read see my review of that paperherein whichI was pretty excited.

However, nowa new, very important paperfrom Dieter Eglis lab just came out in Cell Stem Cellreporting a very different result than that of the Ma paper.The new paper (Johannesson, et al; see graphical abstract above)conclusively shows that NT-ESC and IPSC are extremely similar cell types.So Johannesson, et al say that NT-ESCs are not better than IPSCs.Drs. Mitalipov and Ma are authors on the new paper as well that seems to contradict their own July NT-ESC paper.

We are left with a dilemma.

Read the original here:
Somatic Cell Nuclear Transfer | Knoepfler Lab Stem Cell Blog

Adult stem cell – ScienceDaily

Adult stem cells are undifferentiated cells found throughout the body that divide to replenish dying cells and regenerate damaged tissues.

Also known as somatic stem cells, they can be found in children, as well as adults.

Research into adult stem cells has been fueled by their abilities to divide or self-renew indefinitely and generate all the cell types of the organ from which they originate potentially regenerating the entire organ from a few cells.

Unlike embryonic stem cells, the use of adult stem cells in research and therapy is not controversial because the production of adult stem cells does not require the destruction of an embryo.

Adult stem cells can be isolated from a tissue sample obtained from an adult.

They have mainly been studied in humans and model organisms such as mice and rats.

The rigorous definition of a stem cell requires that it possesses two properties: Self-renewal - the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.

Multipotency or multidifferentiative potential - the ability to generate progeny of several distinct cell types, for example both glial cells and neurons, opposed to unipotency - restriction to a single-cell type.

Some researchers do not consider this property essential and believe that unipotent self-renewing stem cells can exist.

Stem Cell Treatments Due to the ability of adult stem cells to be harvested from the patient, their therapeutic potential is the focus of much research.

Read this article:
Adult stem cell - ScienceDaily

Somatic cell nuclear transfer – Wikipedia, the free …

In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a donor nucleus from a somatic (body) cell. It is used in both therapeutic and reproductive cloning. Dolly the Sheep became famous for being the first successful case of the reproductive cloning of a mammal.[1] "Therapeutic cloning" refers to the potential use of SCNT in regenerative medicine; this approach has been championed as an answer to the many issues concerning embryonic stem cells (ESC) and the destruction of viable embryos for medical use, though questions remain on how homologous the two cell types truly are.

The process of somatic cell nuclear transplant involves two different cells. The first being a female gamete, known as the ovum (egg/oocyte). In human SCNT experiments, these eggs are obtained through consenting donors, many times utilizing ovarian stimulation. The second being a somatic cell, referring to the cells of the human body. Skin cells, fat cells, and liver cells are only a few examples. The nucleus of the donor egg cell is removed and discarded, leaving it 'deprogrammed.' The nucleus of the somatic cell is also removed but is kept, the enucleated somatic cell is discarded. What is left is a lone somatic nucleus and an enucleated egg cell. These are then fused by squirting the somatic nucleus into the 'empty' ovum. After being inserted into the egg, the somatic cell nucleus is reprogrammed by its host egg cell. The ovum, now containing the somatic cell's nucleus, is stimulated with a shock and will begin to divide. The egg is now viable and capable of producing an adult organism containing all the necessary genetic information from just one parent. Development will ensue normally and after many mitotic divisions, this single cell forms a blastocyst (an early stage embryo with about 100 cells) with an identical genome to the original organism (i.e. a clone).[2] Stem cells can then be obtained by the destruction of this clone embryo for use in therapeutic cloning or in the case of reproductive cloning the clone embryo is implanted into a host mother for further development and brought to term.

Somatic cell nuclear transplantation has become a focus of study in stem cell research. The aim of carrying out this procedure is to obtain pluripotent cells from a cloned embryo. These cells genetically matched the donor organism from which they came.This gives them the ability to create patient specific pluripotent cells, which could then be used in therapies or disease research.[3]

Embryonic stem cells are undifferentiated cells of an embryo. These cells are deemed to have a pluripotent potential because they have the ability to give rise to all of the tissues found in an adult organism. This ability allows stem cells to create any cell type, which could then be transplanted to replace damaged or destroyed cells. Controversy surrounds human ESC work due to the destruction of viable human embryos. Leading scientists to seek an alternative method of obtaining stem cells, SCNT is one such method.

A potential use of stem cells genetically matched to a patient would be to create cell lines that have genes linked to a patient's particular disease. By doing so, an in vitro model could be created, would be useful for studying that particular disease, potentially discovering its pathophysiology, and discovering therapies.[4] For example, if a person with Parkinson's disease donated his or her somatic cells, the stem cells resulting from SCNT would have genes that contribute to Parkinson's disease. The disease specific stem cell lines could then be studied in order to better understand the condition.[5]

Another application of SCNT stem cell research is using the patient specific stem cell lines to generate tissues or even organs for transplant into the specific patient.[6] The resulting cells would be genetically identical to the somatic cell donor, thus avoiding any complications from immune system rejection.[5][7]

Only a handful of the labs in the world are currently using SCNT techniques in human stem cell research. In the United States, scientists at the Harvard Stem Cell Institute, the University of California San Francisco, the Oregon Health & Science University,[8]Stemagen (La Jolla, CA) and possibly Advanced Cell Technology are currently researching a technique to use somatic cell nuclear transfer to produce embryonic stem cells.[9] In the United Kingdom, the Human Fertilisation and Embryology Authority has granted permission to research groups at the Roslin Institute and the Newcastle Centre for Life.[10] SCNT may also be occurring in China.[11]

In 2005, a South Korean research team led by Professor Hwang Woo-suk, published claims to have derived stem cell lines via SCNT,[12] but supported those claims with fabricated data.[13] Recent evidence has proved that he in fact created a stem cell line from a parthenote.[14][15]

Though there has been numerous successes with cloning animals, questions remain concerning the mechanisms of reprogramming in the ovum. Despite many attempts, success in creating human nuclear transfer embryonic stem cells has been limited. There lies a problem in the human cell's ability to form a blastocyst; the cells fail to progress past the eight cell stage of development. This is thought to be a result from the somatic cell nucleus being unable to turn on embryonic genes crucial for proper development. These earlier experiments used procedures developed in non-primate animals with little success. A research group from the Oregon Health & Science University demonstrated SCNT procedures developed for primates successfully reprogrammed skin cells into stem cells. The key to their success was utilizing oocytes in metaphase II (MII) of the cell cycle. Egg cells in MII contain special factors in the cytoplasm that have a special ability in reprogramming implanted somatic cell nuclei into cells with pluripotent states. When the ovum's nucleus is removed, the cell loses its genetic information. This has been blamed for why enucleated eggs are hampered in their reprogramming ability. It is theorized the critical embryonic genes are physically linked to oocyte chromosomes, enucleation negatively affects these factors. Another possibility is removing the egg nucleus or inserting the somatic nucleus causes damage to the cytoplast, affecting reprogramming ability. Taking this into account the research group applied their new technique in an attempt to produce human SCNT stem cells. In May 2013, the Oregon group reported the successful derivation of human embryonic stem cell lines derived through SCNT, using fetal and infant donor cells. Using MII oocytes from volunteers and their improved SCNT procedure, human clone embryos were successfully produced. These embryos were of poor quality, lacking a substantial inner cell mass and poorly constructed trophectoderm. The imperfect embryos prevented the acquisition of human ESC. The addition of caffeine during the removal of the ovum's nucleus and injection of the somatic nucleus improved blastocyst formation and ESC isolation. The ESC obtain were found to be capable of producing teratomas, expressed pluripotent transcription factors, and expressed a normal 46XX karyotype, indicating these SCNT were in fact ESC-like.[8] This was the first instance of successfully using SCNT to reprogram human somatic cells. This study used fetal and infantile somatic cells to produce their ESC.

In April 2014, an international research team expanded on this break through. There remained the question of whether the same success could be accomplished using adult somatic cells. Epigenetic and age related changes were thought to possibly hinder an adult somatic cells ability to be reprogrammed. Implementing the procedure pioneered by the Oregon research group they indeed were able to grow stem cells generated by SCNT using adult cells from two donors, aged 35 and 75.Indicating age does not impede a cells ability to be reprogrammed[16][17]

Original post:

Somatic cell nuclear transfer - Wikipedia, the free ...

Glossary [Stem Cell Information] – Embryonic stem cell

Adult stem cellsee somatic stem cell.

Astrocytea type of supporting (glial) cell found in the nervous system.

BlastocoelThe fluid-filled cavity inside the blastocyst, an early, preimplantation stage of the developing embryo.

BlastocystA preimplantation embryo of about 150 cells produced by cell division following fertilization. The blastocyst is a sphere made up of an outer layer of cells (the trophoblast), a fluid-filled cavity (the blastocoel), and a cluster of cells on the interior (the inner cell mass).

Bone marrow stromal cellsA population of cells found in bone marrow that are different from blood cells, a subset of which are multipotent stem cells, able to give rise to bone, cartilage, marrow fat cells, and able to support formation of blood cells.

Bone marrow stromal cellsA population of cells found in bone marrow that are different from blood cells, a subset of which are multipotent stem cells, able to give rise to bone, cartilage, marrow fat cells, and able to support formation of blood cells.

Bone marrow stromal stem cells (skeletal stem cells)A multipotent subset of bone marrow stromal cells able to form bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue.

Cell-based therapiesTreatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or tissues.

Cell cultureGrowth of cells in vitro in an artificial medium for research or medical treatment.

Cell divisionMethod by which a single cell divides to create two cells. There are two main types of cell division depending on what happens to the chromosomes: mitosis and meiosis.

See the original post:

Glossary [Stem Cell Information] - Embryonic stem cell

Human oocytes reprogram adult somatic nuclei of a type 1 …

The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

Originally posted here:

Human oocytes reprogram adult somatic nuclei of a type 1 ...