Author Archives: admin

Dad describes agonising moment son ‘foamed at mouth’ in ‘fatal allergic reaction’ – Mirror Online

A father has told of the agonising moment his son started foaming at the mouth before dying from a suspected allergic reaction after eating at a takeaway.

Chris Kelly, 44, claims son Nick, 16, turned blue and screamed I cant breathe, just minutes after taking a bite of a doner kebab he had ordered from Uno Pizzas in his hometown of Prescot, Merseyside, on March 7.

The dad-of-four said he and fiance Kim Clarke, 35, are going through absolute hell following the death of their son, who was in hospital for four nights on a ventilator before his death on Wednesday.

He passed away after doctors confirmed he was brain dead and there was nothing more they could do to keep him alive.

Chis said his youngest son was everyones best mate who would do anything to help anyone.

Merseyside Police has launched a joint investigation into Nick's death with Knowsley Council.

Stay-at-home dad Chris said: Nick walked home with his food and as soon as he took a bite he was running up the stairs screaming I cant breathe.

His mum tried to get his inhaler but Nick said no Im having a reaction so she started calling the ambulance.

The next minute she turned around and he was going blue in the face and foaming at the mouth.

"His brother gave him his epipen as soon as we realised what was happening but the doctors told us that the reaction was so severe it wouldn't have made a difference no matter how quickly we administered it.

Weve been going through absolute hell ever since.

Im still just waiting for him to come through the door and ask his mum whats for tea or ask me if he can have a bit of pocket money. It doesnt feel real."

After the teen fell to the floor unable to breath, Chris said Joe tried to resuscitate his brother for 10 minutes before paramedics arrived and Nick was rushed to Whiston Hospital in nearby Rainhill at around midnight.

The distraught family watched as medics at the hospital fought to get his heart pumping again but his body had been starved of oxygen and blood for at least an hour before his heart was restarted.

Doctors conducted a brain stem cell test and after finding no brain activity declared Nick officially deceased on Wednesday.

Chris said: There was no hope because his brain had been starved of oxygen and blood for an hour.

Nick was a happy lad just playing football and going out with his mates. He would help anyone he could and he would do anything for anyone, he was everybodys best mate.

He was getting ready to do his GCSEs and go to college to do an apprenticeship in engineering.

I cant believe hes gone.

Chris, who is also dad to Nicks older brother Joe, 17, and two sisters, Tiffany, 13, and Cheryl, 11, said they had known about their sons allergies since his first ever reaction at two-years-old.

Speaking about his son's first reaction, the dad added: "He had been sat in his high chair eating peanut butter sandwiches with his brother and Nicks lips swelled so big his top one was up to his nostril and his bottom was down to the bottom of his chin."

The investigation between Merseyside Police and Knowsley Council into Uno Pizzas is still ongoing as experts wait for samples to come back from the laboratory.

A spokesperson for Merseyside Police previously said: "We can confirm a joint Merseyside Police and Knowsley Council investigation has been launched after a 16-year-old boy fell ill in Prescot on Saturday, March 7, after consuming food from Uno Pizza, Prescot.

"Emergency services were called to Thomas Drive at midnight following reports the boy had collapsed after suffering a suspected allergic reaction.

"Enquiries are ongoing to establish the full circumstances and a cordon is in place at Uno Pizza, Chapel Street."

Uno Pizzas has been approached for comment.

Nicks family are raising money for the cost of his funeral in order to give him the best send off they can and have already received more than 1,100 in donations.

To donate, click here.

More here:
Dad describes agonising moment son 'foamed at mouth' in 'fatal allergic reaction' - Mirror Online

Coronavirus tests stepped up to stop exodus of frontline NHS staff – HeraldScotland

Testingfor coronavirus will be ramped up amid criticism that NHS staff are being lost from the frontline over potentially harmless coughs, while private clinics report being inundated by people who can afford to pay for swab checks.

The Scottish Government says some Covid-19 testing on healthcare workers has already started at a local level anda national approach is being developed which will scale up these initial efforts.

It comes amid speculation that a new four-hour test could be made available in Britain.

Scotland reported its third coronavirus death on Wednesdayand First Minister Nicola Sturgeon confirmed schools across Scotland would close by the end of this week as a result of new advice from Government scientists.

They will also close in England, Wales and Northern Ireland.

Ms Sturgeon said many schools had reached a point where they have lost too many staff to continue as normal and would not necessarily reopen after Easter, or even before the summer holidays.

Prime Minister Boris Johnson said schools and nurseries across the UK would be expected to accommodate vulnerable children or the children of critical workers, such as NHS staff and police during the closure, with free school meals continuing to be provided to all eligible youngsters.

He added that exams would not go ahead as planned in May or June, but that pupils would get the qualifications they deserve.

Earlier Mr Johnson told the House of Commons the number of tests that can be carried out each day for coronavirus will be increased from 5,000 to 10,000, with a goal to expand it to 25,000 per day in England within four weeks.

North of the Border, there are three NHS laboratories currently processing tests and the Scottish Government is working with a range of partners to increase capacity to exceed 2,000 tests per day in the coming weeks.

A number of options to expand that further, and as quickly as possible, are being explored.

The Prime Minister said: We are prioritising testing of NHS staff for the obvious reason that we want them to be able to look after everybody else with confidence that theyre not transmitting the disease, and this country is actually far ahead of many other comparable countries in testing huge numbers of people.

It comes as a coronavirus test that reveals who has had Covid-19 but not shown symptoms is close to becoming available in a move being hailed as a game-changer.

The Governments chief scientific adviser, Sir Patrick Vallance, said Public Health Englands (PHE) work on the antibody test is progressing very fast, and will provide valuable insight into the pandemic.

Mr Johnson said: The great thing about having a test to see whether youve had it is suddenly a green light goes on above your head and you can go back to work safe and confident in the knowledge that you are most unlikely to get it again.

So for an economic point of view, from a social point of view, it really could be a game-changer.

You can really see the potential of that advance, which, as I say, is coming down the track.

Sir Patrick added: It is a gamechanger. And the reason its a gamechanger is that it allows you to understand the proportion of the asymptomatic population whos had this disease, but hasnt had symptoms.

Going forward its going to be critically important to be able to monitor this disease well because only by being able to monitor it can we start relaxing measuresagain.

The Scottish Government is increasing community surveillance by enabling 200 GP practices, representing a population of 1.2 million, to test patients for the virus.

Health Secretary Jeane Freeman has also promised to roll out testing to frontline NHS staff so that they do not self-isolate unnecessarily.

However, there has been criticism from medics that the process has been too slow and has left key services understaffed at a time when demand is soaring.

Glasgow GP Margaret McCartney tweeted: Our workload has increased 30-40 per cent in last two days.

I know everyone is very busy but a negative test in a symptomatic person would surely allow us to have a hope of functioning?

British Medical Association Scotland chairman Dr Lewis Morrison said: The impact Covid-19 will have on the NHS could be huge. Frontline workers will be working in very different ways and we will need every pair of hands we can possibly get at this time.

That is why it is essential for NHS staff to be tested for the virus if they suspect they have it.

The Scottish Government has assured us this will happen and we now need to see the details of how staff can access testing as soon as possible, to minimise the number of NHS staff who would otherwise be self-isolating.

Professor Michael Griffin, president of the Royal College of Surgeons Edinburgh, said: The recommendation from the UK Government on Monday that pregnant women should self-isolate, as well as a 14-day isolation of those who have been exposed to family members with symptoms, though understandable, has already put a huge pressure on the NHS workforce.

Thats why its absolutely imperative that healthcare workers are tested for Covid-19 to confirm whether they are infected in order to help prevent the unnecessary exclusion of essential NHS staff at the frontline when the epidemic hits its peak.

A test is available for 375 at the Private Harley Street Clinic in London.

Mark Ali, a doctor at the clinic, said it had been inundated with requests for the test, which can be couriered to and from a client for them to take swabs from their own nose and throat.

Mr Ali said: We are testing lords and ladies, knights, and even doctors and dentists who are worried about catching the disease.

As of March 12, the UK had tested just under 30,000 people more than any other European nation except Italy, which had tested 86,000 and Russia which had tested 80,000.

The US had tested fewer than 14,000 in official Centre for Disease Control (CDC) laboratories, compared to 250,000 in South Korea.

Scotland has carried out 6,091 tests to date. US firm ThermoFisher held talks this week with the Prime Minister, HealthSecretary Matt Hancock, Chief Medical Officer Chris Whitty, Chief Scientific Advisor Sir Patrick Vallance and representatives from Boots, Amazon and pharmaceutical giant Roche.

The firm is believed to have been demonstrating its four-hour testing kit which has been approved for use in the US.

The UK death toll from the virus has reached 104 exceeding 100 for the first time and the number of new cases is accelerating, with 676 new cases confirmed yesterday.

Organisers announced that the Glastonbury music festival and Eurovision Song Contest would not go ahead due to the coronavirus outbreak, with filming also suspended temporarily on BBC soaps including Eastenders and Casualty.

It comes as Chinas top coronavirus expert has warned that herd immunity will not contain the global pandemic because the disease is highly infectious and lethal.

Dr Zhong Nanshan, Chinas senior medical adviser, said: We dont yet have the evidence to prove that if you are infected once, you would be immune for life.

Clinical trials for potential vaccines are under way in China and the US, but is not expected to be ready until at least 2021.

Meanwhile, an antiviral drug used in Japan to treat influenza has shown potential to speed recovery from the novel coronavirus that causes Covid-19. The drug, called called Favipiravir or Avigan, was tested on 340 people in China who had been diagnosed with Covid-19.

Half tested negative for the virus within four days of being given the drug compared to 11 days for the patients not on the antiviral.

Lung conditions were also shown in X-rays to have improved in 91 per cent of participants.

There were also claims in China that patients could be cured using stem cell therapy.

Dr Dongcheng Wu, a doctor and stem cell expert based in Wuhan, the epicentre of the outbreak, said he had successfully treated nine patients who were hospitalised with novel coronavirus pneumonia.

All nine reportedly made a full recovery following stem cell transplants and conventional treatment. Dr Wu said: Yes, it is a cure but it is still very early in the process.

It came as Italy recorded 475 coronavirus deaths in a single day the highest 24-hour spike for any country since the infection emerged in China.

More here:
Coronavirus tests stepped up to stop exodus of frontline NHS staff - HeraldScotland

YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma – Science Advances

Abstract

Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common group of cancers in the world, and patients have a poor prognosis. Here, we present data indicating that YAP1 may be a strong driver of the onset and progression of oral SCC (OSCC), a major subtype of HNSCC. Mice with tongue-specific deletion of Mob1a/b and thus endogenous YAP1 hyperactivation underwent surprisingly rapid and highly reproducible tumorigenesis, developing tongue carcinoma in situ within 2 weeks and invasive SCC within 4 weeks. In humans, precancerous tongue dysplasia displays YAP1 activation correlating with reduced patient survival. Combinations of molecules mutated in OSCC may increase and sustain YAP1 activation to the point of oncogenicity. Strikingly, siRNA or pharmacological inhibition of YAP1 blocks murine OSCC onset in vitro and in vivo. Our work justifies targeting YAP1 as therapy for OSCC and perhaps HNSCC, and our mouse model represents a powerful tool for evaluating these agents.

Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common group of cancers in the world, affecting 600,000 people annually. About half of HNSCC patients die from their disease (1). The head and neck region of the body includes the oral cavity, larynx, and pharynx, all structures that are covered with squamous epithelium. Among HNSCC subtypes, oral SCC (OSCC) is the most frequent, and tongue cancers comprise a large proportion of OSCCs (2). Because 15% of HNSCC patients carry the human papillomavirus (HPV), HPV is considered to be one of the major causes of HNSCC. HPV (+) HNSCC usually occurs in the oropharynx, and patients with this malignancy have better prognoses or may even be cured (1). In contrast, the 85% of HNSCC that are HPV () are highly resistant to even intensified chemo/radiotherapy (3) as well as to currently available molecular targeting drugs (4). The fundamental molecular mechanisms underlying the onset and development of HPV () HNSCC have yet to be identified, hampering the generation of new therapeutic strategies.

The Cancer Genome Atlas (TCGA) project has revealed the presence of many altered gene exons in HNSCC (2). In HPV () HNSCC, TP53 was highly mutated in 84% of cases. In addition, mutation of FAT atypical cadherin1 (FAT1) was observed in 32%, epidermal growth factor receptor (EGFR) in 15%, and Ajuba LIM protein (AJUBA) in 7% of all HPV () HNSCC. Strikingly, these mutations were rare in HPV (+) HNSCC, with even TP53 mutation at only 3%. Notably, mutations of phosphoinositide 3 kinase, catalytic subunit alpha (PIK3CA)/phosphatase and tensin homolog (PTEN; 50 to 60%) and TP63 (20 to 30%) were commonly observed in both HPV (+) and HPV () HNSCC. Considering that HPV E6 strongly inactivates TP53 (5), TP53 inactivation must be a crucial and common oncogenic event in HNSCC. However, loss of TP53 alone in mice never induces spontaneous HNSCC in vivo (6), meaning that other genetic and/or epigenetic alterations are also essential for HNSCC generation.

The core components of the Hippo pathway are the mammalian STE20like (MST) kinases, large tumor suppressor homolog (LATS) kinases, nuclear Dbf2related (NDR) kinase, and the adaptor proteins Salvador homolog 1 (SAV1) and Mps one binder kinase activator 1 (MOB1) (7). MOB1A/B are the adaptor proteins for both the LATS1/2 and NDR1/2 kinases, and by binding to LATS/NDR, MOB1A/B strongly increase the enzymatic activities of these kinases (7). Activated LATS/NDR kinases, in turn, phosphorylate Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ; also known as WWTR1). YAP1/TAZ are key downstream transcriptional cofactors that act mainly on TEA domain transcription factors (TEADs) to regulate numerous target genes involved in cell growth and differentiation (7). After phosphorylation by LATS/NDR kinases, YAP1/TAZ are excluded from the nucleus and retained in the cytoplasm, where they are ubiquitylated by E3-ubiquitin ligase SCFTRCP (also known as BTRC) and subjected to proteasome-mediated degradation (7). Thus, in most cell types, YAP1/TAZ are essentially positive regulators of cell proliferation that are negatively controlled by upstream Hippo core components. In vitro, YAP1/TAZ can be regulated by cell density, external mechanical forces, polarization, rigidity of the extracellular matrix, stress stimuli (7), or engagement of a G proteincoupled receptor (GPCR) by a soluble mediator (7). In vivo, YAP1 activation in mice results in organomegaly and tumor formation (8).

Several lines of evidence suggest a role for YAP1 in HNSCC. (i) Location 11q22 in the human YAP1 locus is amplified in 8.6% of HNSCC (9); (ii) YAP1 activity is associated with malignant phenotypes and poor prognosis both in vitro and in vivo (9, 10); and (iii) mutations of TP53, PIK3CA/PTEN, EGFR, or FAT1, which are often observed in HNSCC, increase YAP1 activation in several cell types (1114). HNSCC also frequently shows amplification of TP63, a master regulator of squamous cells, but the effect of this alteration on YAP1 activity is controversial (15, 16).

We previously reported that Mob1a/b null mutant mice succumb to embryonic lethality at embryonic day 6.5 (17). We have also demonstrated that Mob1a/b loss induces extreme hyperactivation of endogenous YAP1/TAZ, resulting in the most severe phenotypes reported among mice mutated in Hippo core components in various tissues (17). Thus, MOB1A/B is a crucial hub in the Hippo signaling pathway. Because of the accumulating evidence in the literature on the importance of YAP1 in HNSCC progression, we generated tongue epitheliumspecific Mob1a/b double knockout (tgMob1DKO) mice and examined them to dissect the function of endogenous YAP1 in the onset and progression of the OSCC subtype of HNSCC. We demonstrate that hyperactivation of endogenous YAP1 induced by loss of Mob1a/b triggers surprisingly early onset and rapid progression of OSCC. Our data reveal that YAP1 is a powerful oncogenic driver of this malignancy.

To investigate the role of the Hippo-YAP1 pathway in mouse tongue epithelium in vivo, we used our previously generated strain of tamoxifen (TAM)inducible Mob1a/bDKO mice [Rosa26-CreERT; Mob1aflox/flox; Mob1b/ (tgMob1DKO) mice], which were created by mating Rosa26-CreERT transgenic (Tg) mice with Mob1aflox/flox and Mob1b/ mice (17). Intraperitoneal injection of TAM into these animals causes early death at about 3 weeks due to widespread organ dysfunction, including hepatic failure (17). To extend mouse survival, we applied TAM directly and only to the tongue epithelium for 5 days starting on postnatal day 21 (P21; Fig. 1A and fig. S1A). Cre-mediated deletion of the floxed Mob1a gene was substantially achieved by 3 days after the initiation of TAM application (fig. S1B), with the MOB1A and MOB1B proteins being essentially absent by day 7 after TAM (fig. S1C).

(A) Diagram of the protocol to generate tongue epithelial cellspecific Mob1a/b DKO mice (tgMob1DKO). TAM was applied by a soft brush daily for 5 days to the tongues of 3-week-old Mob1aflox/flox; Mob1b/ (control) and Rosa26-CreERT; Mob1aflox/flox; Mob1b/ (mutant) mice. Mice were sacrificed at 1, 2, or 4 weeks (red arrows) after starting TAM application, and their tongue tissues were removed for histological analyses. (B) Representative macroscopic (small panels) and microscopic (large panels) views of H&E-stained sections of control (top) and tgMob1DKO (bottom) tongue epithelial layers at the indicated weeks after starting TAM application. White arrow, deep ulcer formation. Scale bars, 1 mm (small panels) and 100 m (large panels). Photo credit: Hirofumi Omori, Kobe University. (C) Percentages of the indicated lesion types present in the tongues of the mutant mice (n = 10 per group) in (B) at the indicated weeks after TAM. (D) H&E-stained sections of control and tgMob1DKO tongue epithelium at 1 week after TAM. Moderate nuclear heterogeneity and loss of polarity are apparent in the mutants, indicating dysplasia. Scale bar, 5 m. (E) H&E-stained sections of mutant tongue epithelium at 2 weeks after TAM showing atypical mitotic figures (left), nuclear enlargement (middle), and strongly heteromorphic cells (right), indicating CIS. Scale bar, 5 m. (F) H&E-stained section of mutant tongue epithelium at 4 weeks after TAM revealing submucosal invasive SCC. White arrowheads, cancer cells penetrating beyond the basement membrane (yellow dashed line). Scale bar, 10 m.

Macroscopically, the epithelial surface of tgMob1DKO tongue showed mild roughness at 1 week after TAM, very rough mucosa accompanied by keratosis at 2 weeks after TAM, and deep ulceration at 4 weeks after TAM (Fig. 1B). To our surprise, by 1 week after TAM, histological examination revealed an increased number of polymorphic epithelial cells with hyperchromatic nuclei and loss of polarity, evidence of dysplasia (Fig. 1, C and D). Although Ki67 was expressed only in the basal cells of the tongue epithelium before TAM treatment, the percentage of Ki67-positive cells among polymorphic epithelial cells increased markedly by 1 week after TAM (fig. S1D), demonstrating the increased proliferative capacity of MOB1-deficient epithelial cells. Atypical mitotic figures (Fig. 1E, left), nuclear enlargement (Fig. 1E, middle), and strongly heteromorphic cells (Fig. 1E, right) indicative of carcinoma in situ (CIS) were observed in the tongue as early as 1 week after TAM (Fig. 1C and fig. S1E). All mice developed tongue CIS by 2 weeks after TAM (Fig. 1, B, C, and E), and all mice developed invasive SCC by 4 weeks after TAM (Fig. 1, B, C, and F). Almost all of these SCC-bearing mutants died by 8 weeks after TAM, most likely due to malnutrition caused by their dysphagia. Because there were no significant histological differences among Mob1a+/+; Mob1b+/+ mice treated with TAM, Rosa26-CreERT; Mob1a+/+; Mob1b+/+ mice with TAM, Rosa26-CreERT; Mob1aflox/flox; Mob1b/ mice without TAM, and Mob1aflox/flox; Mob1b/ mice with TAM (fig. S1F), we used Mob1aflox/flox; Mob1b/ mice with TAM as controls for subsequent experiments unless otherwise stated. These studies were designed to explore why altered Hippo signaling induced the extremely rapid onset of tongue cancers.

We established a TAM-inducible Mob1a/bDKO tongue epithelial cell line (iMob1DKO cells) and treated them in vitro with (+) or without () TAM. Compared to control iMob1DKOTAM cells, iMob1DKO+TAM cells showed increased cell proliferation and saturation density (Fig. 2A). When cultures of these overconfluent iMob1DKO+TAM cells were stained to detect the tight junction protein ZO-1, we found only weak staining of this protein in the tight junctions, indicating impaired cell polarity (fig. S2A). In contrast, cultures of iMob1DKOTAM cells showed normal ZO-1 staining in the tight junctions. Because there was no difference in cell size between iMob1DKO+TAM and iMob1DKOTAM cells (fig. S2B), we concluded that cell-cell contact inhibition was impaired in the absence of Mob1a/b. In addition, the number of apoptotic cells was decreased in the mutant culture compared to the control (Fig. 2B). Next, to determine how MOB1 inactivation affected the self-renewal of tongue epithelial stem cells, we quantified the capacity of control (TAM) and mutant (+TAM) iMob1DKO cells to form colonies in culture. A lack of Mob1a/b induced a 2.2-fold increase in colony-forming efficiency (Fig. 2C, left panels). When these primary colonies were replated to test their ability to form secondary colonies, a 2.8-fold increase in secondary colony-forming efficiency was observed in the absence of Mob1a/b (Fig. 2C, right panels). A comparison of cell cycle and cell ploidy in iMob1DKOTAM versus iMob1DKO+TAM cells revealed a decrease in G0-G1 phase cells and increases in S phase cells and aneuploid cells in the mutant culture (Fig. 2D). Indirect immunofluorescence (IF) analysis of control and mutant cells using anti-tubulin and anti-tubulin antibodies uncovered increases in multipolar spindle formation (Fig. 2E) and micronuclei (Fig. 2F) in mutant cells, indicating chromosomal instability. Thus, the increases in cell proliferation and stem cell self-renewal observed in the absence of Mob1a/b, coupled with chromosomal instability, resistance to apoptosis, and inadequate cell contact inhibition, may underlie the rapid onset and development of tongue cancer in TAM-treated tgMob1DKO mice.

(A) Absolute numbers of iMob1DKO tongue epithelial cells that were left untreated (control; iMob1DKOTAM cells) or treated with 0.5 M TAM for 3 days (iMob1DKO+TAM cells) and then grown for the indicated number of days in the absence of TAM. (B) Flow cytometry (left) and quantitation (right) of propidium iodide (PI)positive dead cells in the cultures in (A). (C) iMob1DKO cells were treated in vitro with TAM (0.5 M) for 3 days (+TAM) or left untreated (TAM) and serially plated to generate first primary colonies and then secondary colonies. Crystal violet staining (left) and colony counts (right) of primary (left side) and secondary (right side) colonies were performed on day 7 after plating. Photo credit: Hirofumi Omori, Kobe University. (D) Top left: DNA content frequency histograms of control (iMob1DKOTAM) and Mob1a/b mutant (iMob1DKO+TAM) tongue epithelial cells. Right: Percentage of cells from the top left panels in the G0-G1, S, and G2-M phases of the cell cycle as determined by fractional DNA content. Bottom left: Overlay of aneuploid and polyploid cell numbers for the cells in the right panel. (E and F) Top: Immunostaining to detect -tubulin (green) and -tubulin (red) in control (iMob1DKOTAM) and mutant (iMob1DKO+TAM) tongue epithelial cells. DAPI (blue), nuclei. Scale bars, 1 m. Multipolar spindles and micronuclei (white arrow) were detected in mutant cells. Bottom: Quantitation of the percentage of cells in the top panels showing multipolar spindles (E) and micronuclei (F). Data are shown as means SEM of triplicate samples. *P < 0.05, **P < 0.01, and ***P < 0.001, t test. ns, not significant; i.p., intraperitoneally.

We next investigated the biochemical effects of Mob1a/b loss on Hippo components in iMob1DKO cells that were left untreated or treated with TAM for 7 days. As expected, iMob1DKO+TAM cells showed a reduction in LATS1 protein and an increase in the total protein levels of YAP1. Protein levels of several representative direct transcriptional targets of YAP1, including connective tissue growth factor (CTGF), baculoviral IAP repeat-containing protein 5 (BIRC5), and topoisomerase II-alpha (TOP2A), were also significantly elevated. However, there was no effect on total TAZ protein (Fig. 3A). Furthermore, YAP1 was predominantly localized in the nuclei of iMob1DKO+TAM cells even when cultured under highcell density conditions (Fig. 3B). Thus, YAP1 hyperactivation is a prominent feature of mutant tongue epithelial cells prone to OSCC development.

(A) Top: Immunoblots to detect the indicated proteins in total extracts of iMob1DKO tongue epithelial cells that were left untreated (TAM; control) or treated with TAM (+TAM) for 7 days. GAPDH, loading control. Bottom: Densitometric relative quantitation of the indicated proteins in the blots in the top panels. (B) Left: Immunostaining to detect YAP1 in iMob1DKOTAM and iMob1DKO+TAM tongue epithelial cells that were plated at low or high cell density. Scale bar, 10 m. Right: Percentages of cells in the cultures in the left panels that showed higher YAP1 levels in the nucleus (nuc YAP1) than in the cytoplasm (cyto YAP1). (C) Left: Representative H&E-stained sections (top panels) and macroscopic views (bottom panels) of tongue epithelium from control, tgMob1DKO, tgYap1TKO (tgMob1DKO plus Yap1 KO), and tgTazTKO (tgMob1DKO plus Taz KO) mice at 4 weeks after TAM (n = 10 mice per group). Scale bars, 100 m (top panels) and 1 mm (bottom panels). Right: Percentages of mice in the left panels displaying the indicated lesions. Photo credit: Hirofumi Omori, Kobe University. (D) Quantitation of SCC invasion depth in tongue epithelium of the mice in (C). The depth of invasion was measured from the level of the nearest adjacent normal mucosa to the extent of the deepest tumor invasion into the tongue musculature. Data are shown as means SEM of triplicate samples. *P < 0.05, **P < 0.01, and ***P < 0.001, t test.

To clarify the role of YAP1 in OSCC-related phenotypes, we generated strains of triple KO mice lacking MOB1A/B plus YAP1 (tgYap1TKO), or lacking MOB1A/B plus TAZ (tgTazTKO). Unlike tgMob1DKO mice, which all develop invasive SCC at 4 weeks after TAM, MOB1A/B-deficient mice also lacking YAP1 showed only mild to moderate dysplasia in the tongue (Fig. 3C and fig.S2C). In contrast, MOB1A/B-deficient mice also lacking TAZ developed a highly aggressive form of invasive SCC, with some lesions penetrating from the tongue surface into the floor of mouth. The measured depth of invasion of malignant cells into the mouth floor was significantly increased in tgTazTKO mice compared to tgMob1DKO mice (Fig. 3D). In addition, immunohistochemical (IHC) staining to detect YAP1/TAZ revealed that tgMob1DKO mice showed increased frequency of nuclear YAP1 localization compared to controls, but no alteration in the frequency of nuclear TAZ (fig. S2C). These results were further confirmed by IHC staining to visualize YAP1 or TAZ in the tongues of tgYap1TKO and tgTazTKO mice (fig. S2C). Thus, the MOB1A/B-deficient phenotype is largely dependent on YAP1 rather than on TAZ.

We speculated that inhibition of YAP1 hyperexpression might prevent the development of tongue cancer in our tgMob1DKO mice. To choose a compound to exert YAP1 inhibition in vivo, we first tested the effects of the candidate compounds dasatinib, simvastatin, verteporfin, and the Rock inhibitor Y-27632 on YAP1 protein expression in the human OSCC cell line HSC4 (fig. S3A). We also evaluated the effects of these drugs on YAP1 activity in H1299-Luc cells in a reporter assay (fig. S3B). Dasatinib was the most effective YAP1 inhibitor in both of these assays, guiding us to choose dasatinib for our in vivo experiments. Biochemically, dasatinib is a multikinase inhibitor that efficiently blocks Src family kinases such as SRC, LCK, YES, and FYN (18). SRC directly and indirectly activates YAP1, and inhibition of SRC by dasatinib has been shown to efficiently suppress YAP1 activation (19).

To investigate the effect of pharmacological YAP1 inhibition on our TAM-inducible tgMob1DKO mice, we treated these animals with dasatinib or dimethyl sulfoxide (DMSO; vehicle control) 3 days before applying TAM ointment to the tongue (Fig. 4A). The mice were then sacrificed at 2 weeks after TAM. We found that dasatinib treatment strongly blocked both YAP1 protein expression (Fig. 4B) and the excessive cell proliferation associated with YAP1 hyperactivation (Fig. 4C). Macroscopically, the mucosal irregularity accompanied by keratinization obvious in tgMob1DKO+TAM mice had improved after dasatinib treatment (Fig. 4D). Histological examination of tongue epithelial cells revealed that, whereas DMSO-treated control mice all developed CIS at 2 weeks after TAM, the onset of CIS in dasatinib-treated mice was completely blocked, although a mild or moderate dysplasia was still present (Fig. 4D). Thus, dasatinib inhibits the onset of YAP1-induced tongue carcinomas. To confirm this effect of YAP1 inhibition in vivo, we treated tgMob1DKO+TAM mice with simvastatin in the same fashion and observed results similar to those achieved with dasatinib (fig. S3C). These data suggest that drug-mediated inactivation of YAP1 could be of therapeutic benefit in OSCC.

(A) Diagram of the protocol of the chemoprevention assay. tgMob1DKO mice received daily intraperitoneal injection of dasatinib or DMSO (control; n = 6 per group) for a total of 17 days starting 3 days (P18) before TAM application on P21. Mice were sacrificed at 2 weeks after TAM. (B) Representative images of IF detection of YAP1 in tongue epithelium from the dasatinib- or DMSO-treated mice in (A). Scale bar, 50 m. (C) Top: Representative Ki67 immunostaining of tongue epithelium from the mice in (A). Scale bar, 50 m. Bottom: Percentages of Ki67-positive cells in the sections in the top panels. (D) Top: Representative H&E staining of sections (left panels) and macroscopic views (right panels) of tongues from DMSO-treated (n = 6) or dasatinib-treated (n = 6) tgMob1DKO mice after 2 weeks of treatment. Scale bars, 100 m (left panels) and 1 mm (right panels). Normal, H&E-stained section of a tongue from a tgMob1DKO mouse treated with DMSO but not TAM (control). Bottom: Percentages of the DMSO- or dasatinib-treated mice in (A) showing the indicated lesions. Photo credit: Hirofumi Omori, Kobe University. (E) Growth in culture of SCC9 cells that Dox-inducibly overexpressed constitutively active YAP1 (YAP1-5SA) and were treated (+) or not () with Dox. (F and G) Growth in culture of HSC4 cells that were left untreated (parent) or treated with (F) si-scramble (siSC#1; control) or siYAP1#1 or (G) DMSO (control), dasatinib, verteporfin, or simvastatin. (H and I) Left: Volumes of tumors in nude mice (n = 12 per group) that were xenografted subcutaneously with (H) Dox-inducible shYAP1-expressing HSC4 cells or (I) unmodified HSC4 cells. Mice were supplied with (H) normal drinking water or water containing Dox (2 mg/ml), or (I) DMSO or dasatinib that was administered intraperitoneally on day 10 when tumors became visible. Right: Representative macroscopic view of the tumors evaluated in the left panels of (H) and (I) at 16 days after treatment. Scale bars, 10 mm. (J) Diagram of the protocol of the chemotherapy assay. tgMob1DKO mice received daily intraperitoneal injection of dasatinib or DMSO (n = 6 per group) for 2 weeks starting at 2 weeks after TAM. Mice were sacrificed at 7 weeks of age immediately at treatment end (right red arrow). (K) Top: Representative Ki67 immunostaining of tongue epithelium from the mice in (J) after 2-week treatment. Scale bar, 50 m. Bottom: Percentage of Ki67-positive cells in the sections in the top panels. (L) Left: H&E-stained sections (left panels) and macroscopic views (right panels) of the tongues of the mice in (J) after 2-week treatment. Scale bars, 100 m (left panels) and 1 mm (right panels). Right: Percentages of the mice in (J) whose tongues exhibited the indicated lesions after 2-week treatment. Photo credit: Hirofumi Omori, Kobe University. Data are shown as means SEM. *P < 0.05 and ***P < 0.001, t test.

Our findings that YAP1 activation causes very early OSCC onset, and that loss of YAP1 prevents the appearance of these tumors, prompted us to theorize that YAP1 must be a potent oncogenic initiator of OSCC. We next investigated whether YAP1 plays a crucial role in not only tumor initiation but also tumor progression. We engineered the human OSCC cell line SCC9, which features only low YAP1 expression (fig. S4, A and B), to overexpress YAP1 by transfecting it with a plasmid driving expression of the constitutively active YAP1-5SA mutant protein (fig. S4C). YAP1-overexpressing SCC9 cells showed greatly enhanced proliferation in vitro (Fig. 4E). We then transfected HSC4 cells, which naturally feature strong YAP1 expression (fig. S4, A and B), with YAP1 small interfering RNA (siRNA; fig. S4D) or treated them with a YAP1 inhibitor such as dasatinib, simvastatin, or verteporfin. In all these cases, YAP1 inhibition significantly suppressed HSC4 cell proliferation in vitro (Fig. 4, F and G). Moreover, siRNA-mediated YAP1 knockdown enhanced the sensitivity of HSC4 cells to the chemotherapeutic cisplatin (fig. S4E), implying that combining a YAP1 inhibitor with cisplatin might be an attractive new approach for OSCC therapy.

To examine the effects of YAP1 inhibition in vivo, we first xenografted doxycycline (Dox)inducible shYAP1-transfected HSC4 cells (fig. S4F) into nude mice, which were then supplied with normal drinking water (control) or water containing Dox. We found that Dox-induced inhibition of YAP1 expression efficiently suppressed the ability of these modified HSC4 cells to grow into tumors in vivo (Fig. 4H). We then xenografted unmodified HSC4 cells into nude mice and treated these animals with DMSO or dasatinib. Again, blocking YAP1 activity decreased OSCC development in these mice (Fig. 4I).

Last, we applied these findings to our TAM-induced tgMob1DKO mouse model of tongue cancer. We treated TAM-inducible tgMob1DKO mice with dasatinib soon after CIS onset at 2 weeks after TAM (Fig. 4J). Tumor cell proliferation was inhibited compared to DMSO-treated controls (Fig. 4K), and the progression of these lesions into invasive tongue cancer had slowed significantly at 4 weeks after TAM (Fig. 4L). Histological analysis revealed that there was no significant increase in TUNEL+ (terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labelingpositive) cells in the tongues of dasatinib-treated tgMob1DKO+TAM mice, indicating that dasatinib did not increase apoptosis but rather blocked cell proliferation (fig. S4G).

Together, these data indicate that endogenous YAP1 hyperactivation is involved in both OSCC onset and progression and is a driving force in tongue cancer in mice and humans. These results further strengthen our contention that YAP1 inhibitors may be promising novel agents for OSCC therapy.

Previous reports had suggested that nuclear localization of YAP1 was frequently observed at the precancerous stage of human OSCC (10). We obtained samples of nontumorous tongue tissue (NT-control) and tongue dysplasia, CIS, or invasive SCC from 86 patients at the National Hospital Organization Kyushu Cancer Center. These samples were immunostained to detect YAP1, and YAP1 levels were quantified using a grade scale (see Fig. 5A and Materials and Methods). As expected, NT-control epithelium showed weak YAP1 expression (mean grade = 0.7) only in the basal layer, with negligible YAP1 expression above the basal layer (Fig. 5, A and B). Most patients with tongue dysplasia showed enhanced YAP1 expression (mean grade = 3.5) in the nonbasal upper layer, indicating that YAP1 expression is higher than in controls from the early precancerous stage. Patients with CIS in the tongue displayed stronger nuclear staining of YAP1 than dysplastic patients, and patients with invasive SCC exhibited much more intense YAP1 staining than either of these (Fig. 5, A and B). We next tested for YAP1 activation using IHC evaluation of the expression of the YAP1 target genes CTGF, BIRC5, and TOP2A. In examining 14 OSCC specimens with high YAP1 protein levels and 14 specimens with low YAP1 protein levels, we found that CTGF protein tended to rise in the YAP1-high group (fig. S5A), and that the BIRC5 (fig. S5B) and TOP2A (fig. S5C) proteins were increased significantly in these same specimens. Thus, YAP1 activation appears to have a very important function in the onset and progression of tongue cancer not only in mice but also in humans.

(A) Left: Low-magnification (top panels; scale bar, 40 m) and high-magnification (bottom panels; scale bar, 10 m) views of representative YAP1-immunostained plus hematoxylin-counterstained sections of normal human tongue (mean YAP1 activity grade = 0.67; n = 56), dysplasia (mean grade = 3.5; n = 63), CIS (mean grade = 4.8, n = 26), and invasive SCC (mean grade = 6.4, n = 86). Right: Determination of YAP1 grade. Representative sections from the left panels were scored for YAP1 frequency and intensity as indicated. Scale bars, 10 m (frequency) and 3 m (intensity). The YAP1 grade was the product of these scores (see Materials and Methods). (B) Compilation of YAP1 grade scores in sections of human normal tongue, and tongues with dysplasia, CIS, or invasive SCC. Data are shown as means SEM. *P < 0.05 and ***P < 0.001, t test. (C) Kaplan-Meier curves showing overall survival (left) and relapse-free survival (right) of 86 tongue cancer patients who underwent surgical resection. The patients were divided into a high YAP1 expression group (n = 14) and a low YAP1 expression group (n = 72; see table S1). **P < 0.01 and ***P < 0.001, Wilcoxon test.

We then looked at the effect of high YAP1 expression on the overall survival and relapse-free survival of human tongue cancer cases. We examined the histories of our 86 selected tongue cancer patients, each of whom had undergone surgical resection at the National Hospital Organization Kyushu Cancer Center. We found that high YAP1 expression in human tongue cancer patients (n = 14) correlated with lymph node metastasis (table S1), decreased overall survival (Fig. 5C, left), and reduced relapse-free survival (Fig. 5C, right). Thus, elevated YAP1 activity in human tongue cancer is a negative prognostic indicator.

Human HNSCCs often bear mutations of TP53, elements of PI3K/PTEN signaling, FAT1, or elements of EGFR signaling (2). All of these entities have been previously reported to activate YAP1 in one or more cell types (1114). Mutation of TP63, a master regulator of squamous cells, is also frequently observed in human HNSCC, but its effects on YAP1 remain under debate (15, 16). We hypothesized that one or more of these mutations would activate YAP1 in transformed epithelial cells from an OSCC patient.

The WSU-HN30 human HNSCC cell line is HPV (), low in EGFR, and wild type for TP53, FAT1, and PTEN (20). We transfected these cells with siRNA against TP53, PTEN, or FAT1 (fig. S6A) or treated them with EGF (1 g/ml) for 24 hours. All of these cultures increased their expression and/or activation of YAP1 as determined by immunoblotting to measure YAP1/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and/or YAP1/phosphorylated YAP1 (pYAP1) ratios (Fig. 6, A and B, and fig. S6B). Nuclear YAP1 protein was also enhanced in these manipulated cells as detected by IF staining (Fig. 6C and fig. S6C). We next investigated the expression of CTGF, BIRC5, and TOP2A, which are major downstream targets of YAP1, and found that their mRNA levels were increased either by the silencing of TP53, PTEN, or FAT1 or by EGF treatment (fig. S7A). To confirm our results in another cell line derived from HPV () OSCC, we subjected Cal27 cells (TP53mt, PTENwt, and FAT1wt) to PTEN or FAT1 knockdown, or EGF treatment, and again detected up-regulation of YAP1 activity (fig. S7, B and C). Moreover, we found a positive correlation between TP53mt and YAP1 expression in our human clinical specimens (table S1). Thus, it seems that mutation of any of these tumor suppressor genes and/or increased EGF signaling can up-regulate YAP1 expression to some degree in OSCC cells. Intriguingly, some combinations of these gene alterations resulted in YAP1 activation to a high level (Fig. 6D). Thus, an accumulation of these mutations may explain the increased and sustained activation of YAP1 in head-and-neck cancer epithelial cells.

(A and B) Left panels: Immunoblots to detect YAP1 and pYAP1 in WSU-HN30 cells that were either (A) transfected with control siRNA (siSC#1) or with one of three independent siRNAs (#1 to #3) targeting TP53, PTEN, or FAT1 or (B) left untreated (Parent) or treated with EGF (1 g/ml). siRNA- or EGF-treated cells were harvested at 24 or 96 hours after treatment, respectively. Right panels: Ratios of YAP1/GAPDH (protein) and YAP1/pYAP1 (activity) were calculated as described in Materials and Methods. Data are presented as means SEM of (A) seven independent siRNA-transfected samples for each gene or (B) three EGF-treated cultures per group. (C) Top: IF-based detection (see Supplementary Materials and Methods) of nuclear versus cytoplasmic YAP1 in siRNA-transfected or EGF-treated WSU-HN30 cells treated as in (A) and (B). DAPI (blue), nuclei. Bottom: Ratio of cells with nuclear YAP1/cytoplasmic YAP1 in the top panels. Data are means SEM of three independent siRNA-transfected samples for each gene (siRNA transfection) or three cultures treated with EGF. (D) Top: Immunoblot to detect YAP1 and pYAP1 in WSU-HN30 cells that were transfected with the indicated siRNAs. Middle and bottom: Ratios of YAP1/GAPDH and YAP1/pYAP1 were analyzed and quantified as in (A) and (B). Data are means SEM of four independent experiments involving at least triplicate samples. *P < 0.05 and **P < 0.01, t test.

With respect to TP63, Mob1 deletion enhanced TP63 protein (p63) levels in mouse tongue epithelial cells (fig. S8A), and siRNA-mediated inhibition of Tp63 expression in SCC9 cells expressing Dox-inducible YAP1-5SA blocked their proliferation (fig. S8B). In addition, overexpression of Np63 only mildly interfered with YAP1 activation in the WSU-HN30 human tongue epithelial cell line (fig. S8, C to E).

The above data collectively indicate that TP53, FAT1, PTEN, and EGFR are all upstream regulators of YAP1, whereas TP63 is a downstream effector of YAP1. These findings prompted us to devise a model in which the mutation (functional inactivation) of TP53 plus a subset of these genes, including PIK3CA/PTEN, EGFR, and/or FAT1, results in YAP1 hyperactivation that may exceed an oncogenic threshold (fig. S9A). This elevated YAP1 may then activate downstream genes such as Np63 and may thereby initiate OSCC onset and/or progression.

In this study, we have demonstrated for the first time that YAP1 may be a strikingly potent oncogenic driver of OSCC onset and progression. Cancers usually initiate because of the additive or synergistic effects of several mutated genes that exert their effects during multistep carcinogenesis (1). However, because the onset of tongue tumors in our tgMob1DKO mice was so quick, we propose a new concept positing that OSCC may be initiated when sustained YAP1 activity exceeds a particular oncogenic threshold (refer to fig. S9A). Many recent reports have linked YAP1 activation to either loss-of-function (LOF) mutations of key genes such as TP53 and FAT1, or the triggering of pathways related to PI3K/AKT or EGFR (1114). We have confirmed these findings in human OSCC cells (Fig. 6, A to C, and fig. S7) and have established that an accumulation of YAP1 activity can be driven by various combinations of these alterations (Fig. 6D). Depending on the strength of YAP1 activation attributed to one alteration, the oncogenic threshold may be exceeded with only a few additional mutations.

The role of TP53 in OSCC poses an interesting conundrum. LOF of TP53 inhibits expression of PTPN14 and 14-3-3, which are downstream transcriptional targets of TP53 (11, 21), and so is likely to promote YAP1 activity. However, TP53 gain-of-function (GOF) mutations (e.g., R248L, R175H, and R273H), which are observed in 9.5% of HNSCCs, reportedly bind directly to and stabilize YAP1 (22), also promoting YAP1 activity. The binding of GOF-mutated TP53 to YAP1 can activate transcription factors such as NF-Y, whose target genes act to increase cell proliferation (23). Thus, both LOF and GOF mutations of TP53 can enhance YAP1 activity and so may contribute to human OSCC carcinogenesis. Nevertheless, because mice solely lacking normal TP53 function do not develop OSCC (6), there must be other factors required for the onset and development of OSCC.

Repeated exposure to carcinogens (including tobacco and alcohol), irritation of the oral mucosa (especially tongue epithelium) due to the presence of tooth decay, or mechanical stimulation by ill-fitting dentures are the main causes of human OSCC (1, 24). These events may also directly activate YAP1 or induce oncogenic mutations in the abovementioned genes that activate YAP1. Cigarette smoke extract (25) and mechanical stimulation (26) have both been shown to activate YAP1 in various cell types, including in esophageal and cervical cells. These observations support our hypothesis that OSCC is caused by the boosting of YAP1 activity over a certain threshold. Furthermore, although YAP1 protein itself is frequently activated and accumulates in most tumors (8), the actual DNA mutation of Hippo-related genes, including YAP1, is relatively rare in cancers (27). Thus, our work erases many years of doubt as to how HNSCCs can arise in the absence of GOF mutations of major oncogenes (28).

One possible reason for the frequent and early onset of OSCC in our mutant mice is the activation of Np63, a master regulator of epidermal keratinocyte proliferation and differentiation (29). Activated YAP1 binds directly to Np63 protein and stabilizes it (30). A lack of TP63 in mice results in the absence of the epidermis and its related appendages (29), and Tp63-deficient embryonic stem cells exhibit up-regulation of mesodermal genes (31). Conversely, overexpression of Np63 in the presence of KLF4 induces the conversion of fibroblasts to cells of the keratinocyte lineage (32). We found that TP63 accumulated in tongue epithelial cells in our mouse model of OSCC (fig. S8A). Last, we demonstrated that inhibition of Np63 expression blocked the cell proliferation induced by YAP1 overexpression (fig. S8B). We speculate that hyperactivation of YAP1 leading to high levels of stabilized Np63 may both skew cells toward the keratinocyte lineage and boost keratinocyte proliferation and dedifferentiation, which may, in turn, increase the chance of OSCC development. A second reason for the early onset of invasive SCC in our mutant mice may be increased production of BMP4. BMP4 is a soluble growth factor that plays an essential role in epidermal development by regulating Np63 (33). High levels of BMP4 were detected in tgMob1DKO tongue epithelial cells compared to controls when examined by microarray analysis (fig. S9B). A third possible reason for our observations may be the existence of positive feedback between EGF signaling and YAP1. YAP1 increases the transcription of EGF receptors (EGFR and ERBB3) and EGF-like ligands (HBEGF, NRG1, and NRG2) (16). Conversely, both HBEGF and NRG1 have been shown to activate YAP1 in ovarian cancer (14). Although we did not observe a significant increase in EGFR, ERBB3, or HBEGF mRNAs when MOB1 was deleted (YAP1 activated) in mouse tongue epithelium, we did detect elevation of NRG1/2 mRNAs (fig. S9B), suggesting the existence of an NRG1/2-(ERBB3)-YAP1-NRG1/2 autocrine loop that controls OSCC tumorigenesis and progression. All three of these mechanisms may contribute to OSCC genesis, perhaps explaining why the phenotype is so strong, especially in epidermal cells.

An important finding emerging from our study is that mice lacking MOB1 plus TAZ developed more aggressive invasive SCC than did mice lacking MOB1 alone. This result indicates that YAP1 and TAZ may be activated independently in the SCC context and that the mechanism by which MOB1A/B regulates YAP1 differs from its effects on TAZ in these malignancies. Further study will be required to understand and distinguish between the underlying molecular mechanisms. Nevertheless, our data imply that selective targeting of YAP1 may be an effective new mode of OSCC treatment.

Two TAM-inducible epidermal SCC models have been previously described. In the first model, the mutant mice bear a K-Ras transgene and an inducible Tp53 KO gene (34). Half of these mutants develop skin SCCs by 35 weeks after TAM. In the second model, the mice bear an AKT transgene and an inducible Tp53 KO gene, leading to HNSCC development in 50% of animals by 35 weeks after TAM (35). Thus, we were greatly surprised to observe CIS in the tongue as early as 1 week after TAM in our tgMob1DKO mutants, followed by the inevitable development of invasive SCC by 4 weeks after TAM. Considering that it takes more than 7 days to completely inhibit MOB1 protein expression (fig. S1C), it seems that Mob1a/b-deficient keratinocytes (which bear disruption of a single pathway) may become cancerous immediately without undergoing any other molecular alterations. Our mutant mice thus currently constitute the worlds fastest spontaneous cancer onset model. Moreover, cancer progression is synchronized in all these mutants, and the tumors are easily visualized on the mouse exterior. These characteristics make our model a particularly attractive tool for cancer research and the development of new anticancer drugs. This latter point is a pressing issue because, in the past, several dose-intensified chemo/radiotherapy trials were conducted for HNSCC treatment but quickly reached the limit of human tolerance, showing positive results for only a few select patients (3). Furthermore, recurrent and metastatic HNSCCs are refractory to both conventional chemotherapies and currently available molecular targeting drugs such as EGFR inhibitor (cetuximab) or anti-PD1 antibody (nivolumab), which only marginally improve patient survival (4). Our work has shown that inhibition of YAP1 not only prevents the onset of OSCC but also slows its progression. YAP1 may thus be an appealing molecular target for therapy of this devastating disease. We expect to use our mutant mice to identify new drugs targeting the Hippo pathway in epidermal cancers, including in HNSCCs, with the goal of bringing concrete benefits to patients.

Previously established mouse strains used in this study were Mob1aflox/flox; Mob1b/ (17), Rosa26-CreERT (The Jackson Laboratory), and Tazflox/flox (provided by J. Wrana). Yap1flox/flox mice were generated using Yap1flox/flox embryonic stem cells from the Knockout Mouse Project Repository (36). All mice were kept in specific pathogenfree facilities at Kobe and Kyushu Universities.

Human tongue SCC cell lines HSC3, HSC4, and SCC4 (all from the Japanese Collection of Research Bioresources); SCC9 and Cal27 (both from the American Type Culture Collection); WSU-HN30 (provided by S. Gutkind, University of California); and H1299-Luc (established by H.H.) were cultured in Eagles minimum essential medium, Dulbeccos modified Eagles medium (DMEM), DMEM/Hams F12 medium, or RPMI medium, respectively, supplemented with 10% heat-inactivated fetal bovine serum and 1% penicillin-streptomycin at 37C in a 5% CO2/95% air incubator. Hydrocortisone (400 ng/ml) was added to the medium of SCC4 and SCC9 cultures, in line with a standard protocol.

Mob1a/b homozygous double-mutant mice (Rosa26-CreERT; Mob1aflox/flox; Mob1b/) were generated by mating Rosa26-CreERT Tg mice with Mob1aflox/flox; Mob1b/ mice. Rosa26-CreERT Tg mice were in a C57BL/6 background, and Mob1aflox/flox; Mob1b/ mice were backcrossed to C57BL/6 for more than six generations. To delete the floxed Mob1a gene, TAM (Sigma-Aldrich) diluted in 100% ethanol (10 mg/ml) was applied daily directly to the mouse tongue for 5 days by brush. The area of application is indicated in fig. S1A. Before TAM application, mice were anesthetized with a mixture of medetomidine hydrochloride, midazolam, and butorphanol. Mob1aflox/flox; Mob1b/ mice treated with TAM were used as controls unless otherwise stated. Rosa26-CreERT; Mob1aflox/flox; Mob1b/; Yap1flox/flox and Rosa26-CreERT; Mob1aflox/flox; Mob1b/; Tazflox/flox mice were generated by mating Rosa26-CreERT; Mob1aflox/flox; Mob1b/ mice with Yap1flox/flox or Tazflox/flox mice, respectively.

The primers used for mouse genotyping polymerase chain reaction were as follows: Mob1awt/flox, GTCTCGTGAAGGGTCTTGAGG/CCTGGTTGGGGTGGAGAATCAA [wt, 319 base pairs (bp); flox, 450 bp]; Mob1a, GTAATGTGTTCAGCTATGCTTTGAC/CCTGGTTGGGGTGGAGAATCAA (551 bp); Mob1bwt, CTTCAGGATCCTTGGTGGTTATCAG/AGAGCAAGGGGAAAAGAAGCTCAATG (586 bp); Mob1bmutant, CTTCAGGATCCTTGGTGGTTATCAG/TCAGGGTCACAAGGTTCATATGGTG (673 bp); Rosa26-CreERT Tg, AAAGTCGCTCTGAGTTGTTAT/CCTGATCCTGGCAATTTCG (825 bp); Yap1wt/flox, GCCCAAACATACCCACGTAAT/CAGTCCAGTCAAGACAAGAT (wt, 192 bp; flox, 336 bp); Tazwt/flox, AAGCAGTTTCCACTTCATGAAAC/AGTCAAGAGGGGCAAAGTTGTGA (wt, 250 bp; flox, 330 bp).

Tumor tissues were fixed in 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) and embedded in paraffin. Sections (4 m) of tumors were cut for hematoxylin and eosin (H&E) staining. Diagnoses of tongue epithelial dysplasia, CIS, or invasive SCC were confirmed by two pathologists.

Primary tongue epithelium from 3-week-old Rosa26-CreERT; Mob1aflox/flox; Mob1b/ mice without TAM was obtained using a dermal keratinocyte isolation protocol (37). Briefly, resected tongue tissues were placed into ice-cold dispase digestion buffer [250 U of dispase (Godo Shusei) in PBS] and incubated overnight at 4C. The epidermis was slowly separated from the dermis using forceps and floated on trypsin solution (Gibco) at room temperature for 40 min to create a primary tongue epithelial cell suspension. Tongue epithelial cells were cultured in CnT-PR medium (CELLnTEC) and passaged more than 40 times to generate the iMob1DKO tongue epithelial cell line. Loss of Mob1a/b in these cells in vitro was induced by treating them with TAM (0.5 M; Toronto Research Chemicals) for 3 days.

Immunoblotting was carried out using a standard protocol and primary antibodies recognizing MOB1A (#E1N9D; Cell Signaling Technology), MST1 (#3682S; Cell Signaling Technology), LATS1 (C66B5; Cell Signaling Technology), YAP1 (#4912S; Cell Signaling Technology), pYAP1(S127) (#4911S; Cell Signaling Technology), TAZ (V386; Cell Signaling Technology), pTAZ (S89) (#75275; Cell Signaling Technology), CTGF (L-20; Santa Cruz Biotechnology), BIRC5 (71G4B7; Cell Signaling Technology), TOP2A (EP1102Y; Abcam), or TP63 (4A4; Abcam). Primary antibodies were detected using horseradish peroxidase (HRP)conjugated secondary rabbit antibody (#7074; Cell Signaling Technology). Endogenous GAPDH (FL-355; Santa Cruz Biotechnology) was used as the internal control. Quantification of signal intensity was performed using Fujifilm Multi Gauge software.

Mice tongue tissues were fixed in 4% PFA, embedded in paraffin, and sectioned (4 m) using standard procedures. IHC or IF staining was performed using an indirect method using primary antibodies recognizing YAP1 (WH0010413M1; Sigma), Ki67 (ab15580; Abcam), or TP63 (4A4; Abcam). Primary antibodies were detected using REAL EnVision HRP-rabbit/mouse (Dako) or Alexa Fluor 568 (Molecular Probes). Some slides were counterstained with Mayers hematoxylin (Muto) or 4,6-diamidino-2-phenylindole (DAPI; Dojindo) before mounting using PermaFluor (Thermo Scientific). For Ki67 positivity studies, 200 cells per mouse were examined.

From the population of patients who were treated at the National Hospital Organization Kyushu Cancer Center in Japan from 2008 to 2013, we selected 86 patients who had received surgical resection of tongue SCC as their first line of therapy and performed a retrospective review of their medical charts. Their resected cancer tissues (n = 86), which had been fixed in formalin, were stained with antibodies recognizing: YAP1 (WH0010413M1; Sigma), TP53 (DO7; Sigma), CTGF (ab6992; Abcam), BIRC5 (EP2880Y; Abcam), or TOP2A (TOP2A/1362; Abcam). Within these stained resected tissues, areas of NT epithelium, dysplasia, CIS, or invasive SCC were determined and levels of YAP1 activity (grade) were scored. YAP1 grade was defined by multiplying the YAP1 frequency score by the YAP1 intensity score, as previously described (38). A score of >8 classified a sample into the YAP1-high group.

To compare overall survival and relapse-free survival rates between groups of patients with high (n = 14) or low (n = 72) YAP1 expression, Kaplan-Meier curves were generated and a Wilcoxon test was used to analyze statistical differences. Overall survival was calculated on the basis of the length of time between date of surgery and date of death. Follow-up duration was 68.1 months on average (range of 3 to 128 months).

To investigate factors influencing YAP1 activity, the following clinicopathological factors were included in the univariate analyses: age, sex, history of smoking, history of alcohol, T stage (which describes the primary tumor size and site), N stage (which describes the degree of regional lymph node involvement), clinical stage, recurrence, degree of tumor differentiation, presence of multiple cancers, and TP53 mutation status [defined as previously described (39)] (see table S1). Univariate analyses were performed using the chi-square test.

siRNA targeting of YAP1, TP53, PTEN, FAT1, or NF2 expression was performed using siRNA oligonucleotides of the following sequences: si-scramble #1, CGUACGCGGAAUACUUCGA; si-scramble #2, UUCUCCGAACGUGUGUCACGU; si-scramble #3, siNC1 (Ambion); si-YAP1 #1, GGCCCUUUGAUUUAGUAUA; si-TP53 #1, GUAAUCUACUGGGACGGAA; si-TP53 #2, GAAAUUUGCGUGUGGAGUA; si-TP53 #3, GGUGAACCUUAGUACCUAA; si-PTEN #1, GCAUACGAUUUUAAGCGGA; si-PTEN #2, CACCGCAUAUUAAAACGUA; si-PTEN #3, CAAGAAAUCGAUAGCAUUU; si-FAT1 #1, GGACCGAAAUUCCUUCGAA; si-FAT1 #2, CGGAAGUUAUCGUUCCGAU; si-FAT1 #3, GACCGAAAUUCCUUCGAA; si-NF2 #1, CAAGCACAAUACCAUUAAA; si-NF2 #2, CCCAAGACGACGUUCACCGUGA; si-NF2 #3, AGAAGCAGAUUUUAGAUGA; si-TP63#1, GAACCGCCGUCCAAUUUUA; and si-TP63#2, UGAUGAACUGUUAUACUUA.

Transfection of siRNA oligonucleotides (10 nM) into exponentially growing WSU-HN30 tongue cancer cells was performed using Lipofectamine RNAiMAX (Invitrogen) following the manufacturers protocol. At 96 hours after transfection, protein lysates were subjected to immunoblotting and cells were IF-stained to detect YAP1 as described above.

WSU-HN30 cells (2 105) were seeded in six-well plates. After 48 hours, EGF (1 g/ml; PeproTech) was added to the culture medium and cells were incubated for 24 hours before harvesting. Immunoblotting and IF staining to detect YAP1 were conducted as described above.

To determine the in vitro effects of drugs known to target YAP1, HSC4 cells (1 104 per well in 24-well plates) were cultured for 1 to 3 days in DMEM/Hams F12 medium containing 5 M dasatinib (Abcam), 5 M verteporfin (USP), 5 M simvastatin (TCI), or vehicle (DMSO; negative control). Inhibition of cell growth was assessed by counting cell numbers per well.

To determine the in vivo effects of dasatinib and simvastatin on the initiation and progression of tongue cancer in tgMob1DKO mice, dasatinib (5 mg/kg, intraperitoneally), simvastatin (50 mg/kg, intraperitoneally), or vehicle (DMSO; negative control) was administered daily for 14 to 17 days starting either 3 days before TAM application (for Fig. 4A) or after CIS onset starting at 2 weeks after TAM (for Fig. 4J).

To determine the effect of YAP1 silencing in vivo, human tongue SCC cells (HSC4; 1 107) that had been transfected with Dox-dependent shYAP1 were injected subcutaneously into the flanks of 9-week-old female BALB/cAJcl-nu/nu mice (CLEA Japan). After visual detection of tumors (usually at 10 days after injection), mice were supplied with normal drinking water or water containing Dox (2 mg/ml). To determine the in vivo effects of dasatinib on human tongue SCC cells, nontransfected HSC4 cells (1 107) were injected subcutaneously into nude mice as above. After visual detection of tumors (usually at 10 days after injection), mice were treated daily with dasatinib (5 mg/kg, intraperitoneally) or vehicle (DMSO; negative control). In both cases, tumor volumes were measured every 4 days using calipers.

Unless otherwise indicated, all results represent the mean SEM. Statistical comparisons between different groups were performed using the two-tailed Students t test. For all statistical analyses, differences of P < 0.05 were considered statistically significant. All experiments were repeated at least three times.

Animal experiments were approved by the Kobe University (#P170604) and Kyushu University (#28-156) Animal Experiment Committees, and the care of the animals was in accordance with institutional guidelines. All clinical samples were approved for analysis by the Ethics Committee at the National Hospital Organization Kyushu Cancer Center (#2015-43). Written informed consent was obtained from all patients whose cancers were analyzed in this study.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/12/eaay3324/DC1

Supplementary Materials and Methods

Table S1. Clinicopathological features of 86 cases of human tongue squamous cell carcinoma.

Fig. S1. Induction of Mob1a/b deletion in tgMob1DKO mice by postnatal application of TAM.

Fig. S2. Cell-cell junction collapse and retained cell size of iMob1DKO cells and YAP1/TAZ expression and localization in tongue epithelium of tgMob1DKO, tgYap1TKO, and tgTazTKO mice.

Fig. S3. Effects of dasatinib, simvastatin, verteporfin, and Y-27632 on YAP1 protein expression and activation and tumor-suppressive effect of simvastatin.

Fig. S4. YAP1 expression in OSCC cell lines, the effect on an OSCC cell line of YAP1 depletion combined with cisplatin, and the effect of dasatinib on cell death in tgMob1DKO mice.

Fig. S5. YAP1 target gene expression correlates with YAP1 nuclear expression in human clinical OSCC specimens.

Fig. S6. Evaluation of gene knockdown and ectopic gene expression in the WSU-HN30 HNSCC cell line and activation of YAP1 by knockdown of TP53, PTEN, or FAT1.

Fig. S7. Activation of YAP1 target gene expression by molecules that are frequently altered in human OSCC.

Fig. S8. Positive correlation of Np63 protein expression with YAP1 protein expression.

Fig. S9. Graphical abstract and microarray analysis of growth factors and receptors whose mRNAs are up-regulated in tgMob1DKO tongue epithelial cells.

References (40, 41)

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: We thank H. Togashi, Y. Shimono, and K. Okada (all of Kobe University) for expert technical assistance and critical discussions. We thank J. Wrana (Lunenfeld-Tanenbaum Research Institute) for Tazflox/flox mice and J. S. Gutkind (University of California) for WSU-HN30 cells. Funding: We are grateful for the funding provided by the Japanese Society for the Promotion of Science (JSPS; grants 17H01400, 26114005, and 26640081 to A.S.); the Cooperative Research Project Program of the Medical Institute of Bioregulation, Kyushu University; Nanken-Kyoten, Tokyo Medical and Dental University (TMDU); the Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT; grant 11088019 to A.S.); the Japanese Agency for Medical Research and Development [P-CREATE (AMED); grant JP19cm0106114 to A.S.]; the Uehara Memorial Foundation (to A.S.); the Shinnihon Advanced Medical Research Foundation (to A.S.); the Daiichi-Sankyo Scholarship Donation Program (to A.S.). Author contributions: Conceptualization: H.O., M.N., T.M., and A.S.; analysis: H.O., M.N., T.M., Y.M., F.U., T. Nakano, and K.T.; resources: H.H., H.N., T.K., and M.M.; data curation: T. Nakano, K.S., K.M., and H.T.; writing of the original draft: H.O., T.M., and A.S.; supervision: M.M., K.M., T.W.M., K.N., and T. Nakagawa; project administration: T.M. and A.S.; funding acquisition: A.S. Competing interests: The authors declare that they do not have competing interest. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Go here to see the original:
YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma - Science Advances

New Research On Brain Structure Highlights Cells Linked To Alzheimer’s And Autism – BioSpace

New insights into the architecture of the brain have been revealed by scientists at the Wellcome Sanger Institute, the Wellcome-MRC Cambridge Stem Cell Institute and their collaborators. The researchers discovered that cells in the cerebral cortex of mice, called astrocytes, are more diverse than previously thought, with distinct layers of astrocytes across the cerebral cortex that provide the strongest evidence to date of their specialization across the brain.

Published today (16 March) in Nature Neuroscience, the most in-depth study of its kind is set to change the way we think about the brain and the role of cells such as astrocytes. This knowledge will have with implications for the study of neurological disorders, such as Alzheimers, multiple sclerosis and autism.

In the past 20 years, research has shown glial cells to be key players in brain development and function, as well as promising targets for better understanding neurological disorders. Alzheimers causes around two thirds of dementia cases in the UK, which affects around 850,000 individuals at present*. MS is a neurological disorder that affects the central nervous system and impacts around 100,000 people in the UK**. Autism affects around one in every hundred people in the UK***.

Glial comes from the Greek word for glue or putty. At one time, glial cells were thought of as 'brain putty' functionally similar, passive cells whose only function was to fill the space around the all important neurons. However, new studies are showing their critical importance in regulating neuron functions^. Astrocytes are a type of glial cell, so called because of their star-shaped structure^^.

Despite the wealth of knowledge on neuronal function and the organisation of neurons into layers, prior to this study there had been little investigation into whether glial cells across different layers showed different cellular properties. To answer this question, the researchers developed a new methodological approach to provide a more detailed view of the organisation of astrocytes than ever before.

Nucleic acid imaging was carried out on mouse and human brain samples at the University of Cambridge to map how new genes are expressed within tissue. These maps were combined with single cell genomic data at the Wellcome Sanger Institute to extend the molecular description of astrocytes. These data sets were then combined to create a three-dimensional, high-resolution picture of astrocytes in the cerebral cortex.

The team discovered that astrocytes are not uniform as previously thought, but take distinct molecular forms depending on their location in the cerebral cortex. They found that astrocytes are also organised into multiple layers, but that the boundaries of astrocyte layers are not identical to the neuronal layers. Instead, astrocyte layers have less sharply defined edges and overlap the neuronal layers.

Dr Omer Bayraktar, Group Leader at the Wellcome Sanger Institute, said: The discovery that astrocytes are organised into layers that are similar, but not identical to, neuronal layers redefines our view of the structure of the mammalian brain. The structure of the cerebral cortex can no longer simply be seen as the structure of neurons. If you want to properly understand how our brains work, you have to consider how astrocytes are organised and what role they play.

As well as increasing our understanding of brain biology, the findings will have implications for the study and treatment of human neurological disorders. Over the past decade glial cells, rather than neurons, have been heavily implicated in diseases such as Alzheimers and multiple sclerosis.

Professor David Rowitch, senior author of the study and Head of Paediatrics at the University of Cambridge, said: This study shows that the cortical architecture is more complex than previously thought. It provides a basis to begin to understand the precise roles played by astrocytes, and how they are involved in human neurodevelopmental and neurodegenerative diseases.

ENDS

Contact details:Dr Matthew MidgleyPress OfficeWellcome Sanger InstituteCambridge, CB10 1SAPhone: 01223 494856Email: press.office@sanger.ac.uk

Notes to Editors:

In the cerebral cortex of the mammalian brain, neurons are the cells responsible for transmitting information throughout the body. It has long been recognised that the 10-14 billion neurons of the human cerebral cortex are organised into six layers, with distinct populations of neurons in each layer that correspond to their function https://www.dartmouth.edu/~rswenson/NeuroSci/chapter_11.html

* More information on Alzheimers disease can be found here: https://www.alzheimersresearchuk.org/about-dementia/types-of-dementia/alzheimers-disease/about/

**More information about MS can be found here: https://www.mssociety.org.uk/about-ms/what-is-ms

*** More Information on autism is available from the National Autistic Society: https://www.autism.org.uk/about/what-is/asd.aspx

^ An overview of the changing status of glial cells is available at: https://blogs.scientificamerican.com/brainwaves/know-your-neurons-meet-the-glia/

^^ Only half of the cells in the human cerebral cortex are neurons, the other half are glial cells, of which astrocytes are a type. The molecular signals that astrocytes provide are essential for forming synapses between neurons. They regulate synapse formation in the developing brain, as well as refining synapses in the maturing brain 'pruning' extra synapses to sculpt neuronal networks.

Publication:

Omer Ali Bayraktar, Theresa Bartels and Staffan Holmqvist et al. (2020). Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nature Neuroscience. https://doi.org/10.1038/s41593-020-0602-1

Funding:

The study was supported by the Dr Miriam and Sheldon G. Adelson Medical Research Foundation, National Institute of Health (1R01 MH109912; P01NS08351), NINDS Informatics Center for Neurogenetics and Neurogenomics (P30 NS062691), Wellcome and the European Research Council (281961).

Selected websites:

Wellcome - MRC Cambridge Stem Cell InstituteThe Wellcome - MRC Cambridge Stem Cell Institute is a world-leading centre for stem cell research with a mission to transform human health through a deep understanding of normal and pathological stem cell behaviour. Bringing together biological, clinical and physical scientists operating across a range of tissue types and at multiple scales, we explore the commonalities and differences in stem cell biology in a cohesive and inter-disciplinary manner. In 2019, we relocated to a new purpose-built home on the Cambridge Biomedical Campus. Housing over 350 researchers, including a critical mass of clinician scientists, the Institute integrates with neighbouring disease-focused research institutes and also serves as a hub for the wider stem cell community in Cambridge. https://www.stemcells.cam.ac.uk/

About the University of Cambridge

The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 107 affiliates of the University have won the Nobel Prize.

Founded in 1209, the University comprises 31 autonomous Colleges, which admit undergraduates and provide small-group tuition, and 150 departments, faculties and institutions. Cambridge is a global university. Its 19,000 student body includes 3,700 international students from 120 countries. Cambridge researchers collaborate with colleagues worldwide, and the University has established larger-scale partnerships in Asia, Africa and America.

The University sits at the heart of the Cambridge cluster, which employs 60,000 people and has in excess of 12 billion in turnover generated annually by the 4,700 knowledge-intensive firms in and around the city. The city publishes 341 patents per 100,000 residents. http://www.cam.ac.uk

The Wellcome Sanger InstituteThe Wellcome Sanger Institute is a world leading genomics research centre. We undertake large-scale research that forms the foundations of knowledge in biology and medicine. We are open and collaborative; our data, results, tools and technologies are shared across the globe to advance science. Our ambition is vast we take on projects that are not possible anywhere else. We use the power of genome sequencing to understand and harness the information in DNA. Funded by Wellcome, we have the freedom and support to push the boundaries of genomics. Our findings are used to improve health and to understand life on Earth. Find out more at http://www.sanger.ac.uk or follow us on Twitter, Facebook, LinkedIn and on our Blog.

About WellcomeWellcome exists to improve health by helping great ideas to thrive. We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research. We are a politically and financially independent foundation. https://wellcome.ac.uk

See original here:
New Research On Brain Structure Highlights Cells Linked To Alzheimer's And Autism - BioSpace

Coriell Institute for Medical Research Awarded $8.6 Million Biobanking Contract from National Institute on Aging – Newswise

Newswise The National Institute on Aging (NIA) has extended its biobanking contract with the Coriell Institute for Medical Research for an additional five years.

The newly awarded $8.6 million funding keeps Coriell in place as the trusted steward of this collection and includes the addition of new innovative products to expand the collection. The NIA Aging Cell Repository was established at Coriell in 1974 and Coriell has continuously managed this unique resource ever since.

Coriells relationship with the NIA is among its oldest and most treasured, said Nahid Turan, Coriell's Chief Biobanking Officer. We at Coriell are committed to ensuring the success of this phenomenal collection of aging-related biospecimens, and we are thrilled at the opportunity to continue this important collaboration with NIA.

The NIA Aging Cell Repository contains a collection of high quality, well characterized human and animal cell line and DNA samples, representing aged human populations, age-related diseases, and animal models of aging and has seen significant changes in the last decade.

One major focus of the collection is now to generate valuable induced pluripotent stem cell (iPSC) lines, which can be used to model aging and perform disease in a dish experiments. These stem cells are created from skin or blood cells in the NIA collection, which were reverted into a stem cell state. From there, these cells can be coaxed into becoming nearly any other cell type in the body, including neuronal or nerve cells. Seven of these important iPSC lines have been added to the collection in the last three years, representing age related neurodegenerative disorders like Alzheimers disease as well as rare genetic diseases like Progeria and Werner Syndrome.

Late last year, the Repository also added more than 350 new cell lines collected from participants in a long-term study of aging known as The 90+ Study. Participants in this study all aged 90 years or older donated their DNA and agreed to answer questions over a period of time to help researchers better understand the lifestyle and biological factors which may contribute to advanced aging.

Read more:
Coriell Institute for Medical Research Awarded $8.6 Million Biobanking Contract from National Institute on Aging - Newswise

His Immune System Went Out of Whack. The Usual Treatment Didnt Work. Why? – The New York Times

Jagasia was concerned that although G.V.H.D. was the most likely diagnosis, it might not be the right one. The patient had already been tested for the usual infections seen in immune-suppressed patients. So he looked for other possible causes of the patients diarrhea. He didnt find any. The patient lost another 15 pounds. When he looked in the mirror, he hardly recognized himself. Jagasia arranged for the patient to start getting intravenous nutrition and began tapering one immune-suppressing medication in order to start another.

The patients son was in medical school in another part of the state and called home frequently. When his father finally told him how sick he was, his son got scared. His father was a minimizer. If he was saying this, things must be bad.

When he got off the phone, the young man immediately turned to the internet. He typed in gastroenteritis after ... stem-cell transplant. The first results that came up referred to a paper in a medical journal, Clinical Infectious Diseases, published nearly a decade earlier that identified an unexpected culprit: norovirus.

Norovirus is one of the most common causes of gastroenteritis in the world. In the United States, its linked to an estimated 21 million cases of nausea and vomiting every year. Diarrhea can be present but is not typically as severe as other symptoms. In a normal host, the infection resolves on its own after 48 to 72 hours, thanks to the hard work of the immune system. Even so, norovirus was not a common cause of diarrhea in those who are immunosuppressed. But in the medical-journal paper, the first of its kind, 12 patients who had a stem-cell transplant and developed a persistent diarrheal illness were found to have norovirus. And of those 12, 11 were initially thought to have G.V.H.D. In most of those cases, it was only after the immune-suppressing medications were reduced that the patients own defenses could come to the rescue and vanquish the virus.

The son immediately sent the paper to his father. Had he been tested for norovirus? he asked. The patient wasnt sure. He forwarded the journal article to Jagasia and asked if hed had this test. He hadnt. Jagasia was 99 percent certain that this was a wild-goose chase. Hed never seen norovirus in patients with compromised immune systems. Still, testing was easy.

When the test came back positive, Jagasia was stunned. He repeated the test. Positive again. He immediately started to taper the immune-suppressing medications. As the doses came down, the diarrhea slowed, and after a few weeks, it stopped completely. With the help of the IV nutrition, and a slowly improving appetite, the patient began to gain back the weight he lost. From the patients point of view, his son saved his life.

See the article here:
His Immune System Went Out of Whack. The Usual Treatment Didnt Work. Why? - The New York Times

China reports new progress in drug, therapies against Covid-19 – The Star Online

BEIJING: China has completed the clinical research of Favipiravir, an antiviral drug that has shown good clinical efficacy against the Covid-19 (coronavirus) outbreak, according to an official on Tuesday (March 17).

Favipiravir, the influenza drug which was approved for clinical use in Japan in 2014, has shown no obvious adverse reactions in the clinical trial, said Zhang Xinmin, director of the China National Center for Biotechnology Development under the Ministry of Science and Technology, at a press conference.

More than 80 patients have participated in the clinical trial in The Third People's Hospital of Shenzhen, south China's Guangdong Province, including 35 patients taking Favipiravir and 45 patients on a control group.

Results showed that patients receiving Favipiravir treatment turned negative for the virus in a shorter time compared with patients in the control group.

A multi-centred randomised clinical study led by the Zhongnan Hospital of Wuhan University also suggested that the therapeutic effect of Favipiravir is much better than that of the control group.

Favipiravir has been recommended to medical treatment teams and should be included in the diagnosis and treatment plan for Covid-19 as soon as possible, Zhang said.

A Chinese pharmaceutical company has been approved by the National Medical Products Administration to mass-produce the drug and ensure stable supply, Zhang added.

China is also pushing forward the utilization of some advanced technologies such as stem cell and artificial liver and blood purification in the treatment of severe cases.

Zhang said stem cell therapy proves effective in reducing severe inflammatory reactions caused by Covid-19, as well as reducing lung injury and pulmonary fibrosis in patients.

China has initiated several clinical research programs on stem cell therapy against Covid-19, including a stem cell drug that has been approved for clinical trial and a mesenchymal stem cell therapy.

Stem cell therapy has been used to treat 64 patients in severe and critical condition. Those patients' breathing difficulties were gradually relieved and they were generally cured in eight to 10 days.

The therapy also showed advantages in preventing pulmonary fibrosis and improving the long-term prognosis for patients.

The Chinese Society for Cell Biology and the Chinese Medical Association have jointly issued a guideline to standardize the clinical research and application of stem cell therapy against Covid-19.

Zhang said China is trying to use artificial liver and blood purification technology to treat critically ill patients. Patients receiving this treatment have seen reduced levels of inflammatory factors and improvement in chest imaging.

Their time on ventilator support has been decreased by an average of 7.7 days and the required ICU monitoring time has been shortened. - Xinhua/Asian News Network

Read more:
China reports new progress in drug, therapies against Covid-19 - The Star Online

Imfinzi in Combination with Standard-of-Care Chemotherapies Improves Survival in Lung Cancer – Curetoday.com

Final results of the phase 3 CASPIAN trial show that Imfinzi (durvalumab) in combination with a choice of standard-of-care chemotherapies demonstrates a sustained overall survival benefit in patients with extensive-stage small cell lung cancer.

We are pleased to see the sustained and meaningful survival benefit of Imfinzi for patients with small cell lung cancer after more than two years median follow up, Jose Baselga, executive vice president of oncology research and development at AstraZeneca, said in a company-issued press release. We have already received the first global regulatory approval for Imfinzi with etoposide plus either carboplatin or cisplatin and remain on track for more approvals soon as we provide patients an important new first-line treatment option.

Imfinzi a human monoclonal antibody that binds to PD-L1 and blocks the interaction of PD-L1 with PD-1 and CD80 counters the tumor's immune-evading tactics and releases the inhibition of immune responses.

Previous results of the trial showed that Imfinzi plus etoposide and either carboplatin or cisplatin chemotherapy improved overall survival defined by the start of treatment until the time of patient death versus standard-of-care chemotherapy alone.

Safety and tolerability data for Imfinzi were similar to previous safety results and will be presented at a future medical conference.

Read more from the original source:
Imfinzi in Combination with Standard-of-Care Chemotherapies Improves Survival in Lung Cancer - Curetoday.com

What Are Drug Prevention and Treatment Options for COVID-19? – Pharmacy Times

COVID-19 has changed life as we know it.

There is no preventive vaccine or specific treatment available, according to the CDC.

Control measures and infection prevention should be implemented, and patients should receive supportive care, as needed.

Patients who have mild symptoms and seek advice should be advised to drink fluids, self-quarantine for 14 days, and take OTC medication for fever or other symptoms. They should also contact their doctor for further advice and guidance to see if a coronavirus test is available and/or needed.

Those with difficulty breathing or shortness of breath and high fevers should be seen and may be admitted into the hospital for oxygen. Some patients even need a ventilator. They should, if possible, first call their local emergency department for instruction.

All patients should focus on prevention and social distancing. These tips from the CDC are helpful.

Several pharmaceutical companies are racing to develop an effective treatment for the virus that is now a global pandemic. There are several classes of drugs in development, including antivirals, immunotherapies, vaccinations, as well as other investigational options. It is unknown whether a single drug could work or if a combination is needed, similar to HIV treatment. Below is a table outlining each area.

Note: corticosteroids should generally be avoided, because of their potential to prolong viral replication. In some cases, steroids may be indicated for other reasons.

Vaccines

Suzanne Soliman, PharmD, BCMAS, is the founder and president of the Pharmacist Moms Group.

Original post:
What Are Drug Prevention and Treatment Options for COVID-19? - Pharmacy Times

Orchard Therapeutics Appoints Company Founder and Gene Therapy Pioneer Bobby Gaspar, MD, Ph.D., as New Chief Executive Officer – BioSpace

BOSTON and LONDON, March 18, 2020 (GLOBE NEWSWIRE) -- Orchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, today announced that company founder and gene therapy pioneer Bobby Gaspar, M.D., Ph.D., has been named chief executive officer, effective immediately. Dr. Gaspar, previously president of research, chief scientific officer, and a member of the Orchard board of directors, succeeds Mark Rothera, who has served as the companys chief executive officer since 2017. As part of this transition process, Frank Thomas, Orchards chief operating officer and chief financial officer, will take on the role of president.

As a world-renowned scientist and physician, and accomplished strategic and organizational leader with more than 25 years of experience in medicine and biotechnology, Bobby Gaspar is uniquely qualified to lead Orchard into the future, said Jim Geraghty, chairman of the Orchard board of directors. In addition, Frank Thomas proven track record of success in leading operations, corporate finance and commercialization at a number of publicly traded life sciences companies will continue to be invaluable in his expanded role. On behalf of the entire Board of Directors, Id like to personally thank Mark for his many contributions to building Orchard into a leading gene therapy company over the last three years and wish him all the best in his future endeavors.

One of the companys principal scientific founders, Dr. Gaspar has served on Orchards board of directors and has driven its research, development and regulatory strategy since its inception. Over the course of his long career he has been a leading force in the development of hematopoietic stem cell (HSC) gene therapy bringing it from some of the first studies in patients to potential regulatory approvals. Dr. Gaspars unparalleled expertise, in addition to his deep relationships with key physicians and treatment centers around the world, will continue to be integral to efforts to identify and treat patients with metachromatic leukodystrophy (MLD) and other diseases through targeted disease education, early diagnosis and comprehensive newborn screening.

Dr. Gaspar commented: I am honored to become Orchards next CEO at a time of such opportunity for the company and for patients with severe genetic disorders. Through the consistent execution of our strategy, our talented team has advanced a leading portfolio of gene therapy candidates, expanding our R&D, manufacturing and commercial capabilities. We will now focus on driving continued innovation and growth, as well as strong commercial preparation and execution. I look forward to providing greater detail around our commercialization plan, pipeline prioritization and how we can realize the full potential of our HSC gene therapy platform, in the coming quarter.

Mr. Thomas commented: Im excited to be part of this next phase of Orchards evolution as a gene therapy leader as we look to refine our strategic priorities, ensure financial strength through improved operating efficiencies and prepare for a new cycle of growth, which includes our anticipated upcoming launch of OTL-200 in Europe. Im confident we will achieve long-term growth and value for our shareholders while turning groundbreaking innovation into potentially transformative therapies for patients suffering from devastating, often-fatal inherited diseases.

Mr. Rothera commented: It has been a great privilege to lead Orchard and this outstanding management team for the past three years. Orchard is poised to make a huge difference to the lives of patients worldwide living with devastating rare genetic conditions. Having worked closely with Bobby for the last several years, I know that he is tremendously talented, extremely passionate about the patient-centric mission, and fully prepared to lead Orchard as it enters its next phase as a company.

About OrchardOrchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically-modified blood stem cells and seeks to permanently correct the underlying cause of disease in a single administration. The company has one of the deepest gene therapy pipelines in the industry and is advancing seven clinical-stage programs across multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist, including inherited neurometabolic disorders, primary immune deficiencies and blood disorders.

Orchard has its global headquarters in London and U.S. headquarters in Boston. For more information, please visit http://www.orchard-tx.com, and follow us on Twitter and LinkedIn.

Availability of Other Information About Orchard

Investors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (twitter.com/orchard_tx and http://www.linkedin.com/company/orchard-therapeutics), including but not limited to investor presentations and investor fact sheets, U.S. Securities and Exchange Commission filings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

Forward-Looking Statements

This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include express or implied statements relating to, among other things, the companys business strategy and goals, and the therapeutic potential of Orchards product candidates, including the product candidate or candidates referred to in this release. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, the risks and uncertainties include, without limitation: the impact of the COVID-19 virus on Orchards clinical and commercial programs, the risk that any one or more of Orchards product candidates, including the product candidate or candidates referred to in this release, will not be approved, successfully developed or commercialized, the risk of cessation or delay of any of Orchards ongoing or planned clinical trials, the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates, the delay of any of Orchards regulatory submissions, the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates, the receipt of restricted marketing approvals, and the risk of delays in Orchards ability to commercialize its product candidates, if approved. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards annual report on Form 10-K for the year ended December 31, 2019, as filed with the U.S. Securities and Exchange Commission (SEC) on February 27, 2020, as well as subsequent filings and reports filed with the SEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Contacts

InvestorsRenee T. LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com

MediaChristine C. HarrisonVP, Public Affairs & Stakeholder Engagement+1 202-415-0137media@orchard-tx.com

Go here to see the original:
Orchard Therapeutics Appoints Company Founder and Gene Therapy Pioneer Bobby Gaspar, MD, Ph.D., as New Chief Executive Officer - BioSpace