Category Archives: Adult Stem Cells

BrainStorm Cell Therapeutics and FDA Agree to Potential NurOwn Regulatory Pathway for Approval in ALS – Yahoo Finance

NEW YORK, Feb. 11, 2020 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc., (BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced that the Company recently held a high level meeting with the U.S. Food and Drug Administration (FDA) to discuss potential NurOwn regulatory pathways for approval in ALS. Repeated intrathecal administration of NurOwn (autologous MSC-NTF cells) is currently being evaluated in a fully enrolled Phase 3 pivotal trial in ALS (NCT03280056).

In the planned meeting with senior Center for Biologics Evaluation and Research (CBER) leadership and several leading U.S. ALS experts, the FDA confirmed that the fully enrolled Phase 3 ALS trial is collecting relevant data critical to the assessment of NurOwn efficacy. The FDA indicated that they will look at the "totality of the evidence" in the expected Phase 3 clinical trial data. Furthermore, based on their detailed data assessment, they are committed to work collaboratively with BrainStorm to identify a regulatory pathway forward, including opportunities to expedite statistical review of data from the Phase 3 trial.

Both the FDA and BrainStorm acknowledged the urgent unmet need and the shared goal of moving much needed therapies for ALS forward as quickly as possible.

This is a key turning point in ourworktowardprovidingALSpatientswith a potential new therapy,said ChaimLebovits, President and CEO ofBrainStorm. We commend the FDA foritscommitmentto the ALS communityandtofacilitating the development, and we ultimately hope, the approvalofNurOwn.The entire BrainStorm team is grateful for the ongoing and conscientious collaboration in the quest to beat ALS.

Ralph Kern, MD, MHSc, Chief Operating Officer and Chief Medical Officer, stated, The entire team at BrainStorm has collectively worked to ensure that we conduct the finest, science-based clinical trials. We had the opportunity to communicate with Senior Leadership at the FDA and discuss how we can work together to navigate the approval process forward along a novel pathway. We appreciate their willingness and receptiveness to consider innovative approaches as we all seek to better serve the urgent unmet medical needs of the ALS community.

Brian Wallach, Co-Founder of I AM ALS stated: There is nothing more important to those living with ALS than having access to therapies that effectively combat this fatal disease. We have been working with BrainStorm for months now because we believe that NurOwn is a potentially transformative therapy in this fight. We were privileged to represent the patient voice at this meeting and are truly grateful to the company and the FDA for this critical agreement. This is a truly important moment of hope and we look forward to seeing both the Phase III data and the hopeful approval of NurOwn as soon as is possible.

About NurOwnNurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.

About BrainStorm Cell Therapeutics Inc.BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwnCellular Therapeutic Technology Platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement as well as through its own patents, patent applications and proprietary know-how. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(U.S.FDA) and theEuropean Medicines Agency(EMA) in ALS. BrainStorm has fully enrolled the Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a BLA filing for U.S.FDAapproval of autologous MSC-NTF cells in ALS. BrainStorm received U.S.FDAclearance to initiate a Phase 2 open-label multi-center trial of repeat intrathecal dosing of MSC-NTF cells in Progressive Multiple Sclerosis (NCT03799718) inDecember 2018and has been enrolling clinical trial participants sinceMarch 2019. For more information, visit the company'swebsite.

Story continues

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com

Or

Katie Gallagher | Account Director, PR and MarketingLaVoieHealthScience Strategic CommunicationsO: 617-374-8800 x109M: 617-792-3937kgallagher@lavoiehealthscience.com

More here:
BrainStorm Cell Therapeutics and FDA Agree to Potential NurOwn Regulatory Pathway for Approval in ALS - Yahoo Finance

Astrocytes could be harnessed to protect motor neurons in MND – Drug Target Review

Scientists using a new motor neuron disease (MND) model have shown astrocytes may protect neurons from toxic TDP-43 protein aggregates in the early stages of disease.

Researchers have discovered that astrocytes can protect motor neurons in the central nervous system (CNS) from the toxicity of misfolded protein, TDP-43, in sporadic motor neuron disease (MND). The team suggest this rescue mechanism could be harnessed to slow disease progression, particularly in amyotrophic lateral sclerosis (ALS).

The study, published in Brain, demonstrated that this neurodegenerative disease is caused by accumulation of TDP-43 in motor neurons, resulting in cell death. However, the scientists noted that TDP-43 accumulation in neural support cells, called astrocytes, does not cause death. Instead they appear comparatively resistant.

According to the paper, when the two cell types are together, astrocytes protect motor neurons from the protein aggregates, promoting their survival. The researchers from the Francis Crick Institute and University College London, both UK, suggest that these cells may therefore be supporting motor neurons early on in sporadic MND. They called this a rescue mechanism.

when the two cell types are together, astrocytes protect motor neurons from the protein aggregates, promoting their survival

The role astrocytes have played in dealing with toxic forms of TDP-43 in motor neurons has not been previously well documented in motor neuron disease. Its exciting that weve now found that they may play an important protective role in the early-stages of this disease, explains Phillip Smethurst, lead author and former postdoc in the Human Stem Cells and Neurodegeneration Laboratory at the Crick. This has huge therapeutic potential finding ways to harness the protective properties of astrocytes could pave the way to new treatments. This could prolong their rescue function or find a way to mimic their behaviour in motor neurons so that they can protect themselves from the toxic protein.

In order to conduct this research, the team created a new model for MND, which more closely resembles the disease in patients. In the model they took healthy adult stem cells and exposed them to the toxic TPD-43 protein using post-mortem spinal cord tissue samples donated by patients with MND.

For the first time, we have been able to create a model of sporadic motor neuron disease by essentially transferring the toxic TDP-43 protein from post-mortem tissue into healthy human stem cell-derived motor neurons and astrocytes in order to understand how each cell type responds to this insult, both in isolation and when mixed together, said Dr Rickie Patani, co-senior author, group leader of the Human Stem Cells and Neurodegeneration Laboratory at the Crick and Professor of Human Stem Cells and Regenerative Neurology at UCL Queen Square Institute of Neurology.

Read the rest here:
Astrocytes could be harnessed to protect motor neurons in MND - Drug Target Review

Mexico City Medical Congress to Showcase the Global Stem Cells Group’s Latest Innovations – PRUnderground

The Global Stem Cells Group (GSCG) is set to sponsor the XI Congreso Mundial de Medicina Antienvejecimiento y Longevidad (World Conference of Anti-Aging and Longevity Medicine) to be held in Mexico City, Mexico on February 16-18, 2020.

The medical congress is expected to attract over 450 physicians and researchers from across the world interested in anti-aging and longevity practices and medical innovations. Over 30 speakers are slated to share information with attendees on a wide range of topics on how to lead a long, healthy life and improve longevity.

The GSCG is set to share a number of its latest innovations with congress attendees, including its newly released GCell technology device. This cutting-edge tool utilizes micrograft technology to harness the natural and powerful restorative capabilities of adipose tissues. Because it is FDA compliant, the device allows physicians across the globe to continue practicing adult stem cells-based procedures.

Additional benefits of GCell technology include shorter treatment times, delivering in-office treatments in around 30 minutes with local anesthesia, as well as less fat collection compared to existing treatments (15 mL versus 50 mL). GCell technology holds exciting implications across a range of medical specialties, including orthopedics, dermatology, cosmetic gynecology, aesthetics, and hair loss.

In addition to its GCell technology, the GSCG will also feature its newest line of stem cells products derived from first-tissue exosomes. Cellgenic Flow Exosomes utilizes the latest science and research available in cellular therapies to deliver a non-surgical approach to creating regenerative responses in a broad range of treatments. The product utilizes exosomes, which replicate the signals given out by stem cells, versus actual stem cells. Exosomes play a pivotal role in cell-to-cell communication and are involved in a wide range of physiological processes. These particles transfer critical bioactive molecules such as proteins, mRNA, and miRNA between cells and regulate gene expression in recipient cells.

The XI Congreso Mundial de Medicina Antienvejecimiento y Longevidad is one of the worlds premier events connecting physicians and researchers with todays most innovative treatments and technologies utilizing regenerative medicine, said Benito Novas, CEO of the GSCG. As a worldwide leader in training, education, and innovative products in the field of regenerative medicine, the GSCG is pleased to sponsor this congress and share its exciting new portfolio of products with physicians from across the world.

To learn more about the Global Stem Cells Group and all of the groups latest news and innovations, visit http://www.stemcellsgroup.com/

About Global Stem Cells Group

Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCGs affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.

Read the original here:
Mexico City Medical Congress to Showcase the Global Stem Cells Group's Latest Innovations - PRUnderground

Bone Therapeutics to present preclinical data on the osteogenic properties of ALLOB in bone repair at the Annual Meeting of the Orthopaedic Research…

Press Release

Gosselies, Belgium, 11February 2020, 7am CET BONE THERAPEUTICS (Euronext Brussels and Paris: BOTHE), the leading biotech company focused on the development of innovative cell and biological therapies to address high unmet medical needs in orthopaedics and bone diseases, announces that the Company will today present at the Annual Meeting of the Orthopaedic Research Society (ORS), in Phoenix (Arizona), USA.

The Annual ORS Meeting is the yearly summit organised by the international Orthopaedic Research Society, gathering scientists, clinicians and entrepreneurs to advance musculoskeletal research and orthopaedic care. In the oral presentation, Bone Therapeutics will highlight additional preclinical in vitro and in vivo results demonstrating the potent osteogenic properties of its allogeneic bone-forming cell therapy platform, ALLOB, to promote bone-formation and improve fracture healing in relevant models.

ALLOB is the Companys allogeneic product that consists of human bone-forming cells derived from cultured bone marrow mesenchymal stem cells of healthy adult donors, and is manufactured through a proprietary, scalable production process. ALLOB successfully completed two Phase II studies in two indications and the Company has started the CTA submission procedure with the regulatory authorities in Europe to start the PhaseIIb clinical trial in patients with difficult-to-heal tibial fractures.

Presentation Details:

Title: ALLOB, A Ready-to-use and Injectable Cryopreserved Allogenic Cell Therapy Product Derived from Bone Marrow Mesenchymal Stem Cells, Displays Potent Osteoinductive and Osteogenic Properties, Leading to Enhanced Bone Fracture HealingSpeaker: Sandra Pietri, PhD Associate Director R&D, Bone TherapeuticsSession: Podium Session 58 Bone Cell Signaling and TreatmentsDate: Tuesday, 11 February 2020Time: 8:00am 9:00am MST (4pm 5 pm CET)Location: Room West 301D, Phoenix Convention Center, Phoenix, Arizona, USA

About Bone Therapeutics

Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and bone diseases. The Company has a broad, diversified portfolio of bone cell therapies and an innovative biological product in later-stage clinical development, which target markets with large unmet medical needs and limited innovation.

Bone Therapeutics is developing an off-the-shelf protein solution, JTA-004, which is entering Phase III development for the treatment of pain in knee osteoarthritis. Positive Phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement. The clinical trial application (CTA) to start the pivotal Phase III program has been submitted to the regulatory authorities in Europe and the trial is expected to start in Q1 2020.

Bone Therapeutics other core technology is based on its cutting-edge allogeneic cell therapy platform (ALLOB) which can be stored at the point of use in the hospital, and uses a unique, proprietary approach to bone regeneration, which turns undifferentiated stem cells from healthy donors into bone-forming cells. These cells can be administered via a minimally invasive procedure, avoiding the need for invasive surgery, and are produced via a proprietary, scalable cutting-edge manufacturing process. Following the promising Phase IIa efficacy and safety results for ALLOB, the Company has started the CTA submission procedure with the regulatory authorities in Europe to start the Phase IIb clinical trial with ALLOB in patients with difficult-to-heal fractures, using its optimized production process.

The ALLOB platform technology has multiple applications and will continue to be evaluated in other indications including spinal fusion, osteotomy and maxillofacial and dental applications.

Bone Therapeutics cell therapy products are manufactured to the highest GMP (Good Manufacturing Practices) standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available at http://www.bonetherapeutics.com.

Story continues

Contacts

Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0) 71 12 10 00investorrelations@bonetherapeutics.com

International Media Enquiries:Consilium Strategic CommunicationsMarieke VermeerschTel: +44 (0) 20 3709 5701bonetherapeutics@consilium-comms.com

For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: + 33 (0)1 44 71 94 94bone@newcap.eu

Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors` current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such person`s officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.

Visit link:
Bone Therapeutics to present preclinical data on the osteogenic properties of ALLOB in bone repair at the Annual Meeting of the Orthopaedic Research...

Stopping Smoking Allows Healthy Lung Cells to Proliferate – Medscape

New research results reinforce the benefits of quitting smoking.

Not only does it stop further damage to the lungs, it appears that it also allows new, healthy cells to actively replenish the lining of the airways. This shift in the proportion of healthy cells to damaged cells could reduce the risk for lung cancer, say researchers.

The findings were published online January 29 in Nature.

The team performed whole-genome sequencing on healthy airway cells collected (during a bronchoscopy for clinical indications) from current smokers and ex-smokers, as well as from adult never-smokers and children.

The investigators found, as expected, that the cells from current and ex-smokers had a far higher mutational burden than those of never-smokers and children, including an increased number of "driver" mutations, which increase the potential of cells to become cancerous.

However, they also found that in ex-smokers but not in current smokers up to 40% of the cells were near normal, with far less genetic damage and a low risk of developing cancer.

"People who have smoked heavily for 30, 40 or more years often say to me that it's too late to stop smoking the damage is already done," commented senior author Peter J. Campbell, PhD, Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.

"What is so exciting about our study is that it shows that it's never too late to quit. Some of the people in our study had smoked more than 15,000 packs of cigarettes over their life, but within a few years of quitting, many of the cells lining their airways showed no evidence of damage from tobacco," he said. The comments appear in a press release issued by Cancer Research UK, which partly funded the study.

This study has "broadened our understanding of the effects of tobacco smoke on normal epithelial cells in the human lung," writes Gerd P. Pfeifer, PhD, at the Center for Epigenetics, Van Andel Institute, Grand Rapids, Michigan, writing in an accompanying comment.

"It has shed light on how the protective effect of smoking cessation plays out at the molecular level in human lung tissue and raises many interesting questions worthy of future investigation," he added.

Joint senior author Sam M. Janes, PhD, Lungs for Living Research Center, UCL Respiratory, University College London, United Kingdom, added that the study has "an important public health message.

"Stopping smoking at any age does not just slow the accumulation of further damage but could reawaken cells unharmed by past lifestyle choices," he said.

"Further research into this process could help to understand how these cells protect against cancer and could potentially lead to new avenues of research into anticancer therapeutics," James added.

In an interview with Medscape Medical News, Campbell said that the team would next like to try "to find where this reservoir of normal cells hides out while the patient is smoking. We have some ideas from mouse models and we think, by adapting the methods we used in this study, we will be able to test that hypothesis directly."

He continued: "If we can find this stem cell niche, then we can study the biology of the cells living in there and what makes them expand when a patient stops smoking.

"Once we understand that biology, we can think about therapies to target that population of cells in beneficial ways."

Campbell concluded that they are "a long way away yet, but the toolkit exists for getting there."

In their article, the team notes that the model explaining how tobacco exposure causes lung cancer centers on the notion that the 60-plus carcinogens in cigarette smoke directly cause mutagenesis, which combines with the indirect effects of inflammation, immune suppression, and infection to lead to cancer.

However, this does not explain why individuals who stop smoking in middle age or earlier "avoid most of the risk of tobacco-associated lung cancer."

They questioned the relationship between tobacco and mutagenesis. For two people who smoke the same number of cigarettes over their lifetime, the observation that the person with longer duration of cessation has a lower risk for lung cancer is difficult to explain if carcinogenesis is induced exclusively by an increase in the mutational burden, they mused.

To investigate further, the team set out to examine the "landscape" of somatic mutations in normal bronchial epithelium. They recruited 16 individuals: three children, four never-smokers, six ex-smokers, and three current smokers.

All the participants underwent bronchoscopy for clinical indications. Samples of airway epithelium were obtained from biopsies or brushings of main or secondary bronchi.

The researchers performed whole-genome sequencing of 632 colonies derived from single bronchial epithelial cells. In addition, cells from squamous cell carcinoma or carcinoma in situ from three of the patients were sequenced.

The results showed there was "considerable heterogeneity" in mutational burden both between patients and in individual patients.

Moreover, single-base substitutions increased significantly with age, at an estimated rate of 22 per cell per year (P = 10-8). In addition, previous and current smoking substantially increased the substitution burden by an estimated 2330 per cell in ex-smokers and 5300 per cell in current smokers.

The team was surprised to find that smoking also increased the variability of the mutational burden from cell to cell, "even within the same individual."

They calculated that, even between cells from a small biopsy sample of normal airway, the standard deviation in mutational burden was 2350 per cell in ex-smokers and 2100 per cell in current smokers, but only 140 per cell in children and 290 per cell in adult never-smokers (P < 10-16 for within-subject heterogeneity).

Between individuals, the mean substitution burden was 1200 per cell in ex-smokers, 1260 per cell in current smokers, and 90 per cell for nonsmokers (P = 10-8 for heterogeneity).

Driver mutations were also more common in individuals who had a history of smoking. In those persons, they were seen in at least 25% of cells, vs 4%14% of cells from adult never-smokers and none of the cells from children.

It was calculated that current smokers had a 2.1-fold increase in the number driver mutations per cell in comparison with never-smokers (P = .04).

In addition, the number of driver mutations per cell increased 1.5-fold with every decade of life (P = .004) and twofold for every 5000 extra somatic mutations per cell (P = .0003).

However, the team also found that some patients among the ex-smokers and current smokers had cells with a near-normal mutational burden, similar to that seen for never-smokers of the equivalent age.

Although these cells were rare in current smokers, their relative frequency was, the team reports, an average fourfold higher in ex-smokers and accounted for between 20% and 40% of all cells studied.

Further analysis showed that these near-normal cells had less damage from tobacco-specific mutational processes than other cells and that they had longer telomeres.

"Two points remain unclear: how these cells have avoided the high rates of mutations that are exhibited by neighbouring cells, and why this particular population of cells expands after smoking cessation," the team writes.

They argue that the presence of longer telomeres suggests they are "recent descendants of quiescent stem cells," which have been found in mice but "remain elusive" in human lungs.

"The apparent expansion of the near-normal cells could represent the expected physiology of a two-compartment model in which relatively short-lived proliferative progenitors are slowly replenished from a pool of quiescent stem cells, but the progenitors are more exposed to tobacco carcinogens," they suggest.

"Only in ex-smokers would the difference in mutagenic environment be sufficient to distinguish newly produced progenitors from long-term occupants of the bronchial epithelial surface," they add.

However, in his commentary, Pfeifer highlights that a "potential caveat" of the study is the small number of individuals (n = 16) from whom cells were taken.

In addition, Pfiefer notes that the "lack of knowledge" about the suggested "long-lived stem cells and information about the longevity of the different cell types in the human lung make it difficult to explain what occurred in the ex-smokers' cells with few mutations."

The study was supported by a Cancer Research UK Grand Challenge Award and the Wellcome Trust. Campbell and Janes are Wellcome Trust senior clinical fellows. The authors have disclosed no relevant financial relationships.

Nature. Published online January 29, 2020. Abstract, Comment

For more from Medscape Oncology, follow us on Twitter: @MedscapeOnc.

Continued here:
Stopping Smoking Allows Healthy Lung Cells to Proliferate - Medscape

How the next trip to the moon will get us ready for Mars – Deseret News

The following is a transcript from a recent interview conducted on KSL Newsradios Inside Sources, hosted by Deseret News opinion editor Boyd Matheson.

Boyd Matheson: Were very pleased today to be joined by the NASA Administrator Jim Bridenstine. Jim was nominated by President Donald Trump, confirmed by the Senate and sworn in as NASAs 13th administrator in April of 2018. Administrator Bridenstine was also previously elected to the United States Congress as a representative from Oklahomas 1st District, began his career in the U.S. Navy flying E2C Hawkeyes off the USS Abraham Lincoln aircraft carrier and has a host of other experience. Administrator Bridenstine, thanks so much for joining us today.

Jim Bridenstine: Its my honor. Thanks for having me.

BM: But we got to know each other a little bit back when you were in Congress. Im sure youre not missing those days today as opposed to being able to to play with all of the wonderful assets at NASA.

JB: Yeah, Ill tell you, it looks like the Hill is a really rough place to be right now. So Im very happy that Im at NASA.

Boyd Matheson: Well, its a great spot. Its a great spot for you. Many people have asked the question, you know, has NASA lost that ability to capture the imaginations of the American people? And I cant think of anyone better prepared to lead that effort than you.

JB: Well, I appreciate you saying that. I will tell you, there have been some pretty dark days at NASA going back about a decade. We had a moment there, where we retired the space shuttles. And then we canceled the replacement to the space shuttle, the Constellation program. And there was just a lot of a lot of concern about, What is the agency going to do? But were bringing it back and weve got some really big programs that are very close to completion now. And I will tell you with the president and the vice president giving us bigger budgets and bigger missions, with bipartisan support in the House and the Senate. I think our future is very bright and all of America will be very proud.

BM: Thats exciting to hear. And I and I want to dive into some of those programs and some of those initiatives moving forward and and maybe start with the Artemis program. I think thats probably one that should capture captured the nations attention. Tell us about that.

JB: Yeah, so we have a big agenda to go back to the moon. I like to say were going to go forward to the moon. I say forward because were going in a way thats never been done before. This time when we go to the moon, were going sustainably. In other words, were going to stay at the moon. Were going to learn how to live and work on another world for long periods of time. And were going to use the resources of the moon in order to live namely the water ice. When we think about the water ice, water ice represents water to drink, of course. It also represents air to breathe. And hydrogen and oxygen thats rocket fuel. Hydrogen and oxygen is the same rocket fuel that powered the space shuttles. And its available all over the south pole of the moon, were talking about hundreds of millions of tons of water ice on the south pole of the moon.

And of course, that was just discovered in 2009. So really, you know, 10 years ago, 11 years ago, this major discovery was made. And that should have instantaneously changed our space program. We should have immediately said, OK, were going to go back to the moon, were going to learn how to use the resources of the moon in order to live and work for long periods of time, and were going to take that knowledge. Were going to take that knowledge to Mars, and thats really what the Artemis program is all about. Its about a sustainable return to the moon. And then were going to take that knowledge and go to Mars. The thing its also important to remember is Artemis, in Greek mythology, is the twin sister of Apollo. And we loved the Apollo program. But remember, in the Apollo days, all of our astronauts came from fighter pilot backgrounds and test pilot backgrounds. And in those days, there were no opportunities for women.

Well, now we have this very diverse, highly qualified astronaut corps that includes women, and were going to go to the moon sustainably, with this very diverse astronaut corps under the name of Apollos twin sister, her name is Artemis. And she was in fact, the goddess of the moon. So I think its really an amazing story to share. You know, America has changed and the space program has changed. And I think its a good story that America can be proud of.

BM: Yeah, that is one that I think the American people can get behind, especially in a year like this where were celebrating womens suffrage and a host of other firsts and a lot of great advancements there as well.

So as you look at that Artemis program, you mentioned that it would be really the place where you would be sustainable and then be able to use that to parlay our way to Mars. Tell us a little bit more about that.

JB: So what we need to do is we need to learn how to live and work on another world for long periods of time. The challenge with Mars is that Mars and Earth are on the same side of the sun once every 26 months. So when you go to Mars, you have to be willing to stay for a couple of years. Were not talking about a couple of days, you have to go for a couple of years. Which means we have to use the resources of Mars to live and work for long periods of time. Well, the glory of the moon is that its always a three-day journey home. And so we can go to the moon, we can learn how to live and work on another world. We can prove the capabilities, build the technologies, utilize the water ice, as well as the regoliths and other minerals there on the on the surface of the moon. And then we know that if something goes wrong, we can always make it home. Which, of course, we proved that on Apollo 13, for example. Something went terribly wrong on the way to the moon, and our brave astronauts were able to make it home. Thats why the moon is so valuable. If we were to learn everything for the first time on Mars, the probability of success would go down, and so the moon really represents the best course for us to learn what is necessary to go to Mars. So, around the moon, were going to have in orbit what we call the (Lunar) Gateway.

The Gateway is a space station in orbit around the moon, and were already under contract to build the first elements of the Gateway, and that Gateway in orbit around the moon is going to give us access to the surface of the moon. Its maneuverable, it has solar electric propulsion, so it can make sure we can get to all parts of the moon. We learned in 2009, that theres hundreds of millions of tons of water ice on the south pole of the moon. Whats interesting is how come we didnt know that from 1969 all the way up until 2009? For 40 years, we missed the fact that there was water ice in hundreds of millions of tons, probably a lot more, on the south pole of the moon. Well, we missed it because we landed at the equatorial region six times with humans. We had 12 humans that landed on the moon six times, but they were all in the equatorial regions where there is no water ice. Well, what the Gateway enables us to do is because its maneuverable, it can go it can go to all the different orbits around the moon. And it can get us access to the north pole and the south pole. And we can go to where the resources are, and we can learn how to use those resources.

Well, that same Gateway is also evolvable. So it can be evolved to be the deep space transport that takes our first astronauts to Mars, for example. So it gives us capability and flexibility. At first, its going to be all about getting us access to the moon and being a command module for moon activities. But eventually, its going to take us all the way to Mars.

BM: Thats fantastic. I want to shift gears a little bit now and talk about some of the interesting components to me in terms of how we continue to sustain this. Obviously, theres private groups that are out there. So you know, some are questioning whats the role of the federal government now public-private partnerships there as well as the international connection. Obviously, were weve been reliant on our international allies and alliances as it relates to space for the last number of years. Give me a sense both in terms of continued role for NASA, from the federal government and the private sector, as well as our international component.

JB: Yeah, great question. So its another way that this time when we go to the moon, its entirely different than weve ever done before. We do have a very robust commercial marketplace. You know, people who listen to this maybe on the internet or however they listen to it, maybe they they have their internet from internet broadband from space, or maybe people have DirecTV or Dish Network or XM Radio. Theres all these space based communication capabilities that are transformational and remote-sensing capabilities that are transformational, but heres the point: The point is there is a very healthy and robust commercial marketplace for activities in space.

And so NASA has made a decision that instead of us purchasing, owning and operating all of the hardware to get things to space, what if we buy the services from this very robust commercial marketplace. So it goes from NASA. Were going from NASA purchasing, owning and operating the hardware to NASA becoming a customer, one customer of many customers. And when we do that, weve been doing it, for example, to resupply the International Space Station.

When we resupply the International Space Station, we buy a service, we dont purchase, own and operate our own rockets. And it has been very successful. Weve been very successful at driving down costs, which of course increases access. And were doing that now, in fact this year this is a big deal. This year were going to launch American astronauts on American rockets from American soil. And were doing it with a program that we call Commercial Crew. So where we are going to launch on in this case, weve got two providers. One is SpaceX with the Dragon Crew capsule, and the other is Boeing, with whats called the Starliner Crew capsule. And were buying services from these two countries to get our astronauts back and forth to the International Space Station.

The idea being that we want to be one customer of many customers. Were hoping that there is a very robust commercial marketplace that includes humans flying into space. And theres a lot of reasons to have humans in space. I can get into those in a few minutes. But when we think about commercial resupply of the International Space Station, commercial crew to the International Space Station, and now were going to start building commercial space stations, that will eventually be the replacements for the International Space Station. So theres a robust commercial marketplace where NASA can be a customer. And we can be one of many customers. And we can have numerous providers that are competing against each other on cost and innovation. The goal being that we need to drive down costs.

So were doing that already in low Earth orbit. Now what we need to do is we need to take that model all the way to the moon. So when we buy the lander that takes our astronauts to the surface of the moon, that lander is going to be a commercial lander, and we want to buy the service. Now make no mistake, were going to invest a lot in developing that capability. So it is a public-private partnership. But we want to have numerous providers that are competing against each other, driving down costs. But we want to do it as a service. And then again, we can be one customer of many with numerous providers that are driving down costs.

BM: Thats excellent. So I want to drill down. You mentioned getting more humans into space. And I want to attack that kind of in two tiers. One obviously, is just the regular consumer, the individuals out there, but then also as it relates to Space Force, and what that means from a military perspective as well.

JB: Yeah, so when we think about technologies that were proving right now on the International Space Station, we are proving that on the International Space Station, for example, we can we can compound pharmaceuticals in orbit around the Earth in a way that cannot be done in the gravity well of Earth. Were proving that we can create immunizations that cannot be created in the gravity well of Earth. We are proving that we can in fact, print in 3D human organs on the International Space Station using adult stem cells. So when we use adult stem cells to print human organs in 3D, what that means is that its going to have all of these technologies have amazing breakthrough capabilities for human life here on earth.

And that, of course, the goal being that will drive investment, private capital into the market to do more activities in space than ever before. So were using the International Space Station right now to create those markets.

But also, we think about people who have macular degeneration and they lose their eyesight. Were proving that we can create artificial retinas for the human eyeball in space in a way that you cannot create them on earth so that people who have macular degeneration dont have to lose their eyesight. And theres advanced materials like fiber-optic networks that can be created so pristinely in space that you dont have to have repeaters and of course, that drives down the cost of laying fiber-optic cables throughout, you know, cities. So theres advanced manufacturing, theres industrialized biomedicine. Theres all of these different capabilities that are being developed that can only be done in a zero gravity environment, they cannot be done on earth. And once these capabilities are proven, the goal would be that we would see lots of investment in space.

Now to your question about the Space Force. Remember why we have a navy. We have a Navy because there is commerce on the high seas, and without a navy, that commerce is vulnerable. And thats precisely why the United States of America is powerful, because we have an amazing economy with amazing free market enterprise. And then we also have the strength to back it up. The challenge with space is, as you can imagine, were already seeing, you know, its already a $400 billion market for commercial activities in space and its soon becoming a trillion dollar market. And there are nations out there like China, who have called space the American Achilles heel. Because of how dependent we are on space.

We think about the GPS constellation for navigation. It also is used for regulating flows of electricity on the power grid and regulating flows of data on wireless networks like the cellphone Im speaking on right now. Its also used for every banking transaction, a GPS timing signal is necessary. Without GPS, there is no banking. So we are dependent on space in a way that most Americans do not understand. And we want to grow this economy in space. And remember, the economy is on Earth, the activities are in space. But we want to grow it and in order to grow it countries around the world who believe they can bring America to its knees by destroying space, they need to understand that we are not going to let anybody get an advantage over the United States by threatening space.

NASA does not do Space Force. We are not a defense organization. NASA is a science and discovery organization. But Ill tell you, we are developing an economy and that economy is is put in jeopardy if we dont have security in space. And thats what the Space Force is all about.

BM: Thats fantastic. Just in our final few minutes here, Administrator Bridenstine. I just wanted you to talk to the American people in in general, you know. Theyve been listening to this for the last few minutes. What is it that you hope every American thinks about, what do you hope we do about our relationship to space and enter the future of the space program?

JB: Yeah, so I think the future of the space program is very bright. Were seeing bipartisan support in the House and in the Senate. Weve got strong support from the president. The president has put the vice president in charge of the National Space Council, of which I am a member. And so the amount of support were having right now, I dont think we have had this much support since the 1960s, when we had people on the moon, you know, in the early days, and of course, the early 1970s, as well.

So I think the space program is strong. I think its important for people to recognize how we are dependent on space in ways that most people dont know. And thats why its important for the American economy. Its important for national security. And these are the activities that we need to continue to grow. And of course, NASA plays strong. You mentioned international partners. Were growing our international partners.

Ill tell you, when we canceled the Constellation program and retired the space shuttles, a lot of our international partners were running for the hills because they thought America didnt have a vision. Well, now were bringing them all back. They all want to be with us on going to the moon. Theyve never been to the moon. Remember when we went to the moon last time it was America alone. This time when we go to the moon, were leading a coalition of nations. It puts the United States of America in the drivers seat to be the leader. But it also gives us access to more resources and capabilities.

And so this is an important program for the nation, for diplomacy, for economics, for national security. And I think its a point of pride and prestige for our nation. And so I would just encourage Americans out there who are listening, to know that your country is doing what it can to make sure that America leads and thats what were doing. Were leading.

BM: Fantastic. NASA Administrator Jim Bridenstine. Thank you so much for joining us. I appreciate your leadership of NASA and our space program and there are some very exciting things ahead that really will capture the imagination of the nation. Thanks so much for being with us today.

JB: Thank you, always. Will do it again.

Originally posted here:
How the next trip to the moon will get us ready for Mars - Deseret News

Biological robots, that is a thing now – 702

There are two stories I would like to tell with this edition of Business Unusual, the first is about the Darpa funded research to build robots out of living cells, the second is the incredible history of the animal that was used to build the first biological robots - Platannas.

The Defense Advanced Research Projects Agency (DARPA) is an agency of the American Department of Defense. It has funded many projects for military projects that in time have come to be used for civilian applications. The best-known example is the predecessor of the internet.

Why a military agency would fund research into creating living robots might be concerning but the stated objectives include managing environmental clean-ups or improving drug delivery which certainly are worthy pursuits. Of greater concern, are the ethical questions that are raised by creating new forms of a living organism. At the moment the designs dont attempt to make them self-replicating but that is part of the future plans.

Robots typically are designed and programmed to perform a specific task. Until now they would have been constructed out of non-living materials. These robots are also designed for a specific task but created from living cells. The choice of cell and the specific construction determines what action or function the living robot can perform.

One function that was attempted was movement. Starting from scratch researchers used stem cells from a frog to create skin cells and heart cells. The heart cells are muscles and so can contract while heart cells are able to do so rhythmically. Using those properties a machine learning program was tasked with testing thousands of configurations to determine which design would use the least cells to achieve the motion required. Once the best designs were determined, the living robots were constructed by researchers manipulating individual cells under a microscope.

The tiny constructed robots demonstrated that living robots designed by computer could offer an alternative to traditionally constructed machines. Future versions would look to make the constructions more complex and eventually able to self replicate.

One intended function was using a swarm of living robots with the ability to decompose plastic to be used to remove microplastics in the ocean. That may be a long way off, but if it is to become a reality the best time to start working on it is now.

Another application might be to not find plastic in the sea, but cancers in your body. Your body is already very good at doing so, but as we age and at certain times of our lives it becomes more challenging to correctly identify and kill cancer cells when they are still only tiny tumours.

This would require building robots consisting of your own body cells arranged in a way to allow them to move through the body and specifically find the corrupted cells. Adding them in numbers as we age may reduce the chance of developing tumours or even help the body recover after exposure to damaging external factors like sun damage to your skin.

This too is a long way off, but if successful and added to the many other options for extending and improving our lives then the research is most welcome.

_Image credit: Wikipedia African clawed frog_

Setting the other issues relating to building living robots aside, you might wonder why a frog from South Africa was chosen to build the first living robots.

It was not a random choice but points to a fascinating history that makes this particular frog one that has helped humanity overcome medical issues on a number of occasions.

A pregnancy test these days simply requires peeing on a stick. The reaction to a specific hormone in the urine can be isolated in minutes and let you know if you are pregnant within days of it occurring. It was not always this easy, the first method we are aware of would see a potentially pregnant woman urinate on ungerminated wheat and barley and wait a week or so to see if it germinated. Incredibly it works and was first mentioned over 3 000 years ago by the Egyptians. It was scientifically tested in the 1960s and found to be 70% accurate.

There were a variety of other methods used most on the expectation that something in the urine of females could be used to confirm pregnancy. In the 1920s it was injecting urine into female rabbits that after a day would require the examination of the rabbit ovaries. If swollen the woman was pregnant. In order to do the examination the rabbit was always killed and so the search continued for a better option.

Enter Lancelot Hogben, an English researcher lecturing in Cape Town in the early 1930s. He advised a student to consider using the local platanna as a potential for use as a model organism for biological tests. His hunch proved correct with Hillel Shapiro and Harry Zwarenstein creating the test to use the frog to indicate pregnancy.

The frog would be injected and in hours if the woman was pregnant would produce eggs. Not only was it accurate, but it also would not harm the frog which was easy to keep in a lab and would live for over a decade. As a result, the remarkable frog was exported around the globe and provided the answer to the question, am I pregnant, to the largest population explosion in our history. Most baby boomers parents and indeed many baby boomers would have found out if they were pregnant thanks to this strange-footed frog.

Xenopus literally means strange foot, frogs typically dont have claws which is why the African clawed frog got the name and as for Platanna, that may be a reference to the frog being very flat - plat in Afrikaans.

Given its widespread use for pregnancy and acceptance as a good species for embryonic development when researchers attempted to clone an organism, this frog was once again a key in understanding the process. In 1958, Xenopus was cloned not from splitting an embryonic cell which was the original method, but by using the DNA from an adult specialised cell which replaced the original DNA in a frog egg. The method proved successful and paved the way to allow Dolly the sheep to be cloned from an adult sheep cell in 1996.

We owe a huge debt of gratitude to six species that for a variety of reasons have helped us understand biological processes and how best to deal with disease and the efficacy of drugs. There are nematode worms, fruit flies, zebrafish, chickens, mice and the African clawed toad.

These six animals are our real guinea pigs.

Image credit: Xenobot - Tuft University & University of Vermont

View post:
Biological robots, that is a thing now - 702

Knocking Down Levels Of These Proteins Could Reverse Type 2 Diabetes – International Business Times

KEY POINTS

Type 2 diabetes has affected more than 30 million Americans till date.The condition usually occurs in individuals above the age of 45. But children, teens, and young adults are also developing it these days. Researchers have been finding ways to prevent and reverse the condition.

Researchers at Yale University have come up with a new way to reverse type 2 diabetes. They have identified a couple of proteins that could prevent diabetes when knocked down. According to the study, fasting switches on a certain process in the body in which the proteins TET3 and HNF4a increase in the liver and produces blood glucose. In type 2 diabetes patients, this switch fails to turn off after fasting.

Thus, they hypothesized that knocking down these two proteins could stop diabetes from developing.

In the Study published in cell reports, the researchers injected mice with genetic material called small interfering RNAs packaged inside viruses that target these two proteins. They found that insulin and blood glucose levels dropped significantly.

They also discovered that TET3 contributed to the development of liver fibrosis. They discovered that the protein TET3 plays a vital role in the fibrosis signaling pathway in three different locations acting as an important regulator in the development of liver fibrosis.

The findings of the study pave the way for opportunities in developing drugs that inhibit TET3 to slow or reverse fibrosis. Although liver fibrosis and type 2 diabetes are common conditions, there are very few treatment options currently.

Diabetes can lead to several other health conditions including stroke, kidney diseases, and heart diseases. Whereasliver fibrosis can lead to cirrhosis, which is one of the leading causes of death worldwide, according to the experts at Yale Liver Center.

Although there are drugs including metformin to control blood sugar levels in diabetic patients, they are subjected to a wide range of unpleasant side effects and moreover, patients consuming them can develop resistance to them.

While much is known about the role of TETs in development, stem cells, and cancer, little is known about their role in energy metabolism. In the current study we report an unexpected finding of P2 promoter reactivation in the adult liver by TET3 with an essential role in the control of hepatic glucose production (HGP), said the researchers.

diabetes symptoms shin spots Photo: stevepb - Pixabay

Follow this link:
Knocking Down Levels Of These Proteins Could Reverse Type 2 Diabetes - International Business Times

Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID – Dove Medical Press

John T Lear,1 Axel Hauschild,2 Eggert Stockfleth,3 Nicholas Squittieri,4 Nicole Basset-Seguin,5 Reinhard Dummer6

1Manchester Royal Infirmary, Manchester, UK; 2Klinik Fr Dermatologie, Venerologie Und Allergologie Universittsklinikum Schleswig-Holstein, Kiel, Germany; 3Universittshautklinik Bochum, Bochum, Germany; 4Sun Pharmaceutical Industries, Inc., Princeton, NJ, USA; 5Department of Dermatology, Hpital Saint Louis, Paris, France; 6Skin Cancer Center University Hospital, Zrich, Switzerland

Correspondence: John T LearUniversity of Manchester, 46 Grafton Street, Manchester M13 9NT, UKTel +44 161 276 4173Fax +44 161 276 8881Email john.lear@srft.nhs.uk

Nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome, is a rare hereditary disease characterized by the development of multiple cutaneous basal cell carcinomas (BCCs) from a young age.1 Loss-of-function germline mutations in the hedgehog-related patched 1 (PTCH1) tumor suppressor gene are the most common cause of NBCCS.1 The hedgehog signaling pathway plays a major role in embryonic development, and in adulthood, is involved in the renewal and maintenance of distinct tissues, including hair follicles, muscle stem cells, and gastric epithelium.2 Its abnormal activation is thought to drive the formation of both sporadic BCCs and those resulting from NBCCS.1 Patients with NBCCS inherit one inactive copy of PTCH1 and then acquire a second-hit mutation, resulting in hedgehog pathway activation and BCC formation.1 Mutations in Suppressor of fused (SUFU) or the PTCH1 homolog PTCH2 have also been found in a subset of patients meeting criteria for NBCCS.1,3

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

See original here:
Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID - Dove Medical Press

People who develop Parkinson’s before 50 may have been born with damaged brain cells, says study – MEAWW

People who develop Parkinson's disease at a young age might have malfunctioning brain cells -- even before birth. A drug used to treat pre-cancers of the skin may help treat the condition, finds a new study. At least 500,000 people in the US are diagnosed with Parkinson's every year, a majority of them over the age of 60. But about 10% of them develop the condition young -- between 21 and 50 years. People develop the disease when the brain nerve cells that make dopamine -- a substance that helps coordinate muscle movement -- malfunction or die. Consequently, these patients experience difficulty moving due to stiff muscles and tremors. Most often, young-onset patients have a family history of Parkinsons disease.

"Young-onset Parkinson's is especially heartbreaking because it strikes people at the prime of life," said Dr. Michele Tagliati, director of the Movement Disorders Program, vice-chair, and professor in the Department of Neurology at Cedars-Sinai. "This exciting new research provides hope that one day we may be able to detect and take early action to prevent this disease in at-risk individuals," says Dr Tagliati, co-author of the study.

In this study, the team turned cells from these Parkinson's patients into a kind of stem cell, meaning they turned adult cells into an embryo-like state. These cells can be programmed into developing into any cell types, including muscles, nerves or heart, for instance. The team turned these stem cells into cells that produce dopamine and grew them in their lab.

"Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patient's life," said senior author Dr. Clive Svendsen, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and professor of Biomedical Sciences and Medicine at Cedars-Sinai.

When the team observed these cells, they saw an abnormal accumulation of a toxic protein called alpha-synuclein, which is seen in patients with most forms of Parkinson's disease. This accumulation could be the result of malfunctioning "trash cans".

These trash cans of the dopamine-producing cells called lysosomes are tasked with the breaking down and the disposing of proteins - but they failed to do so in young-onset Parkinson's patients. As a result, the toxic protein buildup ends up damaging dopamine-producing cells.

"The cells of the brain cannot dispose of the toxic protein called synuclein a hallmark of dying neurons in Parkinsons disease even before birth. This does not kill the neurons until much later in life though," the researchers tell MEA WorldWide (MEAWW). "Now we know that this starts so early in life we can think about ways to reduce this protein early and use this model as a way to detect whether the Parkinsons is starting," they add.

Further, the team also tested several drugs that might reverse the abnormality seen in these cells. They found that that one drug, dubbed PEP005, which is already approved by the Food and Drug Administration for treating precancers of the skin, proved effective in lab studies and mice. The drug brought down the levels of the toxic protein.

Encouraged by these positive results in the young-onset patients, the team is now testing whether these findings hold in patients who develop Parkinson's after the age of 50. "While we have shown our drug is effective in this cell model, it needs to be validated in actual patients before it is proven to be a treatment for Parkinsons. These studies are being planned," they add.

The study has been published in Nature Medicine.

Read the original here:
People who develop Parkinson's before 50 may have been born with damaged brain cells, says study - MEAWW