Author Archives: admin

Edited Transcript of SRPT earnings conference call or presentation 26-Feb-20 9:30pm GMT – Yahoo Finance

BOTHELL Mar 21, 2020 (Thomson StreetEvents) -- Edited Transcript of Sarepta Therapeutics Inc earnings conference call or presentation Wednesday, February 26, 2020 at 9:30:00pm GMT

* Alexander G. Cumbo

Sarepta Therapeutics, Inc. - Executive VP & Chief Commercial Officer

* Douglas S. Ingram

Sarepta Therapeutics, Inc. - President, CEO & Director

Sarepta Therapeutics, Inc. - Executive VP of R&D and Chief Medical Officer

* Ian M. Estepan

Sarepta Therapeutics, Inc. - Senior VP of Corporate Affairs & Chief of Staff

Sarepta Therapeutics, Inc. - SVP of Gene Therapy

Sarepta Therapeutics, Inc. - Executive VP, CFO & Chief Business Officer

* Christopher N. Marai

Nomura Securities Co. Ltd., Research Division - MD & Senior Analyst of Biotechnology

* Debjit D. Chattopadhyay

H.C. Wainwright & Co, LLC, Research Division - MD of Equity Research & Senior Healthcare Analyst

* Peter B. Kim

Sanford C. Bernstein & Co., LLC., Research Division - VP

Ladies and gentlemen, thank you for standing by, and welcome to the Sarepta Therapeutics Fourth Quarter 2019 Earnings Call. (Operator Instructions) As a reminder, today's program may be recorded.

I would now like to introduce your host for today's program, Ian Estepan, Senior Vice President, Chief of Staff and Corporate Affairs. Please go ahead, sir.

Ian M. Estepan, Sarepta Therapeutics, Inc. - Senior VP of Corporate Affairs & Chief of Staff [2]

Thank you so much, John, and thank you all for joining today's call. Earlier today, we released our financial results for the fourth quarter and full year 2019. The press release is available on our website at http://www.sarepta.com, and our 10-K was filed with the SEC earlier this afternoon. Joining us on the call today are Doug Ingram, Sandy Mahatme, Bo Cumbo, Dr. Gilmore O'Neill and Dr. Louise Rodino-Klapac. After our formal remarks, we'll open up the call for Q&A.

I'd like to note that during this call, we will be making a number of forward-looking statements. Please take a moment to review our slide on the webcast, which contains our forward-looking statements. These forward-looking statements involve risks and uncertainties, any of which are beyond Sarepta's control. Actual results could materially differ from these forward-looking statements, and any and such risks can materially and adversely affect the business, the results of operations and trading prices for Sarepta's common stock. For a detailed description of applicable risks and uncertainties, we encourage you to review the company's most recent annual report on Form 10-K filed with the Securities and Exchange Commission as well as the company's other SEC filings. The company does not undertake any obligation to publicly update its forward-looking statements, including any financial projections provided today based on subsequent events or circumstances.

And with that, I'd like to turn the call over to Doug Ingram for our corporate update.

--------------------------------------------------------------------------------

Douglas S. Ingram, Sarepta Therapeutics, Inc. - President, CEO & Director [3]

--------------------------------------------------------------------------------

Thank you, Ian. Good afternoon, and thank you all for joining Sarepta Therapeutics Fourth Quarter 2019 Conference Call.

In 2018, we defined our vision to become one of the world's leaders in precision genetic medicine to treat rare disease, founded both on our precise and efficient RNA platform and on the build of a gene therapy engine capable of rapidly advancing multiple constructs through development into the patient community. In 2019, we executed, further matured and brought that vision into greater focus. And in 2020 -- through 2020 we will, if successful, realize much of that vision.

We have an enormous number of milestones in 2020. But before we discuss them, let us review the progress that we have made in 2019. I will begin with our RNA platform.

As we announced at the JPMorgan conference in January, our fourth quarter 2019 revenue stands at $100 million. In our third full year since launch, our 2019 revenue was $381 million, a 26% increase over prior year. I will remind you that we have never taken a price increase since launch, so our growth comes from continuing to serve the Duchenne community.

Our 2020 guidance for EXONDYS is $420 million to $430 million. As we are just launching VYONDYS, we will wait until later this year before providing revenue guidance, but you can expect the launch curve similar to that of EXONDYS.

In the fourth quarter, we obtained FDA approval for our second RNA therapy, VYONDYS 53. The approval of VYONDYS was a win for objective evidence-based decision-making. It was a win for hard-working professionals at the FDA neurology division that was responsible for this review, and most importantly, it was a win for exon 53 amenable patients.

With regulatory pathway reconfirmed, we submitted our rolling NDA for casimersen, having announced positive results earlier in 2019. Assuming casimersen is approved, we will have 3 therapies capable of treating approximately 30% of the Duchenne community in the United States. We will have doubled the number of patients who may benefit from our PMO technology versus EXONDYS alone, and we will be among the exceedingly small number of biotechnology companies who have internally discovered, developed and brought to the patient community 3 or more medicines.

In 2019, we commenced our multi-ascending dose study for our next-generation PMO technology, the peptide-conjugated PMO or PPMO for short.

Now let's move on to our gene therapy engine. There, we've made great progress in 2019 as well. Starting with SRP-9001, our gene therapy for the treatment of Duchenne muscular dystrophy using our microdystrophin construct. We have completed all dosing in what became a 41-patient, placebo-controlled trial, Study 102. Patients are now crossing over at the end of their 48-week period. By now, between our first proof-of-concept study, our main study for 102 and our crossover, we have dosed more than 30 Duchenne boys with active gene therapy. The study continues uninterrupted, and the last patient last visit should occur in December of this year.

We have designed our next placebo-controlled trial using our commercial process material, and we've taken initial feedback from the agency. This trial, which we call Study 301 is designed as a global placebo-controlled, multi-center trial. We have made significant progress on manufacturing. With our partners Thermo Fisher and Catalent, we have built significant capacity with a dedicated facility completed in Lexington, Massachusetts and even greater capacity than that built at Catalent. Our hybrid manufacturing approach is taking shape with ADPD expertise at our Columbus site and a dedicated ADPD site in Burlington, Massachusetts. This intellectual hub has been responsible for some of our most meaningful advances in 2019.

Consider that we have now achieved at scale, commercially viable yields for SRP-9001, we announced at JPMorgan that we had commenced engineering runs. By now, I can tell you that we have commenced our GMP runs for SRP-9001, and we're making great progress on assay development as well.

We've made great progress on our limb-girdle pipeline in 2019. To remind you, LGMD, or limb-girdle muscular dystrophy, is an umbrella name for a collection of serious, often fatal neuromuscular diseases. None of these diseases have available therapies, so the opportunity to bring a better life for these patients is compelling. In the first quarter of 2019, we exercised our option and acquired Myonexus, gaining access to its 5 LGMD programs. And then we later entered into a license option with NCH to gain access to Dr. Zarife Sahenk's LGMD candidate for LGMD2A. These 6 programs together have the potential of providing treatments for over 70% of patients with LGMD.

In the first quarter of 2019, we presented expression and safety data from our first 3 patient proof-of-concept cohort for LGMD2E, and it was impressive. Expression was 50% on IHC and 30% -- 37% abnormal on Western blot. We came back in the fourth quarter, and we updated with 9-month functional data, indicating that every child was improving on every functional end point.

We commenced 1 additional higher-dose, 3-patient cohort in 2019 at a 4x higher dose with the goal of making a dose selection in 2020 this year.

Moving on to the rest of our gene therapy engine. 2019 was equally consequential. With our partner, Lysogene, we commenced a gene therapy trial for MPS IIIA or Sanfilippo Syndrome Type A devastating neurological lysosomal storage disease. We built out our gene therapy center of excellence in Columbus, Ohio. Our center of excellence is already building new constructs and advancing the science of gene therapy.

We entered into 14 transactions in 2019, and we in-licensed or purchased 18 new constructs, bringing the total number of research and development programs to 42 across our 2 platforms. And we have employed a clever incubation strategy that allows us to build an enormously large pipeline while still permitting us to remain laser-focused on our near-term objectives and milestones.

And of course, we entered into a transformational alliance with Roche in the fourth quarter of 2019 where Roche will take SRP-9001 to patients outside the United States. This alliance, by far, the largest ex-U. S. single candidate, license and biopharmaceutical history, validates our approach, our progress and the value of our program, but it also serves our mission. If SRP-9001 proves successful, Roche, with its very impressive ex-U. S. resources and international expertise, will bring our therapy to far more patients far faster than we could have ever done on our own. And it places us in an enviable position with the resources to drive our vision and to execute our plans. With the close of our alliance this quarter, we have well over $2 billion of cash on our balance sheet today; add to that the fact that we have just entered into an agreement to sell our VYONDYS priority review voucher for $111 million; add again to that our revenue this year for EXONDYS and VYONDYS, and it should become clear that we are well positioned with the resources, the assets and the talent to drive our ambitious strategy to fruition.

Looking forward, you will see that 2020 is dense with milestones. So starting with our gene therapy portfolio for 2020, with respect to SRP-9001, we will continue to execute Study 102 with our 48-week last patient last visit in December of this year. We will unblind, evaluate and release those results, which should occur in the first quarter of 2021.

We are preparing to commence our commercial supply trial, Study 301. Broadly, we have 3 work streams for Study 301. We must complete site initiation and training. We must complete our assay work, our engineering work and our GMP runs. And if all goes well, we should have GMP material released this July. We need to work with the division to obtain their concurrence on the commencement of Study 301. So of course, there's a lot to do here, but the team is making exceptional progress to date.

With respect to our LGMD pipeline, we have dosed all 3 patients now in our high-dose cohort for LGMD2E. We will have expression and safety results available in the second quarter, and we anticipate announcing that data at an appropriate medical meeting in the second quarter. We will make a formal dose selection decision in the third quarter. We will complete the assay and process development work for LGMD2E with the goal of having GMP material available in time to commence a trial in early 2021. We will also begin the ADPD work for other of our LGMD constructs as well.

We will continue our dialogue with the FDA and come to a view on the development and regulatory pathway for LGMD2E and then the remainder of the LGMD pipeline. Our goal is to have all of that completed by year-end, so we could commence a trial with commercial process material early next year.

We've also dosed 17 patients on our MPS IIIA gene therapy program and intend to complete all the dosing by the middle of the year. Our collaborator on CMT, otherwise known as Charcot-Marie-Tooth, Dr. Zarife Sahenk at Nationwide Children's Hospital, had intended to commence our proof-of-concept study for CMT last year but did not have NCH released material, enabling her to do that. That material should be available this year, and Dr. Sahenk intends to commence that study in 2020.

In addition to our gene therapy center of excellence in Columbus, Ohio, we are also building a separate gene-editing innovation center under the guidance of Dr. Charlie Gersbach of Duke University in Durham, North Carolina and should have that largely complete this year.

We have also significant milestones for our RNA platform this year. We should complete our rolling submission for casimersen in the second quarter of 2020. We plan to result -- to release the results from our PROMOVI study at the MDA Scientific Conference in March. These results from patients that met the enrollment criteria for 201/202, that's the study, which formed the basis for the eteplirsen approval, are consistent with the 201/202 data set. And we will have dosing and safety insight on our next-generation RNA platform, the PPMO, this year as well. If the PPMO is successful, it could be a significant advancement in our RNA technology and platform.

In summary, we have an enormous amount of work to do this year. But that work will be profoundly consequential for Sarepta and, of course, more importantly, for the patients that we serve. To those who may say our plans are ambitious, I would agree. But they are not driven by hubris. They are formed instead by the binding conviction founded on objective evidence that the science of genetic medicine has come of age, that a revolution in health care is upon us now, and that Sarepta is playing a leading role in translating that science to practical therapies that improve countless lives otherwise stolen by serious, rare genetic diseases. And it is in that spirit that I would invite you to join Sarepta and rare disease patients in the U.S. and around the world in recognizing Rare Disease Day this Saturday, February 29, as we continue to bring awareness about rare diseases and the work that remains to bring therapies to patients fighting those diseases every day.

And with that, I will turn the call over to Sandy to provide an update on the financials. Sandy?

--------------------------------------------------------------------------------

Sandesh Mahatme, Sarepta Therapeutics, Inc. - Executive VP, CFO & Chief Business Officer [4]

--------------------------------------------------------------------------------

Thanks, Doug. Good afternoon, everyone. Over the course of 2019, we advanced the business in several significant ways: we beat revenue guidance for EXONDYS 51; launched another of our RNA medicines, VYONDYS 53; significantly bolstered our financial position; and struck several new licensing deals, bringing our total number of development programs up to 42. We also started a partnership with Roche that closed earlier this month and that brought in $1.15 billion into the company. This collaboration brings significant capital to fully fund our pipeline, including our sharing payments, and it provides us access to Roche's significant expertise and greatly expand the global opportunity for our lead gene therapy program, SRP-9001.

Now moving to the financials. This afternoon's press release provided details for the fourth quarter of 2019 on a non-GAAP basis as well as a GAAP basis. The press release is available on Sarepta's website. Please refer to it for full reconciliation of GAAP to non-GAAP.

Net product revenue for the fourth quarter of 2019 was $100.1 million compared to $84.4 million for the same period of 2018. The increase primarily reflects higher demand for EXONDYS 51. On a GAAP basis, the company reported a net loss of $235.7 million and $140.9 million or $3.16 and $2.05 for basic and diluted shares for the fourth quarter of 2019 and '18, respectively.

We reported a non-GAAP net loss of $116.9 million or $1.57 per basic and diluted share in the fourth quarter of 2019 compared to a non-GAAP net loss of $58.7 million or $0.85 per basic and diluted shares in the fourth quarter of 2018.

In the last quarter of 2019, we recorded approximately $15.6 million in cost of sales compared to $13.1 million in the same period of last year. The increase was driven by royalties due to BioMarin Pharmaceuticals and University of Western Australia as well as higher production costs as a result of increasing demand for EXONDYS 51.

On a GAAP basis, we recorded $223.1 million and $146.2 million in R&D expenses for the fourth quarters of 2019 and 2018, respectively, which is a year-over-year increase of $76.9 million. This increase is primarily related to $40 million of increasing expenses in clinical and manufacturing, a $10.8 million increase in compensation and other personnel expenses as well as a $10.4 million increase in milestone cadence.

On a non-GAAP basis, R&D expenses were $135.4 million for the fourth quarter of 2019 compared to $77 million for the same period in 2018, an increase of $58.4 million. The year-over-year growth in non-GAAP R&D expenses was driven primarily due to a continuing ramp-up of our micro-dystrophin distribution program, our ESSENCE program and initiation of certain post-market studies for EXONDYS 51.

Turning to SG&A. On a GAAP basis, we recorded $81.4 million and $64.2 million of expenses in the fourth quarters of 2019 and 2018, respectively, a year-over-year increase of $17.2 million. On a non-GAAP basis, the SG&A expenses were $65.8 million for the fourth quarter of last year compared to $52.9 million for the same period of 2018, an increase of $12.9 million. The year-over-year increase was driven by significant organizational growth and expansion, supporting our commercial launch as well as 40 therapies in various stages of development across several therapeutic modalities.

On a GAAP basis, we recorded $4.8 million in other expenses for the fourth quarter of 2019 compared to $2.3 million of expenses for the same period of 2018. The unfavorable change is primarily driven by increase in interest expense, which is recognized for our new term loans that was received by the company in December of 2019.

We had approximately $1.1 billion in cash, cash equivalents and investments as of the end of last year. In addition to the closing of our alliance with Roche this quarter, we have well over $2 billion in cash on our balance sheet today.

With that, I would like to turn the call over to Bo for a commercial update. Bo?

--------------------------------------------------------------------------------

Alexander G. Cumbo, Sarepta Therapeutics, Inc. - Executive VP & Chief Commercial Officer [5]

--------------------------------------------------------------------------------

Thank you, Sandy. Good afternoon, everyone. Toward our 2019 objectives around execution and our commitment to deliver on our stated goals, I am pleased to report the following on behalf of the organization. We exceeded revenue consensus expectations for both the fourth quarter and the full year of 2019, totaling $100.1 million and $380.8 million, respectively. As Doug mentioned, our 2020 guidance for EXONDYS 51 is $420 million to $430 million. In terms of continuing to serve the community, we know that there are additional patients who may benefit from EXONDYS 51, and we will continue to overcome access and reimbursement challenges to get patients on therapy.

golodirsen, or VYONDYS 53, received accelerated approval by the FDA on December 12, 2019. VYONDYS 53 treats Duchenne muscular dystrophy patients who are amenable to skipping exon 53. Acting with urgency and the knowledge that patients were waiting, we launched VYONDYS 53 within 24 hours of FDA approval, just as we did with EXONDYS 51. We submitted all of our compendia, contracting and reporting requirements, and vyondys53.com, a critically important resource for families, went live. While we are leveraging our deep knowledge and expertise for the EXONDYS 51 launch, it is important to understand that there will be standard procedures and required reimbursement policies associated with launching a new drug with a unique NDC or National Drug Code. Our team is prepared to work through these requirements as we have in the past, and we anticipate a measured and steady launch trajectory for VYONDYS 53, resembling the launch curve for EXONDYS 51. The only difference is that we are preparing and planning for the amenable exon 53 space to be competitive.

In support of our goal to increase access for VYONDYS 53, we are pursuing a multi-pronged strategy. Although commercial and state Medicaid plans now have a much better understanding of Duchenne, we are continuing to educate about disease progression and the benefits of treatment. Our goal is to work towards coverage to be all-inclusive regardless of ambulation status, age or gender. We do expect commercial payers to have medical policies in place faster than Medicaid. We also understand that from our previous launch that the mix of commercial to Medicaid patients will adjust over time, and we believe it will eventually move towards a 50-50 mix or higher for Medicaid.

Further, we are continuing to engage with state Medicaid plans regarding the CMS guidance letter on the obligation of state Medicaid to make accelerated approval treatments available to patients. As you know, this is critically important for Duchenne based on the percent of patients covered under Medicaid plans.

While the launch over Christmas holiday did delay some physician and patients seeking treatment during that period of time, we have been receiving START Forms from top-tier centers across the U.S. and are working with health care providers to ensure they are educated around amendability for skipping exon 53, as this population is different from exon 51 with some exceptions. Epidemiology suggests that VYONDYS 53 can serve approximately 8% of the Duchenne community. But we will have to take into consideration that there are a number of patients already enrolled in or being recruited for clinical trials, or have a deletion that would be amenable to exon 51 and, therefore, could already be on EXONDYS 51.

With that said, we continue to have conversations with health care providers about the number of patients within their clinics and with payers about the number of patients eligible for treatment under their plan. We are working with both health care providers and payers to get all amenable patients on VYONDYS 53 as soon as possible. Our mission to be the global leader in precision-genetic medicine started with EXONDYS 51 and have continued with the approval and launch of VYONDYS 53. We are now preparing for the potential launch of casimersen for patients amenable to skipping exon 45. Behind these important medicines is an industry-leading pipeline of programs, 42 in all, driven by new modalities designed to treat complex rare diseases, including MPS IIIA and neuromuscular dystrophy. Sarepta is working with urgency and is focused on understanding the epidemiology and global prevalence of these diseases.

We are continuing to refine our analysis and uncover additional insights while collaborating with top neuromuscular specialists. Each day, we are learning more about these diseases. And with each piece of evidence that we gather, we are able to apply these insights to our disease awareness and patient identification efforts that are already underway.

2019 was a great -- was a year of great accomplishments, not only for the commercial organization but the company overall. Looking to the future, patient care will continue to be our driving force as we translate scientific innovations into medicines designed to improve the lives of patients around the world.

And with that, I'll turn the call back over to Doug.

--------------------------------------------------------------------------------

Douglas S. Ingram, Sarepta Therapeutics, Inc. - President, CEO & Director [6]

--------------------------------------------------------------------------------

Thank you, Bo, and thank you, Bo and Sandy. With that, let's open the call for questions.

================================================================================

Questions and Answers

--------------------------------------------------------------------------------

Operator [1]

--------------------------------------------------------------------------------

(Operator Instructions) Our first question comes from the line of Ritu Baral from Cowen.

--------------------------------------------------------------------------------

Ritu Subhalaksmi Baral, Cowen and Company, LLC, Research Division - MD & Senior Biotechnology Analyst [2]

--------------------------------------------------------------------------------

Doug, can you let us know when the last patients for gene therapy was dosed? Basically, what is the shortest follow-up period, both for microdystrophin as well as limb-girdle? And can you talk about the safety profile, especially liver, especially platelets, that you've seen in that time period for both programs?

--------------------------------------------------------------------------------

Douglas S. Ingram, Sarepta Therapeutics, Inc. - President, CEO & Director [3]

--------------------------------------------------------------------------------

Well, I can just tell you very broadly that as I sort of backward engineer, we're going to have the -- for the 41-patient study, 102, the last patient last visit will be in December. So if you work backwards, you'll see that the last patient was right at -- I think it actually might have been the very first weekend in 2020. So that was the first 41 patients dosed. We're continuing on an ongoing basis to those patients on crossover as well. There's a significant number, as I've mentioned to you now. But in the Study 102, between the proof-of-concept 101, between the main 41-patient study and between the crossovers, we've dosed over 30 patients with active therapy. We have now dosed 6 patients with limb-girdle, both the previous dose and now the higher dose in limb-girdle. And of course, a lot of that's blinded, so that we'll all see together both the safety and -- the full safety and efficacy. But broadly speaking, I will say, again, consistent with our preclinical models, we have never seen anything that looks like a complement or reductions in platelet counts below the normal level. So things continue as they were. Study 102 continues, completely uninterrupted, making great progress there. The exciting thing about 102 is that we'll have last patient in December, and we'll have a readout in the first quarter of 2021. And I will remind you that is a readout, not merely on expression and on safety but also on function using NSAA. Thank you for that question.

--------------------------------------------------------------------------------

Operator [4]

--------------------------------------------------------------------------------

Our next question comes from the line of Tazeen Ahmad from Bank of America.

--------------------------------------------------------------------------------

Continue reading here:
Edited Transcript of SRPT earnings conference call or presentation 26-Feb-20 9:30pm GMT - Yahoo Finance

Stem Cell Alopecia Treatment Market Booming by Size, Revenue and Top Growing Companies APEX Biologix, Belgravia Center, RepliCel, Riken Research…

Verified Market Research offers an overarching research and analysis-based study on the Stem Cell Alopecia Treatment Market, covering growth prospects, market development potential, profitability, supply and demand, and other important subjects. The report presented here comes out as a highly reliable source of information and data on the Stem Cell Alopecia Treatment market. The researchers and analysts who have prepared the report used an advanced research methodology and authentic primary and secondary sources of market information and data. Readers are provided with clear understanding on the current and future situations of the Stem Cell Alopecia Treatment market based on revenue, volume, production, trends, technology, innovation, and other critical factors.

Get | Download Sample Copy @ https://www.verifiedmarketresearch.com/download-sample/?rid=15102&utm_source=MSN&utm_medium=003

Stem Cell Alopecia Treatment Market Leading Players:

The report offers an in-depth assessment of key market dynamics, the competitive landscape, segments, and regions in order to help readers to become better familiar with the Stem Cell Alopecia Treatment market. It particularly sheds light on market fluctuations, pricing structure, uncertainties, potential risks, and growth prospects to help players to plan effective strategies for gaining successful in the Stem Cell Alopecia Treatment market. Importantly, it allows players to gain deep insights into the business development and market growth of leading companies operating in the Stem Cell Alopecia Treatment market. Players will also be able to anticipate future market challenges, sales scenarios, product price changes and other related factors.

Ask for Discount @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=15102&utm_source=MSN&utm_medium=003

Table of Contents :

Executive Summary: It includes key trends of the Stem Cell Alopecia Treatment market related to products, applications, and other crucial factors. It also provides analysis of the competitive landscape and CAGR and market size of the Stem Cell Alopecia Treatment market based on production and revenue.

Production and Consumption by Region: It covers all regional markets to which the research study relates. Prices and key players in addition to production and consumption in each regional market are discussed.

Key Players: Here, the report throws light on financial ratios, pricing structure, production cost, gross profit, sales volume, revenue, and gross margin of leading and prominent companies competing in the Stem Cell Alopecia Treatment market.

Market Segments: This part of the report discusses about product type and application segments of the Stem Cell Alopecia Treatment market based on market share, CAGR, market size, and various other factors.

Research Methodology: This section discusses about the research methodology and approach used to prepare the report. It covers data triangulation, market breakdown, market size estimation, and research design and/or programs.

Why to Buy this Report?

The report is a perfect example of a detailed and meticulously prepared research study on the Stem Cell Alopecia Treatment market. It can be customized as per the requirements of the client. It not only caters to market players but also stakeholders and key decision makers looking for extensive research and analysis on the Stem Cell Alopecia Treatment market.

Complete Report is Available @ https://www.verifiedmarketresearch.com/product/stem-cell-alopecia-treatment-market/?utm_source=MSN&utm_medium=003

About us:

Verified market research partners with the customer and offer an insight into strategic and growth analyzes; Data necessary to achieve corporate goals and objectives. Our core values are trust, integrity and authenticity for our customers.

Analysts with a high level of expertise in data collection and governance use industrial techniques to collect and analyze data in all phases. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise and years of collective experience to produce informative and accurate research reports.

Contact us:

Mr. Edwyne FernandesCall: +1 (650) 781 4080Email: [emailprotected]

Tags: Stem Cell Alopecia Treatment Market Size, Stem Cell Alopecia Treatment Market Trends, Stem Cell Alopecia Treatment Market Forecast, Stem Cell Alopecia Treatment Market Growth, Stem Cell Alopecia Treatment Market Analysis

Our Trending Reports

Stem Cell Alopecia Treatment Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read the original post:
Stem Cell Alopecia Treatment Market Booming by Size, Revenue and Top Growing Companies APEX Biologix, Belgravia Center, RepliCel, Riken Research...

Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury – Science Advances

Abstract

Platelet responses have been associated with end-organ injury and mortality following complex insults such as cardiac surgery, but how platelets contribute to these pathologies remains unclear. Our studies originated from the observation of microvascular platelet retention in a rat cardiac surgery model. Ensuing work supported the proximity of platelet aggregates with perivascular mast cells (MCs) and demonstrated that platelet activation triggered systemic MC activation. We then identified platelet activating factor (PAF) as the platelet-derived mediator stimulating MCs and, using chimeric animals with platelets defective in PAF generation or MCs lacking PAF receptor, defined the role of this platelet-MC interaction for vascular leakage, shock, and tissue inflammation. In application of these findings, we demonstrated that inhibition of platelet activation in modeled cardiac surgery blunted MC-dependent inflammation and tissue injury. Together, our work identifies a previously undefined mechanism of inflammatory augmentation, in which platelets trigger local and systemic responses through activation of perivascular MCs.

More than 225,000 cardiac surgeries are performed annually in the United States (1). While these procedures provide life-saving corrections of coronary blood flow or valvular abnormalities, the inherent combination of surgical trauma, extracorporeal perfusion, and ischemia/reperfusion (I/R) injury often evoke harmful systemic inflammatory responses (2). These inflammatory responses prominently manifest as acute loss of vascular tone (approximately 25% of patients) (3) but are also linked to an ongoing, high incidence of end-organ damage such as acute kidney injury [up to 54% for all stages (4)]. As a consequence, anti-inflammatory interventions have been identified as a key to improve disease outcomes. Since the underlying basis for inflammatory activation remains poorly defined, appropriate ways to modify inflammation during cardiac surgery have remained elusive.

Platelets are increasingly recognized as circulating immune cells, which intimately associate with activated microvascular endothelia (5) and which have the capacity to markedly influence inflammation through direct cell-cell communications and the secretion of inflammatory mediators [reviewed in (6)]. The occurrence of platelet activation during cardiac surgery is a well-established phenomenon (7), and there is mounting evidence that platelet-dependent inflammatory responses are relevant to patient outcomes. Hence, we have recently observed that platelet responses, measured as a drop in platelet count, are an independent risk factor to acute kidney injury and mortality following coronary bypass grafting surgery (4). However, how platelets contribute to the harmful responses elicited by cardiac surgery remains undefined. Here, we sought to investigate whether platelets have a specific role in activating mast cells (MCs) and to depict the implications of such an interaction in a preclinical model of extracorporeal circulation.

In our previous work, which focused on the early events following cardiopulmonary bypass (CPB), we established that MCs are critical effector cells for injurious and inflammatory responses in a rat model (8) as well as in patients undergoing cardiac surgery (9). These observations linked perioperative inflammatory responses to a cell type that is increasingly recognized as a master regulator of early inflammation (10). Strategically located at endothelial and epithelial interfaces, MCs assume a critical role in organizing responses to pathogens and tissue stress such as I/R through the release of powerful preformed and de-novo synthesized effector molecules, which promote recruitment of inflammatory cells and facilitate their tissue infiltration [reviewed in (10)]. Dysregulated, widespread activation of MCs is a critical determinant of mortality, e.g., in anaphylaxis (11) and hemorrhagic fever (12), by causing shock and vascular leakage. What defines the role of MCs in these pathologies is their close association with blood vessels, which ensures that MC productsbeyond their local tissue effectsact directly on endothelial cells and can enter the circulation to rapidly propagate systemic and distant-site inflammation. The significant MC activation observed during cardiac surgery therefore constitutes an important event, which may lead toward an augmented systemic inflammatory response and singles out MC activation as a novel therapeutic target in the ongoing attempt to blunt harmful inflammation in these patients. However, what causes initial activation of MCs within the complex sequence of events elicited by cardiac surgery remains unknown, limiting our understanding of cardiac surgeryassociated inflammation and, specifically, our ability to develop new therapeutic interventions to improve outcomes.

In the present study, we sought to identify the factor(s) contributing to MC activation during cardiac surgery using CPB circulation. Since MCs have a perivascular location, we investigated the possibility that the MC-activating factor acts from within the circulation.

The rat deep hypothermic circulatory arrest (DHCA) model recapitulates several pathophysiologic stimuli present during cardiac surgery such as (nonpulsatile) CPB, blood contact to artificial surfaces of the extracorporeal circulation, cooling, and whole-body I/R. Using this DHCA model, we have previously demonstrated that one of the earliest signs of tissue injury is evidenced in the intestines and that MCs at this site are crucial effectors of pathology through release of preformed mediators (8). Therefore, we examined this site for signs of increased platelet aggregation after DHCA and observed in hematoxylin and eosin staining several platelet-rich thrombi in small and large intestinal sections (Fig. 1A). This observation was confirmed by immunostaining for the platelet-specific marker CD41 in samples obtained 2 hours after completion of CPB (Fig. 1, B to D). Aggregation of platelets was specifically associated with tissue experiencing injury because no platelet aggregation was observed in the lung and brain, where no appreciable tissue injury was observed at this early time point [(8) and fig. S1]. As a consequence, these findings motivated a more detailed investigation into a possible link between platelet deposition and early MC-mediated injury.

(A) Hematoxylin and eosin staining of rat colons 2 hours after completion of the DHCA model. Arrow indicates platelet-rich thrombus in a small submucosal vessel. Immunofluorescence staining for CD41 (green) in sham (B) or experimental (C and D) animals 2 hours after completion of DHCA model (4,6 diamidino-2-phenylindole nuclear counterstain). Representative images of n = 4 per condition; magnification, 200. (D) Insert in (C) in 600. (E) Z-stack confocal laser scanning micrographs of whole-mount sections (ear) taken from Mcpt5-Cre tdTomatofl/fl mice 60 min after intravenous injection of a collagen and epinephrine mixture. Endogenously expressed tdTomato (red) outlines MCs with additional staining performed against CD41 (green) and CD31 (blue). An animated three-dimensional reconstruction can be viewed in the Supplementary Materials. (F) MC granule staining [tetramethyl rhodamine isothiocyanate (TRITC)avidin, red; arrows indicate released MC granules] reveals activated MCs in close vicinity to intravascular (anti-CD31, blue) platelet aggregates (anti-CD41, green). Representative images of n = 4 per condition. (G) Rectal temperature following collagen and epinephrine injection (CollE) in comparison to anaphylaxis after sensitization with trinitrophenol (TNP)specific IgE and exposure to TNP-conjugated ovalbumin (TNP OVA) or vehicle control treatment. In addition, platelets were activated with a monoclonal antibody against mouse integrin IIb, clone MWReg30 (MWReg). A subset of animals was platelet-depleted before receiving collagen and epinephrine (CollE Plt dplt) or MWReg (MWReg Plt dplt). n = 6 per condition. *P < 0.05 versus vehicle control, two-way ANOVA. (H) Plasma chymase levels following collagen and epinephrine, or MWReg injection or TNP OVA anaphylaxis. Data are represented as the means SD. n = 4 to 6 per condition. *P < 0.05 versus vehicle control and #P < 0.05 versus respective treatment group, one-way ANOVA and Tukeys multiple comparisons test.

Platelets, like MCs, can release large amounts of preformed inflammatory mediators; thus, they have the potential to rapidly initiate responses upon activation (6). We hypothesized that platelets may trigger early MC-mediated tissue injury in the DHCA model through their capacity to directly activate MCs. Since platelets are typically intravascular while MCs are extravascular, we sought to examine how this purported interaction could occur. Using microscopy of whole-mount vascular beds, we examined the spatial relationship between activated platelets and perivascular MCs following platelet activation in Mcpt5-Cre tdTomatofl/fl mice. In these animals, MCs harbor a red fluorescent dye, which allows for direct microscopic visualization. We induced specific activation of platelets in these mice by intravenous administration of a cocktail of collagen and epinephrine, carefully titered to cause systemic platelet activation but not mortality. We then examined the vasculature of the mouse ear for microvascular platelet aggregation using microscopy. We found numerous platelet aggregates at the inner walls of blood vessels in close proximity to perivascular MCs (Fig. 1E). Because the genetic elements of Mcpt5 drive tdTomato expression in MCs, red fluorescence is mostly cytoplasmic and does not readily denote degranulation. Therefore, to evaluate the actual degranulation of MCs, we stained MC granules by using avidin, which is routinely used for MC granule staining (8, 13), and found that several of these MCs showed signs of degranulation (Fig. 1F). To confirm that significant MC activation occurred following platelet activation, we examined collagen and epinephrinetreated mice for signs of shock, a classical manifestation of systemic MC activation. It is known that when mice are subjected to immunoglobulin E (IgE)mediated MC activation, they experience anaphylaxis, which is indicated by a sharp drop in core body temperature (13). We observed that collagen and epinephrinetreated mice experienced a sharp drop in core body temperature, which was attributable to MC activation based on the high levels of chymasea major prestored MC mediator (10)detected in the plasma of these mice (Fig. 1, G and H). To confirm the contribution of platelets to this MC-mediated anaphylaxis response, we depleted platelets before administration of the collagen and epinephrine cocktail and found that it abrogated the hypothermic response (Fig. 1G). Thus, specific activation of platelets results in degranulation of perivascular MCs.

We next investigated the mechanism of platelet-mediated MC activation. The close spatial relationship between platelet aggregates and perivascular MCs on apposing sides of the vasculature raised the possibility that activated platelets release bioactive agents that traverse the endothelial barrier to stimulate MC degranulation. Therefore, we examined whether any secreted products of platelets had MC-activating properties by applying conditioned medium from activated human platelets on to two different human MC lines [ROSA (14) and LAD2 (15)]. Cell-free conditioned medium from platelets activated by either thrombin, collagen, or convulxin, but not from resting platelets, evoked a comparable MC degranulation response from both MC lines (Fig. 2A). The magnitude of the MC responses was dependent on the concentration of platelets in the conditioned medium and the duration of time that the platelets were activated (Fig. 2A). To further define the nature of the platelet factor(s), we ultracentrifugated the conditioned medium after platelet activation and observed that MC-stimulating activity was contained in the supernatant and not in the microparticle pellet. Furthermore, the soluble portion obtained from freeze-thawed resting platelets (to release their cellular content without activation) only marginally activated MCs, suggesting that the MC-activating factor(s) was not stored in significant quantities as a preformed mediator. Together, these in vitro observations suggest that MC activation is not dependent on direct contact and that soluble factors formed after platelet activation can directly trigger MC degranulation.

(A) Isolated platelets were activated for indicated periods (5, 15, and 30 min) and at indicated concentrations (1 107, 5 106, 2.5 106, and 1 106 platelets/ml) with thrombin (or convulxin where indicated). Two MC lines [ROSA (R) and LAD2 (L)] were then exposed to cell-free supernatant from this reaction and MC degranulation measured by tryptase activity assay. In addition, supernatant from activated platelets was ultracentrifuged, and the pelletresuspended in Tyrodes buffer (MP, microparticle pellet)or the supernatant (MPS, microparticle supernatant) was added to MCs. Last, resting platelets (1 107) were freeze-thawed and centrifuged, and debris-free supernatant was tested on MCs (Rest F/T). T, Tyrodes buffer; I, ionomycin positive control; R, resting platelet supernatant. (B) For biochemical characterization of MC-activating effect, LAD2 cells were exposed to supernatant from activated platelets without further treatment (AP), after boiling for 30 min (APb), incubation on activated charcoal (APc), or following isolation of lipid fraction (AP-l). T-l, lipid fraction from Tyrodes buffer; R-I, lipid fraction from resting platelet supernatant. (C) LAD2 cells were pretreated with antagonists against various lipid mediators [BAY-u 3405 (10 M): Bay; L798,106 (100 nM): L798; Ex26 (10 M): Ex; AH 6809 (10 M): AH; montelukast (100 M): Mo; WEB2086 (0.1 to 100 M): Web] before exposure to heat-treated activated-platelet supernatant. Purified PAF was added at 0.1 to 10 M. Degranulation was measured using -hexosaminidase assay. NS, not significant. (D) Quantitative determination of PAF in supernatants from resting and activated platelets and activated platelet supernatant absorbed with activated charcoal. Data are represented as the means SD. *P < 0.05 versus resting platelet supernatant and #P < 0.05 versus respective activated platelet supernatant, one-way ANOVA and Tukeys multiple comparisons test. All data derived from four independent experiments were performed in triplicate wells. PRP, platelet-rich plasma.

We next sought to determine the identity of the MC-activating factor(s) in the platelet-conditioned medium. Notably, boiling of the platelet supernatant did not reduce MC-activating activity, whereas absorption with activated charcoal abrogated it, suggesting that the active component was a lipid compound (Fig. 2B). We confirmed this by preparing a lipid extract of the conditioned medium and observed that MC-activating activity was largely contained in this extract. Since platelets are already known to produce several prominent bioactive lipid mediators, we undertook a screening experiment of possible MC-activating candidates. Using antagonists to leukotriene receptors (montelukast: 1 to 100 nM), the prostaglandin EP1/EP2 receptor (AH 6809: 1 to 100 M), the EP3 receptor (L-798,1016: 1 to 100 nM), the dual thromboxane TP/prostaglandin DP2 receptor (BAY-u 3405: 0.1 to 10 M), or the shingosine-1-phosphate receptor 1 (Ex-26: 1 to 100 M) before exposure to the activated platelet-conditioned medium, we observed no appreciable decline in MC activation (Fig. 2C). However, when we pretreated MCs with WEB2086, an inhibitor of the platelet activating factor (PAF) receptor, we observed a dose-dependent inhibition of MC activation. To verify that PAF is the active factor in the platelet-conditioned medium, we conducted liquid chromatographymass spectrometry (LC-MS) lipid quantification of the medium and found that platelet activation caused the release of significant amounts of PAF C16 and C18 (Fig. 2D). Consistent with the functional properties of PAF, absorption of platelet medium with activated charcoal significantly reduced PAF levels. Last, we exposed MCs to increasing doses of purified PAF and observed dose-dependent MC degranulation (Fig. 2C and fig. S2). Together, our data indicate that PAF is the predominant platelet product responsible for MC degranulation.

These findings led us to question whether platelet-derived PAF can directly act on MCs, which are found on the apposing side of the endothelium. We therefore applied PAF at concentrations shown previously to cause MC activation to the apical side of human umbilical vein endothelium cells (HUVECs) grown on semipermeable supports. Starting from a transendothelial resistance (TEER) of 146.9 22.7 ohmcm2, we observed that PAF itself significantly but transiently disrupted endothelial integrity. However, when PAF was added to HUVECs in the presence of human MCs (ROSA) in the basal compartment of the Transwell system, the drop in TEER did not reverse during the experiment (Fig. 3A). At the same time, we observed that these basal MCs degranulated after addition of apical PAF and that the extent of degranulation was comparable to that when PAF was added to Transwell inserts without a HUVEC cell layer (Fig. 3B). Together, these results suggest that intravascular PAF can act on perivascular MCs and that this contact is made possible likely by a collaborative effort of PAF and MC products on endothelial barrier tightness. Moreover, endothelial cells do not appear to directly participate in the signaling events.

(A) HUVEC cells were grown to confluency on permeable supports, and then 1 106 ROSA cells were added to some of the basal compartments (ROSA HUVEC) followed by addition of PAF at 1 or 10 M or vehicle control to the apical compartment. TEER was measured for 1 hour. *P < 0.05 versus untreated ROSA/HUVEC cocultures by two-way ANOVA. (B) -Hexosaminidase from supernatants of HUVEC endothelial cells, ROSA MC cells, and cocultured HUVEC/ROSA cells with or without addition of PAF (at 1 or 10 M) to the apical side of the endothelia. n = 8 per condition. Results shown as average SD, *P < 0.05 versus untreated ROSA/HUVEC cocultures.

In view of our in vitro results, we now sought to determine whether the platelet-mediated MC activation in vivo was dependent on PAF. We therefore first examined the systemic response to collagen and epinephrine injection after pretreatment with the PAF inhibitor WEB2086. Although we noticed a marked blunting of the shock response, it was not totally abolished (Fig. 4A), and thus, we could not readily infer that this response was fully PAF-mediated. A possible explanation for this finding is that collagen and epinephrine injections cause systemic thrombosis and thus evoke temperature changes independent of inflammatory reactions. Therefore, we next examined a second, distinct model of systemic platelet activation (16). This model achieves platelet activation with a monoclonal antibody against mouse integrin IIb (clone MWReg30), which causes thrombocytopenia within a few minutes (Fig. 4, B and C). We found that platelet activation in this manner also resulted in a sharp drop in core body temperature, which was abrogated in mice pretreated with WEB2086, indicating that it was PAF dependent (Fig. 4D). We further confirmed that this severe inflammatory response was platelet dependent by showing that depletion of platelets in these mice before MWReg30 antibody administration protected from shock. Further support for the notion that the shock response following platelet activation was PAF dependent was provided by the finding that phospholipase A2 knockout (Pla2-KO) mice, which display a significantly reduced PAF production (17), failed to succumb to shock. Similarly, deficiency of PAF sensing, as observed in PAF receptor knockout (Pafr-KO) mice (18), also protected from shock following MWReg30 antibody administration (Fig. 4D). In agreement, injection of purified PAF was sufficient to cause shock in wild-type (WT) and Pla2-KO mice but not in Pafr-KO mice (Fig. 4E). Together, in vivo platelet activation and systemic release of platelet-derived PAF results in shock.

(A) Temperature measurement following intravenous administration of collagen and epinephrine with (CollE WEB) or without (CollE) pretreatment with the PAF inhibitor WEB2086; control animals received intravenous phosphate-buffered saline (PBS). Administration of antiintegrin aIIb (MWReg30) antibody caused significant thrombocytopenia [representative anti-glycoprotein IX (GPIX) stain versus forward scatter (FSC) before (B) and after (C) treatment]. (D) Temperature measurement following intravenous administration of MWReg30 in untreated mice (WT), in WEB2086-pretreated (WT-WEB) and platelet-depleted (WT-PLT deplete) mice, and in phospholipase A2(Pla2-KO) and PAF receptor(Pafr-KO) knockout animals. (E) Temperature measurement after administration of purified PAF (2 mg/g bodyweight) in WT, Pla2, or Pafr-knockout (Pafr-KO) mice. Adoptive platelet transfer was performed in hIL-4R/GPIbtransgenic mice. These were platelet-depleted through administration of antiIL-4R antibody (F) and repleted with platelets from either Pla2-KO or WT mice (G) before administration of MWReg30 (H). Fluorescence-activated cell sorting (FACS) data are shown as anti-GPIX stain versus forward scatter and is representative of experimental findings. Systemic response to MWReg30 was measured as change in body temperature (I) and by quantification of plasma levels of MC-specific chymase (J) and TNF (K). Data are represented as the means SD. n = 4 to 6 per condition. *P < 0.05 versus control-treated animals and #P <0.05 versus respective stimulated WT or WT-repleted animals. (A, B, and G) Two-way ANOVA; (H and I) one-way ANOVA and Tukeys multiple comparisons test.

Because PAF is released by various immune cells into the circulation (19), we sought to verify that it is indeed platelet-secreted PAF that causes MC activation and shock in vivo. For this, we used an adoptive transfer model where platelets were infused into human interleukin-4 receptor alpha/platelet glycoprotein Ib (hIL-4R/GPIb) transgenic mice whose endogenous platelets had been depleted by administration of antiIL-4R antibody as described previously (20). This allowed repletion with platelets from either WT or Pla2-KO mice that lack the ability to generate PAF (17). We then administered MWReg30 antibody to activate platelets in both of these repleted groups and examined the mice for MC activation and shock. Here, the exposure of the WT-platelet reconstituted mice to MWReg30 elicited an overall blunted systemic response compared to our previous experiments, likely due to the reduced platelet numbers achieved after reconstitution (Fig. 4, F to H). However, this response was altogether absent in mice reconstituted with Pla2-KO platelets (Fig. 4I). Furthermore, only mice reconstituted with WT platelets displayed increases in plasma-chymase and plasmatumor necrosis factor (TNF) levels, which are indicators of MC activation (Fig. 4, J and K). These results support that the PAF responsible for MC activation and shock following administration of MWReg30 antibody is specifically platelet derived.

Since shock as indicted previously is a characteristic inflammatory response linked to MCs, we aimed to further define the specific role of MCs in the propagation of PAF-mediated platelet responses. We compared MWReg30 antibodyinduced shock responses in WT and MC-deficient Sash mice and in Mcpt5-cre+iDTR+ mice depleted of MCs (21). We found that whereas MC-competent mice evoked a significant shock response to MWReg30 administration, both groups of MC-deficient mice experienced blunted shock response (Fig. 5A). Since shock is preceded by vascular leakage, another well-known MC-mediated inflammatory response, we compared vascular leakage in WT and MC-deficient mice following MWReg30 administration. We found that WT mice experienced severe vascular leakage but not MC-deficient or MC-depleted mice (Fig. 5, B to E). Last, products of activated perivascular MCs can also significantly affect the organ they are proximal to. To demonstrate the potential of PAF-activated MCs to affect surrounding tissue responses, we examined expression of inflammatory genes in the intestines of MC-deficient Sash mice reconstituted with bone marrowderived MCs (BMMCs) from WT or Pafr-KO mice following administration of MWReg30. BMMC injection into Sash mice does not reconstitute tissue MC uniformly but achieves good reconstitution in the intestines (22). For comparison, we also included MC-deficient Sash mice that were not reconstituted in this assay. As shown in Fig. 5F, animals reconstituted with WT BMMC, but not unreconstituted mice or mice reconstituted with BMMCs from Pafr-KO animals, demonstrated a significant increase in tissue inflammatory gene expression in intestinal samples, suggesting that PAFR (PAF receptor)competent MCs are necessary for platelets to promote tissue inflammation. Thus, platelet-induced MC degranulation serves to amplify platelet-initiated inflammatory signals and translate these into tissue responses.

(A) Temperature measurement following intravenous administration of MWReg30 in WT mice and in MC-deficient KitW-sh/W-sh (Sash) or MC-depleted Mcpt5-cre + iDTR + (Mcpt-DTR) mice. n = 6 per condition. *P < 0.05 versus MWReg30-treated WT, two-way ANOVA. (B) Extravasation of Evans blue after intravenous administration of MWReg30 in control or MC-depleted Mcpt-DTR mice. OD, optical density. n = 5 per condition. *P < 0.05 versus unchallenged WT; #P < 0.05 versus MWReg30-treated WT, one-way ANOVA and Tukeys multiple comparisons test. Immunofluorescence in whole-mount tissue (ear) in animals administered 150 kDa of TRITC-dextran intravenously before MWReg30 administration [blue, endothelium (anti-CD31); green, MCs (fluorescein isothiocyanateavidin)] shows tracer extravasation (arrows) in WT mice (C and D) but not in Sash mice (E). (F) Transcriptional analysis of small intestinal tissue expression of inflammatory markers in Sash mice or in Sash mice reconstituted with Pafr-KO (Pafr-KO reconstituted) or WT (WT reconstituted) bone marrowderived MCs and treated with MWReg30. Data are represented as the means SD. n = 4 to 6 per condition. *P < 0.05 versus nonreconstituted and #P < 0.05 versus WT-reconstituted animals. One-way ANOVA and Tukeys multiple comparisons test.

In view of the potential for platelets to trigger MC-mediated inflammatory responses, we investigated the consequences of blocking platelet activation in the rat DHCA model, and specifically the impact of such platelet inhibition on subsequent MC activation. Because of the close correlation between the site of tissue damage and deposition of aggregated platelets during DHCA, we first sought to map the major sites of platelet deposition following this procedure. For these studies, we isolated platelets from donor rats and labeled them with NIR78 (23), a near-infrared label, and then intravenously administered these cells immediately after completion of the CPB. After 2 hours of recovery, the major organs of the rats were harvested and imaged for platelet deposition. We found that a major deposition site of platelets following DHCA was the intestines (Fig. 6A). This observation supports our earlier finding indicating preferential deposition in the intestines as a primary site of tissue damage following DHCA (8). As confirmed by immunofluorescence using a platelet-specific marker, imaging revealed platelet deposition also in the kidneys (fig. S3). However, as reported previously, we found no histological (8) or biochemical (urine neutrophil gelatinase-associated lipocalin) (fig. S3) evidence of renal injury at this time point. Kidneys feature a similar susceptibility to hypoxia as the gut (24) but contain very few MC in their parenchyme (25).

In vivo platelet labeling documents significant tissue platelet retention in vehicle-pretreated animals (A) but not in clopidogrel-pretreated animals (B) or in sham animals (C). Organs are identified in (C): stomach (S), colon (Co), caecum (Cae), brain (B), lungs (L), kidney (K), and liver (Li). (D) Platelet count before and after CPB in clopidogrel-pretreated (gray lines) or vehicle-pretreated (black lines) animals. To account for dilutional effects during extracorporeal circulation, data are presented as the ratio of platelet over red blood cell (RBC) count. #P < 0.05 versus DHCA-Vh, by unpaired Students t test of delta baseline values. Each line represents one animal. Representative images of the macroscopic intestinal phenotype in vehicle-pretreated (E) and in clopidogrel-pretreated animals (F). (G) Microscopic injury score in sham and DHCA-treated vehicle control (DHCA-Vh) or clopidogrel-pretreated (DHCA-Clop) animals. (H) Plasma PAF and (I) plasma chymase levels (normalized to plasma protein to adjust for on-bypass dilution effects) at baseline (T0), after CPB (T1), and after a 2-hour recovery period (T2). (J) Plasma TNF levels after a 2-hour recovery period. Data are represented as the means SD. n = 4 per condition and n = 3 for sham. *P < 0.05 versus sham and #P < 0.05 versus DHCA-Vh, one-way ANOVA and Tukeys multiple comparisons test. Plasma PAF (K) and chymase (L) levels were determined by ELISA in patients undergoing cardiac surgery with DHCA. Samples were collected after induction of anesthesia (baseline: pre) or after completion of CPB perfusion (post-CPB). To account for dilution effects, values are normalized for plasma protein content. (M) Platelet counts were obtained from medical records at time of baseline or post-CPB blood draw and normalized to hemoglobin (Hb) concentration to account for perioperative blood loss and dilution. n = 20, values shown with median, *P < 0.01 by Wilcoxon signed-rank test. Photo credit: Jrn Karhausen, Duke University.

We found that when we pretreated animals with clopidogrel, a potent P2Y12 inhibitor that has been extensively studied in systemic conditions involving platelet activation (26), we could completely block platelet deposition in the intestines and other sites after DHCA (Fig. 6B and fig. S3). Consistent with this finding, rats pretreated with clopidogrel maintained their platelet count throughout the experiment, whereas in control animals, we observed a drop in platelet numbers after completing CPB (Fig. 6D). Furthermore, clopidogrel pretreatment significantly reduced intestinal pathology compared to vehicle-treated DHCA mice as evidenced by both macroscopic (Fig. 6, E and F) and microscopic (Fig. 6G) examination. Plasma PAF levels, which displayed a sharp rise after DHCA in control animals, did not change significantly in the clopidogrel-treated group (Fig. 6H). Supporting the notion that abrogation of platelet activation also blocks MC activation, we observed limited levels of circulating chymase and TNF levels in the clopidogrel-treated rats compared to controls (Fig. 6, I and J). Thus, during modeled DHCA, platelet activation and aggregation are critical preceding events to MC activation and the severe inflammation and tissue injury in the intestines. To provide clinical support to our findings, we measured PAF- and MC-specific chymase in 20 consecutive patients undergoing DHCA for repair of proximal aortic pathologies. Consistent with our findings in the rat model, we observed a significant increase of plasma PAF {median baseline (plasma protein), 0.154 ng/g [interquartile range (IQR), 0.138 to 0.169 ng/g] versus post-CPB, 0.213 ng/g (IQR, 0.174 to 0.236 ng/g); P < 0.01; Fig. 6K} and chymase levels [baseline (plasma protein), 1.038 pg/g (IQR, 0.502 to 2.085 pg/g) versus post-CPB, 6.322 pg/g (IQR, 3.630 to 8.929 pg/g); P < 0.01; Fig. 6L]. During the same period, platelet numbers significantly decreased relative to the hemoglobin (Hb) concentration [baseline, 1344.5 platelets/mg Hb (IQR, 1226.2 to 1482.4 platelets/mg Hb) versus post-CPB, 1045.6 platelets/mg Hb (IQR, 855.3 to 1251.0 platelets/mg Hb); P < 0.01], which suggests that the drop in platelet numbers was not due to bleeding or dilution but potentially due to concurrent platelet activation (Fig. 6M). These observations document that our experimental data align with events observed in patients undergoing comparable procedures.

Rapid activation of multiple, powerful inflammatory pathways during and after cardiac surgery has been identified as a key to the ongoing, high incidence of end-organ injury associated with these procedures. To elucidate the critical factors that shape decisions of tissue inflammation and injury in this setting, we focused on early events, reasoning that by limiting our studies to this window, we would identify mediators that are initiators of the inflammatory cascade and prime candidates for therapeutic intervention. This approach revealed a critical role of MCs and linked MC activation to early tissue injury and inflammation in a rat model (8) and to intraoperative hypotension in cardiac surgical patients (9). However, a major obstacle to further develop the therapeutic potential of MC modulation is that it currently remains unclear how MCs are activated in this setting. Therefore, we further examined the injury phenotype of the intestine as a primary site of tissue injury and MC activation in the setting of extracorporeal circulation (8, 27) and found significant platelet deposition on the luminal sides of small blood vessels. This microvascular placement positions platelets in close proximity to perivascular MCs, and indeed, our ensuing work demonstrated that platelets, through release of the lipid mediator PAF, actively triggered MC activation and thus caused shock, vascular leakage, and tissue inflammation. Hence, our results outline a powerful, previously undefined mechanism of inflammatory augmentation by establishing the collaboration of two cell types that have, relatively recently, come into focus as important immune sentinel cellsplatelets within the intravascular compartment (6) and MCs at the tissue/microvascular interface (10).

What determines the preferential platelet deposition in the gut in our model is unclear, but evidence exists demonstrating that changes of splanchnic blood flow during nonpulsatile CPB result in substantial intestinal hypoperfusion [reviewed in (24)]. In agreement, we and others had shown intestinal I/R injury and intestinal MC activation to be the earliest signs of end-organ injury in rat and porcine models of extracorporeal circulation (8, 27). Following I/R, endothelial cell surfaces undergo significant changes, resulting in the rapid and sustained adherence of platelets to postcapillary venules upon reperfusion (5). Consequently, it is likely that the particularly hypoperfusion-prone intestinal vasculature provides a unique locale that facilitates the inflammatory collaboration between platelets and perivascular MCs thus making the gut a hotspot for the generation of inflammatory mediators in conditions such as cardiac surgery.

Platelets are increasingly appreciated as central immune regulatory cells that directly interact with both endothelium and intravascular immune cells and perform multifaceted inflammatory functions such as regulating neutrophil recruitment, extracellular trap formation, or cytokine release [reviewed in (6)]. In our work, the close spatial relationship between platelet aggregates and perivascular MCs on apposing sides of the vasculature raised the possibility that activated platelets release bioactive agents that traverse the endothelium to stimulate MC degranulation. Consequently, through a series of fractionation studies and biochemical assays, we established that platelets can activate MCs through secretion of PAF, a potent proinflammatory phospholipid implicated in various pathological reactions including anaphylaxis (28). PAF is released by various cells of the host defense system with neutrophils, basophils, endothelial cells, and MCs previously identified as major producers (19). Consistent with our results, platelet-dependent release of PAF has been described (29), but the relative contribution of platelets to overall PAF levels and whether PAF from other sources (e.g., endothelia) contributes to platelet-triggered responses remain to be further defined.

Consistent with our findings, PAF is not stored in the preformed state but rather is rapidly synthesized in response to cell-specific stimuli by remodeling of cellular phosphatidylcholine (30). Receptor-induced activation of the key enzyme, cytosolic phospholipase A2 (PLA2), is crucial for the acute lipid membrane remodeling during platelet activation and not only constitutes the first step in generating lipid mediators such as PAF but also provides important substrates required to support the energetic demands during platelet activation (31). PLA2 functions are not exclusive to PAF metabolism and Pla2-knockout (Pla2-KO) mice appear to have abnormalities, e.g., in thromboxane A2 synthesis (32). However, our studies involving the specific PAF antagonist WEB2086 and chimeric mice, in which we reconstituted platelet-depleted mice with platelets lacking PLA2 and therefore PAF production, strongly suggest that platelet-derived PAF causes MC activation. Conversely, we also provide evidence on the specific role of MC sensing of such platelet-derived PAF by use of MC-deficient and MC-depleted animals as well as of MC-deficient animals repleted with Pla2-knockout (Pla2-KO) BMMC. Together, these experiments support our notion that platelet-derived PAF triggers MC activation. Although the bioavailability of PAF in the circulation is very limited (33), it is conceivable that platelets create a protective microenvironment where PAF, because of its lipid nature, is able to traverse the endothelial walls and reach MCs. Consistent with reported evidence (34), we showed that platelet-derived PAF significantly alters endothelial barrier integrity and can thus act on MCs on the apposing side of the endothelium. In vivo, such contact may further be facilitated by the fact that MCs appear to form protrusions across the endothelial cell layer to directly survey intravascular events (35).

MC differentiation is highly tissue specific, and PAF receptors have been found in lung MCs and peripheral bloodderived but not skin MCs (36). Therefore, while our work demonstrates that a platelet-specific stimulus can cause release of PAF and resultant perivascular MC activation, these responses may vary in different tissues depending on the receptor equipment of local MC populations. In addition, MCs are not only sensors of PAF but also an important source of this mediator. During anaphylaxis, high levels of PAF are detected (28), and it is believed that hematogenous dissemination of this agent may be pivotal for rapid systemic MC activation after localized allergen exposure (36). This highlights that similarly following platelet-triggered MC activation, MC-autocrine production of PAF (37), as well as of further powerful mediators, may be instrumental in spreading and magnifying an initially limited response.

While our work identifies MC stimulation through platelet-derived PAF as an important, previously unknown proinflammatory mechanism, a limitation of our study is that it remains difficult to ascertain its relative contribution in complex conditions such as cardiac surgery. As highlighted by the work of Cloutier et al. (38) and, more recently, of Mauler et al. (39), PAF-independent mechanisms exist by which platelets trigger systemic responses. These mechanisms appear to have overlapping and distinct effects, e.g., platelet serotonin release after FcRIIA receptor activation (38) caused vasodilatation and shock but not vascular leakage as observed in our anti-gpIIb/IIIa model. Furthermore, systemic responses in our model were independent of serotonin effects, as previously shown (16) and as documented by the fact that shock was fully prevented by pretreatment with a PAF receptor antagonist, or in Pafr- and Pla2-KO mice. However, we did not test the role of serotonin in systemic responses in the rat model and cannot exclude that, in this more complex preclinical model, multiple platelet-dependent mechanisms contributed.

Last, our finding that platelet activation following rat DHCA is responsible for much of the subsequent early pathology suggests that targeting platelet-dependent inflammatory responses may be an effective strategy to reduce morbidity and mortality. Platelet activation is not routinely determined but has been inferred from the drop in platelet count often observed after cardiac surgery. The possibility that such thrombocytopenia occurs in the context of increased platelet reactivity has been suggested by its association with blood clot formation leading to stroke (40). A drop in platelet count is associated with inflammatory derangements in various conditions including cardiac surgery (4). Evidence from our rat DHCA model that the platelet antagonist clopidogrel stopped microvascular platelet deposition, prevented the associated drop in platelet count, and reduced MC-mediated inflammatory and tissue injurious responses thus is of significant translational interest. Hence, our data add important mechanistic insights to clinical observations, suggesting beneficial effects from controlling the platelet contribution to tissue injury and systemic inflammatory derangements in cardiac surgery (41). However, an inherent problem with these approaches is both the variable pharmacodynamic efficacy of commonly used antiplatelet agents and the fact that, especially in the perioperative setting, more potent inhibitors pose a substantial bleeding risk. As suggested by our data using a MC inhibitor in modeled DHCA (8), targeting downstream events, such as MC activation, may be a safer approach to improve outcomes.

All procedures performed for this study were approved by the Animal Care and Use Committee of Duke University and the University of North Carolina, Chapel Hill, respectively, and conformed to National Institutes of Health guidelines for animal care.

Adult male Sprague-Dawley rats (436.5 34 g, 10 to 12 weeks old) underwent deep hypothermic arrest in association with CPB (referred to in this paper as DHCA for simplicity) as described previously (8). For imaging purposes, animals were transitioned to an alfalfa-free diet (LabDiet, St. Louis, MO) 7 days before the start of the experiment and were randomized to receive two oral doses of either clopidogrel (3 mg/kg bodyweight) (MilliporeSigma, Burlington, MA) or normal saline 12 hours before and immediately after induction of anesthesia.

Anesthesia was induced with isoflurane (2 to 2.5 volume %), and animals were intubated and mechanically ventilated (45% O2/balance N2 and 35 to 45 mmHg of PaCO2). The tail artery and right external jugular vein were then cannulated, and 150 IU of heparin and 5 g of fentanyl were administered. Physiologic measurements, including mean arterial pressure, pericranial and rectal temperature, and blood gases [adjusted to the measured temperature (pH strategy) and maintaining 31 to 40 mmHg of PaCO2], were recorded (table S1). After initiation of CPB, animals were cooled for 30 min, and at a pericranial temperature of 16 to 18C, the bypass machine was stopped for a circulatory arrest period of 45 min. CPB was then reinitiated for rewarming and stopped at a pericranial temperature of 35.5C. Animals recovered under anesthesia for 2 hours until euthanasia.

For platelet labeling, we modified the technique of Flaumenhaft et al. (23) using two donor rats per experimental animal, which were pretreated as the experimental animal, i.e., with clopidogrel or vehicle. Donors were anesthetized with isoflurane, and whole blood in a volume of approximately 10% of the total donor blood volume was removed. Platelets were then isolated by centrifugation in the presence of apyrase (0.2 U/ml) and prostaglandin E1 (1 M) (MilliporeSigma) throughout. The targeted platelet count was approximately 1.8 108. Platelets were washed in Tyrodes buffer and labeled with 2 M IR-786 (H.W. Sands Corp., Jupiter, FL) for 30 min at 37C. After additional washing, these platelets were brought up in phosphate-buffered saline (PBS), and an aliquot was tested by fluorescence-activated cell sorting (FACS) to verify absence of surface expression of the platelet activation marker CD62P. Labeled platelets were transfused to recipient rats at the time point of reperfusion after circulatory arrest.

For imaging and tissue harvest, animals were euthanized by isoflurane overdose and perfused with 200 ml of PBS to wash out circulating platelets. Organs were removed, and tissue retention of labeled platelets was visualized using the IVIS Kinetic in vivo imaging system (Caliper Life Sciences, Hopkinton, MA) by setting the excitation to 795 to 815 nm and absorption to 760 to 780 nm.

Six- to 8-week-old mice were used for our experiments. Mcpt5-cre+iDTR+ mice were from A. Roers, University of Technology, Dresden (21). In these mice, MCs were conditionally depleted through intravenous injections of 200 ng of diphtheria toxin per mouse every other day for 2 weeks (13). Pla2/ (17) and Pafr/ (18) mice were provided by Shimizu (University of Tokyo) through the RIKEN BioResource Research Center (RBRC01733 and RBRC05641) and were rederived by the Division of Laboratory Animal Resources, Duke University Medical Center. In addition, the following strains were used: C57BL/6, KitW-sh/W-sh, and Mcpt5-Cre tdTomatofl/fl (42).

Systemic platelet activation was induced in two ways. First, we used a systemic mouse thrombosis model with collagen and epinephrine as platelet stimulants. Second, we examined the systemic response elicited by a monoclonal antibody that targets platelet integrin IIb receptor as previously published (16). Following anesthesia with isoflurane, animals received either 0.275 g collagen/g bodyweight (MilliporeSigma) together with 1.2 g of epinephrine (MilliporeSigma) in 200 l of PBS or 3 g/g bodyweight of the antiintegrin IIb receptor antibody clone MWReg30 (BioLegend, San Diego, CA). Animals were then recovered at room temperature, and the rectal temperature was measured in regular intervals.

Mice (hIL-4R/GPIbTg) (43) were rendered thrombocytopenic by retro-orbital injection of antihIL-4R (2.5 g/g body weight, clone 25463; R&D Systems, Minneapolis, MN). Platelet depletion was verified 16 hours after antibody injection by flow cytometry analysis (Accuri C6, BD Biosciences, Franklin Lakes, NJ) of whole blood stained with Alexa Fluor 647labeled antibodies against glycoprotein IX (GPIX) (2 g/ml; R&D Systems). Platelet repletion was performed as previously published (20). In short, blood was drawn into heparinized tubes from the retro-orbital plexus of sedated Pla2-KO or WT animals (7.7 l/g body weight). Platelets were purified by successive centrifugation at 100g for 5 min (to obtain platelet-rich plasma) and at 700g in the presence of PGI2 (2 g/ml) for 5 min at room temperature. Pelleted platelets were resuspended in modified Tyrodes buffer [137 mM NaCl, 0.3 mM Na2HPO4, 2 mM KCl, 12 mM NaHCO3, 5 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid, and 5 mM glucose (pH 7.3)]. Platelets from several donor mice were pooled, and the platelet count was adjusted to 5 109 platelets/ml in 100 l of Tyrodes buffer for transfusion. Posttransfusion platelet counts were determined by flow cytometry 30 min after injecting platelets before MWReg30 administration.

BMMCs were obtained from bone marrow of WT and Pafr/ mice and cultured for 8 to 12 weeks as previously described (13). For repletion, 1 107 BMMCs were injected intravenously into KitW-sh/W-sh mice and allowed to mature in the tissues for another 8 weeks.

Whole blood (40 ml) was collected in acid-citrate-dextrose sodium citrate (1:9, v/v) from healthy individuals under a protocol approved by the Institutional Review Board for Human Subject Research at Duke University and centrifuged at 120g for 8 min. To prevent platelet activation, 1 M prostaglandin E1 and apyrase (0.2 U/ml) (MilliporeSigma) were added to the platelet-rich plasma and at each of the following steps. Platelets were obtained by centrifugation at 650g for 8 min, washed in buffer containing 36 mM citric acid, 5 mM glucose, 5 mM KCl, 1 mM MgCl2, 103 mM NaCl, 2 mM CaCl2, bovine serum albumin (3.5 g/liter), and resuspended in standard Tyrodes buffer. Platelet activation was performed with either thrombin (0.2 U/ml), collagen (10 g/ml), type I solution from rat tail (both MilliporeSigma), or convulxin (0.3 ng/ml) (Cayman Chemical, Ann Arbor, MI). To verify platelet activation, a platelet aliquot was fixed in 4% formalin for each condition, washed in PBS, and stained with an antiCD62-allophycocyanin antibody (BD Biosciences) and analyzed on a FACSCalibur flow cytometer. Isotype controltreated samples were used for comparison (BD Biosciences). The remaining sample was centrifuged to obtain cell-free conditioned media. In a subset of experiments, this supernatant was further processed by incubating on activated charcoal (MilliporeSigma), boiling for 30 min, or ultracentrifugating for 30 min at 20,000g to isolate microparticles. Lipid extraction was performed using the method of Bligh and Dyer (44). In brief, the platelet supernatant was mixed with chloroform-methanol (2:1, v/v), and then successively, chloroform and water were added before centrifugation at 1000 rpm for 5 min. The lower phase was then carefully harvested, dried under airflow, and resolubilized in Tyrodes buffer.

PAFs were extracted and analyzed by LC-MS essentially as described earlier with minor modifications (45). Briefly, the samples were extracted for PAF by methyl tert-butyl ether, and the extracts were fractionated using aminopropyl silica to isolate the PAF fraction. The PAFs coelute with lysophosphatidylcholine in this method. They were resolved by high-performance liquid chromatography using a Luna C18(2) column (2 150 mm, 3 ; Phenomenex) before detecting by LCtandem MS with unique multiple reaction monitoring combinations as described (45). PAFs were quantified by internal standard quantitation method using PAF C16-d4 as the internal standard added to the sample before processing.

The human MC lines ROSA (14) were provided by M. Arock (Laboratoire de Biologie et Pharmacologie Applique, CNRS) and LAD2 (15) by A. S. Kirshenbaum (National Institutes of Health). The ROSA cells were maintained in Iscoves modified Dulbeccos medium (Invitrogen, Carlsbad, CA) and LAD2 cells in StemPro-34 (Invitrogen) supplemented with recombinant human stem cell factor (100 ng/ml), penicillin and streptomycin (100 U/ml), and 1 GlutaMAX (ThermoFisher, Waltham, MA). MC degranulation was examined by measuring the activity either of tryptase using a commercially available kit (MilliporeSigma) or of -hexosaminidase as published. In both cases, results were calculated as the percent activity in supernatant versus activity in cell lysate. The following agonists and antagonists were tested at concentrations indicated in Results: WEB2086, montelukast, AH 6809, BAY-u 3405, L798.106, and Ex26 (all Tocris, Bristol, UK); PAF C16 and pertussis toxin (both MilliporeSigma). For IgE-antigen activation, LAD2 cells were passively sensitized by incubating with biotinylated human IgE for 16 hours. Sensitized LAD2 cells were stimulated with different doses of streptavidin as indicated for 1 hour. Supernatant was collected and analyzed for -hexosaminidase activity. To determine viability, LAD2 cells were treated with indicated concentrations of PAF for 1 hour, and reduction of MTS tetrazolium compound was measured according to the manufacturers instructions. Results were calculated as % viable cells.

HUVECs were maintained as described (46). For experiments, 1 105 cells were seeded on 0.4-m polyethylene permeable supports (Corning Life Sciences, Tewksbury, MA) and left to adhere until TEER reached approximately 120 ohmcm2, and then medium was exchanged to Tyrodes buffer. The basal compartment of the Transwell system was loaded with either buffer or 1 106 ROSA cells, and TEER was recorded before and during 1 hour after addition of 0, 1, or 10 M PAF to the apical surface of the HUVECs. Degranulation of basal ROSA cells was determined at the end of the experiment by -hexosaminidase assay.

RNA was isolated (Macherey-Nagel, Bethlehem, PA) from snap-frozen tissue. After deoxyribonuclease digestion and reverse transcription (Bio-Rad, Hercules, CA), quantitative polymerase chain reaction (PCR) was performed on a CFX96 Real-Time PCR Detection System (Bio-Rad), with -actin (NM_007393; F: cccaacttgatgtatgaagg and R: tttgtgtaaggtaaggtgtgc) serving as internal standard. The following primers were used and amplified at 60C: Cxcl2 (NM_009140.2; F: cagactccagccacacttca and R: ttcagggtcaaggcaaactt), Tnfa (NM_013693; F: ctgaacttcggggtgatcgg and R: ggcttgtcactcgaattttga), Il6 (NM_031168; F: gatggatgctaccaaactgga and R: tgaaggactctggctttgtct), and Il1b (NM_008361.3; F: tgtaatgaaagacggcacacc and R: tcttctttgggtattgcttgg).

Plasma samples were analyzed by enzyme-linked immunosorbent assay (ELISA) using rat chymase (LifeSpan Biosciences, Seattle, WA), rat TNF, mouse MC protease 1, mouse TNF (all ThermoFisher), and PAF (Lifeome BioLabs, Oceanside, CA) ELISA kits. To account for dilution during bypass, rat samples were normalized to each samples protein level (DC Protein Assay, Bio-Rad).

For whole-mount staining, the inner parts of the ear skin were peeled away from the intervening cartilage and fixed for 1 hour in 1% paraformaldehyde. Ear skin segments were then washed, permeabilized, and blocked in a solution containing 10% donkey serum, 0.3% Triton X, and 1% bovine serum albumin in PBS. Then tissue was incubated with anti-CD31 (BD Biosciences) and anti-CD41 (Novus Biologicals, Centennial, CO) antibody overnight, washed, and stained with fluorescent-labeled secondary antibody (Jackson ImmunoResearch, West Grove, PA) for 2 hours at room temperature. MC granules were visualized with tetramethyl rhodamine isothiocyanate (TRITC)avidin (MilliporeSigma). Samples were mounted with ProLong antifade with 4,6-diamidino-2-phenylindole as counterstain (ThermoFisher).

Embedded tissue sections were deparaffinized, and heat-mediated antigen retrieval was performed in sodium citrate buffer. After blocking at room temperature, sections were labeled with antibodies targeting CD41 and E-cadherin (Invitrogen), and binding was visualized with fluorescent-labeled secondary antibody.

To examine vascular permeability, mice were injected with 200 l of dextran-TRITC (10 mg/ml) (150 kDa; MilliporeSigma) at the time of platelet activation (13). After 90 min, animals were euthanized, and whole mounts were prepared and processed as outlined above. In vivo vascular leakage was quantified using the Evans blue dye extravasation technique (13). Briefly, Evans blue (20 mg/kg; MilliporeSigma) was injected intravenously 60 min before euthanasia. Tissue was then harvested, air-dried, weighed, and incubated in tissue formamide (25 l/mg) at 55C for 48 hours. The absorption of extracted Evans blue was then measured at 610 nm.

Hematoxylin and eosinstained sections from formalin-fixed and paraffin-embedded tissue samples were scored by independent observers blinded to treatment modalities according to the method of Chiu et al. (47).

Plasma samples were obtained in the course of an ongoing, Institutional Review Boardapproved clinical study investigating effects of temperature on cognitive function after DHCA procedures for repair of ascending aortic arch pathologies (ClinicalTrials.gov identifier: NCT02834065). Plasma samples from 20 consecutively enrolled patients after induction of anesthesia (baseline) and following completion of the circulatory arrest and CPB period were retrieved and analyzed by ELISA for PAF (Cusabio, Houston, TX) and chymase levels (Cloud Clone Corp., Wuhan, China). Platelet count at corresponding times was obtained from clinical records. Because CPB entails significant blood dilution, measurements were normalized either to plasma protein content (for ELISAs, determined by RC DC Protein Assay, Bio-Rad) or to hemoglobin concentration (for platelet count, from patient electronic records with corresponding time stamp).

Statistical analyses were performed using GraphPad Prism v.8 (GraphPad Software). Unpaired Students t test, two-way analysis of variance (ANOVA), and one-way ANOVA with Tukeys multiple comparisons tests were used to calculate statistical significance. P < 0.05 was considered statistically significant. Measured values of PAF, chymase, and platelet count in patients were compared with baseline values using Wilcoxon signed-rank test. Experimental data are presented as median SD. Patient data are shown as median (IQR).

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/12/eaay6314/DC1

Fig. S1. Platelet deposition following rat DHCA model occurs in tissues that are particularly sensitive to I/R injury.

Fig. S2. EC50 and LD50 of PAF on cultured MCs.

Fig. S3. Clopidogrel prevents tissue platelet retention after DHCA.

Table S1. Physiologic variables during rat DHCA.

Movie S1. Platelets aggregate in close proximity to perivascular MCs after activation with collagen and epinephrine.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: We thank J. Fowler for technical assistance. Funding: This work was funded by U.S. National Institutes of Health grants 1R56HL126891-01 to J.K.; 1R35 HL144976-01 to W.B.; R01-AI096305, R56-DK095198, and U01-AI082107 to S.N.A.; T32HL007149 to R.H.L.; and 1R01HL130443 to J.K. and J.P.M. Further support came from National Center for Research Resources, National Institutes of Health grant S10RR027926 to K.R.M., the American Heart Association grant 15SDG25080046 to J.K., and a Duke Clinical and Translational Science Institute grant (UL1TR002553) to J.K. Author contributions: J.K., W.B., and S.N.A. were involved with conceptualization, development of methodology, and preparation of original draft and reviewing and editing of the manuscript. J.K., H.W.C., Q.M., Y.B., R.H.L., and J.P.M. performed the investigation. K.R.M. performed methodology development and analyses. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Read the original post:
Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury - Science Advances

Upside For Flexion Therapeutics Depends On How Well It Can Commercialize ZILRETTA In 2020 – Seeking Alpha

Flexion Therapeutics (NASDAQ:FLXN) presented its Q3 quarterly update on March 12, 2020 (As we tracked on our catalyst calendar on Ampbioresearch.com). Therefore, we took an updated look at the company as we decided whether to change our FLXN positions in our portfolios ahead of the quarterly call. This article is not intended to be a general review of FLXN. For such a review you can visit the company's web site, including its more recent corporate slide deck. You can also visit the ZILRETTA/knee osteoarthritis (OA) pain page on Ampbioresearch.com for information on ZILRETTA for knee OA, including a list of ZILRETTA publications with links.

In our view, for FLXN at this point, it comes down to how well the company commercializes ZILRETTA in the osteoarthritis knee pain market. ZILRETTA is a long-acting extended release therapy that was first approved by the FDA in October 2017 for the treatment of knee pain associated with osteoarthritis. An sNDA (updated label) was approved for ZILRETTA late last year related to repeat administration. With over 6 million steroid injections annually to treat pain associated with osteoarthritis of the knee, the market opportunity for ZILRETTA is very large. Whether FLXN can tap into enough of this large market to drive strong share price gains remains to be seen. In this article, we attempt to identify the reasons that FLXN ZILRETTA sales may be flattening out and what could drive share increase in the future.

FLXN's stock price is primarily driven by revenue and clinical performance of ZILRETTA. Therefore, we were excited in mid-2019 about FLXN when sales of ZILRETTA showed good quarterly growth (See graph below). Unfortunately, sales appeared to flatten in the second half of the year. The quarterly revenue growth rates were 60% in Q2, 28% in Q3, and 9% in Q4 by our calculations. Furthermore, FLXN management guided to flat sales in Q1 '20 vs. Q4 '19, which should be considered in view of first quarter revenue being flat or down for biopharma sales in many cases, for various reasons including consumers' reluctance to spend in Q1 when they will pay out of pocket deductibles. FLXN management boasts about its 2019 vs. 2018 revenue growth and points out that hyaluronic acid injection sales are typically down 10% in first quarters annually.

Source:(Amp Bioresearch FLXN ZILRETTA Page)

The question for investors is whether this apparent revenue plateau justifies the current fairly low stock price, or whether the projected 2020 revenue growth and/or the large market potential, provides a FLXN stock price growth opportunity in 2020 and beyond. The company has guided for 2020 ZILRETTA revenue of between $120 and $135 million, which would be between 65% and 85% year over year growth from the $73M of 2019, which was 220% higher than 2018. However, using the Q4 run rate of about $24 million, this would be annual growth of between 25% and 41%, compared to a 36% annual growth rate using 4X the Q3 to Q4 2019 growth. Thus, the company predicts continued growth similar to or slightly less than the Q3/Q4 rate, which arguably has not impressed the market given stock market performance, likely because of ZILRETTA's current relatively small revenue base for a therapeutic. FLXN's stock performance in 2020 thus far seems consistent with this viewpoint and the more recent macro downward pressures. In this article, we try to determine whether there is upside in FLXN's guidance and stock performance for 2020 and beyond.

Let's start with the opportunity. The market for pain injections for osteoarthritis is large. FLXN cites IQVIA data (see slide below) that indicates that the market is around 5M insured U.S. patients per year. Furthermore, the data FLXN presents indicates that 4.5M of these patients receive steroid injections for a total of around 7 million steroid injections per year. At $300/injection wholesale price (assumed to be about of $600 current cost to end user, see below), that total market opportunity appears to be in the billions for ZILRETTA, and even more if one uses FLXN's report that a WAC of $570 is justified (See FLXN March 2020 Corp slide deck slide 19).

Source - FLXN March 2020 corporate slide deck

Furthermore, diabetics with OA of the knee is a significant market. A recent CDC publication indicates that 17 percent of Americans between 45 and 64 years of age, and 25 percent of Americans 65 years and older have diabetes. FLXN's CEO on the recent Raymond James investor call indicated that about 20% of OA knee patients are diabetics. Therefore, if we use FLXN's numbers of around 7M steroid injections per year, around 1.4 million of those are for diabetics. At $300 wholesale per ZILRETTA injection, that's a submarket of over $400M, and almost twice that if we use the wholesale price (i.e. WAC) that FLXN indicates is supported.

With this large market opportunity, why has FLXN not been able to capture, and guide to even more market adoption of ZILRETTA in the knee OA pain market? A number of reasons have been discussed on investor calls. One issue for ZILRETTA is competition from generic steroid injections and other choices for injections for knee OA pain. There are a growing number of options for injections to treat joint pain such as hyaluronic acid (HA), platelet-rich plasma (PRP), and placental tissue matrix (PTM) (Cleveland Clinic). We are not aware of a head-to-head trial of ZILRETTA with any of these other injectables. However, a recent review article (Bisicchia and Tudisco, Clin Cases Miner Bone Metab. 2017 May-Aug; 14(2): 182-185) that analyzed prior primary and meta-analysis of a number of hyaluronic acid (HA) trials, concluded as follows: "Conflicting results have been reported in clinical studies and meta-analysis on the efficacy and safety of HA. Guidelines are controversial and "uncertain" recommendations are provided in most of the cases due to inconclusive evidence in literature. However, HA does not seem to have significantly higher side effects when compared to saline or CSs injections, and provides better medium-term control of symptoms in patients with mild to moderate knee osteoarthritis. More studies are needed to better clarify the controversies on this topic, along with a homogeneous methodology in study design, and collection, analysis, and interpretation of data."

Thus, at least from these authors, HA may only be marginally better than immediate release corticosteroids (CSs). In fact, the 2013 Guidelines of the American Academy of Orthopaedic Surgeons noted that published studies showed a statistically significant but not clinically effective response to HA injections, and do not recommend using HA injections to treat knee pain (Guidelines). What about PRP? According to "Your Guide to Injections for Knee Osteoarthritis" on everydayhealth.com, there is not enough evidence to show a benefit of PRP over HA. However, there are peer-reviewed publications such as Guvendi et al (2018), that conclude that there is a long-term benefit of PRP over CSs, although there are limitations to this study, (e.g. it was not a blinded study). Kavadar et al. published another study that showed long-term benefit of PRP, although the benefit appeared better with multiple injections, but there was no placebo control group in this study (Kavadar et al. 2015).

We do intend to provide a thorough scientific review of data on options for injections to treat knee pain. However, from what we found, CS appears to still be the first choice in OA knee pain injections, but HA and PRP are competitive options. The authors of the HA review cited above call CSs the "gold standard" for injection into a joint to relieve pain because it is well established over decades for having short-term pain benefits. The Cleveland Clinic page on injections for joint pain cited above call CSs "the first line of defense." And this 2013 article looking at cost/benefit of different knee treatment options, confirmed steroid injections as the standard of care. Furthermore, it appears to be common to give the same patient a CS injection plus other pain injections at later times (See e.g. everydayhealth.com article cited above). Therefore, steroid injection still appears to be a well-accepted initial injection for the treatment of pain associated with OA of the knee. However, there is likely strong competition when it comes to marketing a therapy like ZILRETTA, an extended release CS, for better long-term efficacy compared to immediate release CS. Thus, one factor affecting ZILRETTA's adoption is likely competing therapies that provide benefits over immediate release steroids. Nevertheless, if FLXN's sales force can convince orthopedic MDs that ZILRETTA has enough advantages over immediate release CS and the economics of using ZILRETTA make sense for their practice, it still seems possible that a significant portion of this large market could be available with ZILRETTA as a replacement for immediate release CSs, especially if orthopedics felt that other options such as PRP could be used if pain returns after 1 or multiple ZILRETTA injections.

The ZILRETTA efficacy data in the label shows separation from immediate release steroids for a single administration.

Source: ZILRETTA label (package insert)

It is unfortunate that we don't see more separation in efficacy over time in the ZILRETTA arm of the study in the label to further substantiate its extended release formulation. However, FLXN sales reps can provide orthopedics with several ZILRETTA publications that provide more convincing data of the benefits of ZILRETTA over immediate release CSs. For example, the Conaghan et al. JB&JS 2018 publication of the phase 3 results, which shows statistically significant improvements across pain, stiffness, physical function, and quality of life for 4, 8 and 12 week time points (See Table IV from that publication below).

Source: Conaghan et al. JB&JS 2018 publication of the phase 3 results

Furthermore, data on these endpoints is even more convincing on a post-hoc analysis done on the subset of patients in the phase 3 study participants with unilateral knee OA (Langworthy et al.). Thus, it appears that there is substantial data that the FLXN sales team can use to show that ZILRETTA provides superior efficacy to immediate release CSs to try to convince orthopedics that ZILRETTA should be used instead of immediate release CSs as a first injection therapy.

Another issue for FLXN with respect to its inability to grab more market share is the fact that ZILRETTA's first approved indication was only for a single administration. Steroid injections are often re-administered to a patient, and FLXN felt their sales force was at a disadvantage with the initial label that was limited to single administration. Fortunately, in Q4 2019 the FDA approved FLXN's sNDA for an updated label for repeated use of ZILRETTA. However, the approved label language doesn't seem that convincing for repeat use. Here is FLXN's press release, which notes the change in intended use language as follows:

"Removal of language which stated that ZILRETTA was "not intended for repeat administration." The updated label states that the "efficacy and safety of repeat administration of ZILRETTA have not been demonstrated." "

Here's the actual label, intended use section:

Source: ZILRETTA label (package insert)

Furthermore, the safety language on the label for repeat administration doesn't look that helpful either

Source: ZILRETTA label (package insert)

The CEO of FLXN clarified at the recent Raymond James Investors Conference that he feels it is now a much better situation for his sales team post sNDA approval, since they can present to, and specifically discuss the publication of the results from their repeat administration publication with potential prescribers. Prior to the expanded label approval, they could not discuss the repeat administration results with prescribers, but only refer them to the FLXN scientific affairs team if they had questions. Therefore, hopefully the FLXN sales force can use the repeat administration publication to drive more sales. With respect to repeat administration, ZILRETTA appears to be effective on a second administration 12 to 24 weeks after an initial administration based on FLXN's repeat administration trial results. Although efficacy appears to decrease slightly upon a second administration of ZILRETTA, the data still looks very convincing that ZILRETTA remains very active on a second administration (see graph below from Spitzer et al. Rheumatology and Therapy 2019). Thus, FLXN may be able to convince orthopedics to use ZILRETTA initially instead of immediate release CS, and repeat ZILRETTA administration at 3-5 months to get more relief, and then if the pain returns, potentially switch to another type of injection such as PRP or opt for knee replacement surgery.

Source: Spitzer et al. Rheumatology and Therapy 2019

It appears that repeat administration efficacy data is strong enough to confirm that ZILRETTA is effective on a second administration. The questions are whether the data is strong enough to change prescribing habits and compete with alternative long-term pain relief options, and overcome possible practice economics issues (see below) to drive substantially more sales of ZILRETTA.

Another advantage of ZILRETTA is that it is particularly well differentiated over immediate release CSs for diabetics who receive a CS injection in a painful OA knee to reduce pain. An immediate release CS injection in the knee brings a spike in glucose. This spike is significantly reduced when ZILRETTA is used instead of immediate release CS (See slide below).

Source - FLXN March 2020 corporate slide deck and FIG. 2 of Russell et al. 2018.

It is noteworthy that despite the title of that slide from FLXN, that graph is not in the label. We believe FLXN is referring to the following statement in the ZILRETTA label:

Despite the minimal coverage for diabetics in the ZILRETTA label from our viewpoint, FLXN's commercial team should be able to leverage the published data for diabetic patients to drive more sales in this subsegment of the market. For example, ZILRETTA showed an increase of glucose of 155.24 before administration to 163.41 post-administration, which was significantly less than the increase seen with immediate release CS of 161.71 to 198.78 (See FIG. 3 of Russell et al. 2018). With respect to the diabetic market however, in the recent Raymond Jones call, the FLXN CEO was quick to point out that the company did not want to pigeon hole the market for ZILRETTA into diabetic patients.

Another reason that has been brought up on investor calls that potentially is holding back more rapid and extensive market adoption is that the cost and reimbursement situation for ZILRETTA is not attractive for providers such as orthopedic practices and/or hospitals. This is not an area where we have deep understanding and in general actual net revenue per injection information is not publicly available, but as far as we can tell this might be a key issue holding back ZILRETTA adoption. The retail price of ZILRETTA as best we can tell appears to be around $600 (Drugs.com, Oklahoma Health Care Authority 2018 (Packet Contents for DUR Board Packet - January 9, 2019) annual review of ZILRETTA (pg. 93) (download available at http://www.okhca.org), and webmd.com), which appears consistent with the $604 average selling price we find in CMS's reimbursement table effective January 1, 2020 based on ZILRETTA's Jcode (J3304) (See FLXN corp deck slide 20) ($18.88 per mg and an administration of ZILRETTA is 32 mg), which FLXN indicates is about 104% of the ASP (FLXN March 2020 corporate slide deck). This price seems similar to the price of HA (Brett 2016 Editorial) or PRP injections (Everyday Health). The average retail price we find for Kenalog-40 an immediate release triamcinolone, the CS in ZILRETTA, is about $12.00 (See e.g. Oklahoma Health link above and drugs.com). For a person paying out of pocket, this almost $600 difference may not be worth the increased efficacy and even safety if they are a diabetic. Even for a payor, this difference might require a special situation, such as diabetes (See Oklahoma Health link page 93, "A patient-specific, clinically significant reason why the member cannot use Kenalog-40... must be provided").

Since these knee pain injections are administered by providers at their outpatient facilities and many of the patients receiving injections are on private insurance or Medicaid, the situation is more complex. FLXN has reported good commercial insurance coverage and that Medicaid will reimburse providers, since there is a J code and ZILRETTA is delivered on label and for an indication that is medically necessary and reasonable (See FLXN March 2020 corporate slides 1-21). The more specific issue might be in the amount that providers such as orthopedic practices and hospitals are reimbursed, especially for Medicaid patients, compared to what they are paying for ZILRETTA, and how that compares to their reimbursement and cost for immediate release CSs. Plus, payors, such as the Oklahoma Health Care Authority, may be reluctant to pay such a high price premium without special circumstances, such as diabetes as noted above.

FLXN appears to acknowledge that there is an issue(s) that they need to overcome to reach the full market potential for ZILRETTA. The CEO indicated on that same Raymond James call that they still want to hire a Chief Commercial Officer (CCO) who can help FLXN figure out how to significantly increase its market share. In fact, FLXN announced the hiring of a new CCO this week. Thus, either FLXN doesn't understand the reason that there is not more market adoption, or understands the reason(s) but doesn't know how to fix it. Until we see some quarterly revenue that shows a more significant increase than current guidance, we do not predict that FLXN will exceed its guidance for 2020 and find it difficult to predict revenue in future years without seeing 2020's actual revenue numbers.

The vast majority of the value of FLXN currently, resides in ZILRETTA. However, FLXN has some other assets as well (See our ampbioresearch.com Corporate profile database slide below), but they are much earlier phase assets. Furthermore, FLXN has some mid-late stage ZILRETTA trials, for example to expand the label into shoulder OA pain (see below).

Source: (Ampbioresearch.com FLXN corporate database page)

If FLXN's commercial team can have success tapping into the OA pain market for ZILRETTA, it does not take a detailed valuation to see that FLXN's valuation and stock price can increase substantially over its current ~$250M market cap and enterprise value of roughly $300M (about $190M debt and about $135M cash). If one uses even a 5X revenue multiplier, a fairly conservative multiplier for a biopharmaceutical company, and FLXN is able to reach its $120M low end guidance this year, there appears to be upside in the stock price given the recent market correction. In the coming few years if FLXN can achieve $200M in sales, that would warrant a $1B market cap. Of course, there are a lot of factors that go into the revenue multiple in a stock price and increased revenue growth and apparent maximum revenue compared to cost of goods, R&D expenses supporting revenue growth, and especially the selling portion of SG&A expense would dictate FLXN valuation on a long-term basis. If FLXN could find a way to tap into much more of this large knee OA market, based on increased revenue and an increased multiplier because of an increased growth rate, it is not hard to get to double its current valuation and stock price. By our calculations using a rough free cash flow model (data not shown), it also appears that FLXN is undervalued currently, given its recent significant stock price drop, if it can hit its 2020 projections despite the pandemic.

Using Q4 2019 numbers, FLXN had about $135M cash/equivalents/securities and a burn rate of about $35M/quarter. Thus, FLXN ended Q4, 2019 with about 1 year of cash and a growing revenue stream that could decrease the burn rate depending on 2020 expense management. Although on their most recent call, FLXN management again noted that they projected that they would not need to raise more cash before they became profitable, this seems unlikely under the current 2020 revenue guidance and quarterly spend especially as they indicated an increasing R&D spend this year. However, it does not appear that a dilution event is imminent at this time, but probably will occur later in 2020.

In sum, we currently hold a low percent position in FLXN in a number of our funds, and will continue to monitor FLXN closely. The macro pandemic news has really hit FLXN hard the past week, which has quickly created a valuation opportunity when the markets return to normal. We are interested in the readout in their ongoing OA shoulder pain phase 2 trial of ZILRETTA, but that is not scheduled to read out until the first half of 2021. However, we are most interested to see if FLXN, especially with a new Chief Commercial Officer, can find a way to more significantly and rapidly increase its market share in this large market opportunity, or execute on the 2020 guidance and convince the market that peak sales of ~$400 million within 10 years is achievable despite the challenges of a highly competitive marketplace. Given the recent correction based on the macro downturn from the pandemic, at its current market cap, FLXN appears undervalued. Furthermore, although we do not invest hoping for an acquisition, it would be a nice surprise for shareholders if an entity with an effective commercial team in the pain/orthopedic space is willing to pay a premium on the current depressed FLXN stock price based on the commercial potential of ZILRETTA. Thus, we will continue to closely monitor FLXN's commercial and clinical progress in 2020.

Quick Note: Thanks for taking the time to read our article - hope it was helpful and useful. If it was beneficial to you in any way please consider hitting that 'follow' button to stay updated of our future analysis. Also wanted to note that these articles, including a version that we published before the FLXN quarterly report-out, are available in advance to our free community over at Ampbioresearch.com, including educational videos and more. If you have any questions or comments we would love to hear them!

Disclosure: I am/we are long FLXN. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it. I have no business relationship with any company whose stock is mentioned in this article.

Read the original:
Upside For Flexion Therapeutics Depends On How Well It Can Commercialize ZILRETTA In 2020 - Seeking Alpha

Recombinant Cell Culture Supplements Receive a Boost from Stem Cell Research Ventures; Demand for Novel Vaccines to Act as a Growth Lever, Says PMR -…

New York, United States, March 20, 2020 (GLOBE NEWSWIRE) -- The global recombinant cell culture supplements market, valued at US$ 320 Mn by the end of 2018, will grow at a steady rate from 2029-2029. The market players are investing in research and development activities to create new vaccines. They are targeting developing nations such as India and China for the same to benefit from their favorable government policies regarding foreign investments. Manufacturers are enhancing their presence across different distribution networks to market their products.

Recombinant Cell Culture Supplements Market: Key Takeaways

Request for sample Report: https://www.persistencemarketresearch.com/samples/31310

Recombinant Cell Culture Supplements Market: Key Growth Drivers

Recombinant Cell Culture Supplements Market: Key Restraints

The complete recombinant cell culture supplements market report with detailed market segmentation, 200 illustrative figures, and 63 data tables spread across 306 pages onhttps://www.persistencemarketresearch.com/methodology/31310

Recombinant Cell Culture Supplements Market: Competition LandscapeThe competition landscape is highly intense where every player is expanding its product portfolio to stay at the forefront in the market. established players are acquiring regional players to strengthen their regional footprint. For instance, Thermo Fisher Scientific acquired the bio-processing business of Becton Dickinson to expand its product portfolio.

Get Persistence Market Research's Detailed Coverage OnCell Culture Media Market: Get intensive information on the global cell culture media market with vital updates on market growth drivers, changing market dynamics, existing market challenges, government policies and laws, segmental market forecast and key market strategies prominent players.

Human Platelet Lysate Market: PMR's study on the global human platelet lysate market provides an exhaustive analysis of the market set for steady during 2019-2029. The study also elaborates on a detailed evaluation of key forces influencing growth in the market, major revenue strategies and key market players with their winning market strategies.

Autogenous Vaccines Market: Get vital information on the global autogenous vaccines market with segment-based analysis, major market statistics, and key growth factors, prominent market players and key marketing strategies adopted by them for a period under projection.

Gain access to Market Ngage, an AI-powered, real-time business intelligence platform that goes beyond the conventional research solutions to solve the complex strategy challenges that organizations face today.

About the ReportPersistence Market Research's market research study on the recombinant cell culture supplements market contains a global analysis of the market through20142018and provides growth assessment for20192029. The study offers insightful details of the hydrogen market through four major segments delivery mode, end-use, production method, and region.

About Persistence Market Research

Persistence Market Research (PMR) is an innovative and specialized supplier ofmarket intelligence reportsandconsulting services. Prompt delivery, in-depth research, and high quality are the sacrosanct principles of PMR. The company's research capabilities cover 5 continents, 1500+ reports, and 8 next-gen vertical expertise that have been catering to research demands of 5000+ clients.

Contact:

Rajendra Singh

Persistence Market Research

U.S. Sales Office:

305 Broadway, 7th Floor

New York City, NY 10007

+1-646-568-7751

United States

USA - Canada Toll-Free: 800-961-0353

For Sales Enquiries: sales@persistencemarketresearch.com

For Media Enquiries: media@persistencemarketresearch.com

Research Report: https://www.persistencemarketresearch.com/market-research/recombinant-cell-culture-supplements-market.asp

Press Release Source: https://www.persistencemarketresearch.com/mediarelease/recombinant-cell-culture-supplements-market.asp

Continued here:
Recombinant Cell Culture Supplements Receive a Boost from Stem Cell Research Ventures; Demand for Novel Vaccines to Act as a Growth Lever, Says PMR -...

Coronavirus treatment research is delayed by Trumps ban on the use of fetal tissue – Vox.com

President Donald Trump has repeatedly said that the US is working to develop a vaccine for Covid-19, the disease caused by the novel coronavirus, as quickly as possible. But one of his own administrations policies appears to be standing in the way of at least one scientist.

According to a report by the Washington Posts Amy Goldstein, Kim Hasenkrug, an immunologist at the National Institutes of Healths Rocky Mountain Laboratories in Montana, wants to test potential treatments for Covid-19 in mice with humanized lungs. But as the Post first reported, the work is being held up by officials at the Department of Health and Human Services due to a 2019 ban on NIH scientists using donated fetal tissue from abortions in their research.

While fetal tissue isnt typically used to develop actual therapies or treatments, it has one particularly key use for researchers: the ability to create mice with human tissue suitable for medical testing. Mice, generally, have similar immune systems to humans, making them particularly useful for early medical testing.

Humanized mice have been key to developing several important medical treatments for diseases like the Zika virus or HIV/AIDS, which was Hasenkrugs previous research focus. The calculation is simple. You cant test certain treatments without humanized mice, and you cant get humanized mice without fetal tissue.

There are, of course, many avenues of research using other kinds of tissue, but fetal cells can rapidly divide, grow, and adapt to new environments in ways that make them the gold standard for some disease research. And in other research areas, we dont yet know if there is anything that could substitute, R. Alta Charo, professor of law and bioethics at the University of Wisconsin at Madison, wrote in the New England Journal of Medicine in 2015.

And as the Posts Goldstein noted, scientists have already shown that humanized mice could make good test subjects for coronavirus treatments specifically:

Just months ago, before the new coronavirus began to infect people around the world, other U.S. scientists made two highly relevant discoveries. They found that specialized mice could be transplanted with human fetal tissue that develops into lungs the part of the body the new coronavirus invades. These humanized mice, they also found, could then be infected with coronaviruses to which ordinary mice are not susceptible closely related to the one that causes the new disease, Covid-19.

Outside researchers have offered the mice to Hasenkrug for coronavirus research. But so far, Hasenkrug and other government researchers havent been allowed to obtain the mice they need to perform testing, the Post reported, thanks to a June 2019 HHS directive banning fetal tissue research for those employed by the government.

Caitlin Oakley, a HHS spokesperson, told the Post that no decision has been made about Hasenkrugs request. A separate HHS spokesperson confirmed that in a statement to Vox.

The spokesperson also pointed to an HHS statement from last June detailing the administrations policy on fetal tissue research. Promoting the dignity of human life from conception to natural death is one of the very top priorities of President Trumps administration, reads the statement.

Hasenkrug, and the potentially millions of Americans who may benefit from his research, now find themselves caught in a deeply divisive political issue thats been years in the making.

The US government had funded fetal tissue research efforts since the 1950s and for nearly as long, anti-abortion activists have opposed the practice.

In the Trump era, they finally found an administration ready to listen.

In 2018, the US government spent $115 million on about 173 research projects utilizing fetal tissue, a third of which were devoted to developing therapies for HIV/AIDS.

Research using fetal tissue has led to the development of vaccines such as those for polio, rubella, and measles, the International Society for Stem Cell Research (ISSCR) said in a statement last September. Fetal tissue is still helping advance science, with research underway using cells from fetal tissue to evaluate conditions including Parkinsons disease, ALS, and spinal cord injury. Fetal tissue is also necessary for the development of potential treatments for Zika virus and HIV/AIDS.

But anti-abortion activists argue it incentivizes abortion providers to perform more abortions in order to procure more tissue they could sell to third-party companies, which then provide the tissue directly to researchers. Fetal tissue procurement has been heavily regulated since enactment of the NIH Revitalization Act of 1993, which states that profits cannot be made in the transfer or acceptance of fetal tissue for research purposes.

That hasnt stopped anti-abortion activists from continuing to call into question the ethics of abortion providers or procurement companies. In 2000, the anti-abortion rights group Life Dynamics seemingly began the practice of releasing false or deceptively edited videos targeting the fetal tissue sales process. The main source in their videos was found to be not credible.

The George W. Bush administration did not take action against fetal tissue research, instead enacting restrictions on stem cell research derived from embryos in an August 2001 executive order. Those restrictions were later rolled back by an executive order from President Barack Obama in 2009.

More recently, the anti-abortion rights group Center for Medical Progress, run by activist David Daleiden, infamously released heavily edited videos appearing to show a Planned Parenthood employee negotiating prices for fetal tissue, and CMP accused the abortion care provider of illegally profiting from sales.

The videos caught the attention of Republican lawmakers. Investigations by the House Energy and Commerce, House Judiciary, and Oversight and Government Reform committees found no wrongdoing. Further investigations into Planned Parenthood and fetal tissue transfer proceeded with the creation of the Select Investigative Panel on Infant Lives in October 2015, chaired by Rep. Marsha Blackburn (R-TN), leading to $1.59 million in spending and a 471-page final report making numerable anti-abortion recommendations.

Among those requests was a call for the government to ban fetal tissue research by government scientists, which Barack Obamas administration, which favored the practice, ultimately ignored.

Democrats on the committee released their own report, disputing the conclusions of their Republican colleagues. At the end of their crusade, the conclusion was undeniable: There was no wrongdoing on behalf of fetal tissue researchers, including Advanced Bioscience Resources, or anyone else in the fetal tissue research space, said Rep. Jan Schakowksy (D-IL), who served as the ranking Democrat on the select committee, in a statement to Rewire.News in October 2018.

Anti-abortion activists saw an opportunity to advance their agenda on fetal tissue research when President Donald Trump won election in 2016, but it took a conservative media freakout in 2018 to enact new restrictions.

Over the summer of 2018, conservative media focused on several transactions by Advanced Bioscience Resources, a company that procured fetal tissue from abortion providers and shipped it to researchers for use. ABR was also one of the subjects of the 2015 select committee investigation.

HHS decided to cancel the governments contract with ABR in late September 2018 and began a review of the agencys rules and processes for procuring fetal tissue for research. That review concluded last summer, with HHS announcing in June that it would ban any fetal tissue studies by in-house NIH scientists, like Hasenkrug. It also introduced strict paperwork requirements for any outside scientists conducting research funded by the government.

The decision came as welcome news to anti-abortion activists. The language is trying to hold an ethical standard for the research proposals and the research that might be done. The policy is not just about science. Its also about ethics, David Prentice, vice president and research director at the anti-abortion Charlotte Lozier Institute, told Science magazine last July.

For his part, Hasenkrug has reportedly asked the Trump administration several times for permission to begin working with UNCs humanized mice for a coronavirus cure, but is still waiting on permission. Per the Post:

On Feb. 19, two people said, Hasenkrug wrote to a senior NIH official, asking for permission to use those mice and run experiments related to covid-19. He eventually was told that his request had been passed on to senior HHS officials.

Since then, he has written repeatedly to NIH, laying out in greater detail the experiments he wants to undertake and why several alternatives to the fetal tissue-implanted mice would not be as useful. In one appeal to NIH, Hasenkrug wrote that the mice he was offered are more than a year old and have a relatively short time remaining to live, so they should be used quickly, according to Kerry Lavender, a Canadian researcher familiar with the correspondence.

Hasenkrugs request has reportedly been forwarded to the White House Domestic Policy Council, which is chaired by Trump himself, but the government has not made a decision on the research as of yet.

See the rest here:
Coronavirus treatment research is delayed by Trumps ban on the use of fetal tissue - Vox.com

The American Academy of Stem Cell Physicians Recommends a Treatment Protocol for COVID-19 to the WHO – P&T Community

MIAMI, March 19, 2020 /PRNewswire/ --The American Academy of Stem Cell Physicians has Recommendations for the Treatment of COVID-19. Treatment plans were sent to the WHO representatives and DirectorDr. Tedros Adhanom earlier today.

The following are recommendations of The American Academy of Stem Cell Physicians for treatment of COVID-19:

For Hospitalized Patients (Based on 70KG weight):

1. Intravenous Vitamin C 50 grams QD (Need to check patients for G6PD deficiency before high dose IVC.)2. Zinc 8mg IV QD3. Vitamin D3 100000-150000 IU Intramuscularly QD4. Chloroquine 10mg/kg bid5. Umbilical Cord Blood - 1 million MNC/kg QD6. Nebulizer with Amniotic fluid derived Exosomes 1 Billion/Kg Q4h.

Please note the vitamins and minerals are given at a higher dose than are normally recommended and physicians should do prophylaxis for gastrointestinal protection and add probiotics.

Non-Hospitalized Patients:

1. Zinc 40 mg BID2. Vitamin C 5000mg/day3. Chloroquine 500mg BID initial loading dose of 1000mg4. Vitamin D 5000 IU QD5. Oral iodine 300mg PO bid

6. Dietary and lifestyle recommendations:a. 8oz of water/hourb. No sugarc. More vegetables at each meal.d. Exercise 30 minutes per day.e. Meditate.f. Sleep minimum of 7-8 hours/day.

A spokesman for The American Academy of Stem Cell Physicians, Dr. A.J. Farshchian said earlier today,"The AASCP members have been working on the above protocol this past week. We have to thank all the physicians contributing to this protocol in particular."

Thephysicians are :

Kristine Salter, M.D.Sunny Kim, M.D.Pedro Abrantes, DPMTom Yarema, M.D.Robert Hamilton, M.D.

This protocol is to be tailored for each individual patient. Physicians from around the world are welcome to contact us, as we will continuously be updating this protocol.

For updates, check The American Academy of Stem Cell Physicians website: http://www.aascp.net.

About AASCP

The American Academy of Stem Cell Physicians (AASCP) is an organization created to advance research and the development of therapeutics in regenerative medicine, including diagnosis, treatment, and prevention of disease related to or occurring within the human body. The AASCP aims to serve as an educational resource for physicians, scientists, and the public.

Contact Marie Barba at AASCP.net or305-891-4686.

Related Images

aascp-recommendations-to-treat.jpeg AASCP recommendations to treat Covid-19 AASCP recommendation memo

View original content:http://www.prnewswire.com/news-releases/the-american-academy-of-stem-cell-physicians-recommends-a-treatment-protocol-for-covid-19-to-the-who-301026685.html

SOURCE The American Academy of Stem Cell Physicians

Follow this link:
The American Academy of Stem Cell Physicians Recommends a Treatment Protocol for COVID-19 to the WHO - P&T Community

Scientists figure out why stress turns your hair gray – Big Think

It's not your imagination, it turns out. Stress can turn a person's hair gray. It's said that if you look at before and after pictures of any eight-year U.S. president the impact of the office on hair color is clear, though in fairness, it may be that candidates dye their hair and then at some point stop doing so. Nonetheless, scientists from Harvard have not only verified the conventional wisdom on our graying noggins, but have also figured out why stress is so brutal to our follicular pigmentation.

The new research from Harvard scientists is published in the journal Nature.

Image source: Ververidis Vasilis/Evan El-Amin/Vacclav/Shutterstock/Big Think

Senior author of the study Ya-Chieh Hsu, professor of Stem Cell and Regenerative Biology at Harvard, explains what prompted her research:

"Everyone has an anecdote to share about how stress affects their body, particularly in their skin and hair the only tissues we can see from the outside. We wanted to understand if this connection is true, and if so, how stress leads to changes in diverse tissues. Hair pigmentation is such an accessible and tractable system to start with and besides, we were genuinely curious to see if stress indeed leads to hair graying."

It turns out that stress activates nerves associated with our basic fight-or-flight system, and these nerves permanently damage pigment-regenerating melanocyte stem cells in hair follicles, causing them to cease production of melanin that normal provides color to hair follicles.

Hsu's team studied the issue using mice, and was somewhat stunned at their findings. "When we started to study this, I expected that stress was bad for the body but the detrimental impact of stress that we discovered was beyond what I imagined," recalls Hsu.

The scientists stressed the mice using a combination of three methods:

Image source: Helga Lei/Shutterstock

Hsu and her colleagues first suspected an immune system reaction was at the root of graying hairs only to discover that mice without immune systems still turned gray in response to stressors. The next suspect was cortisol produced by the adrenal glands however, this proved not to be so. "Stress always elevates levels of the hormone cortisol in the body," says Jsu, "so we thought that cortisol might play a role. But surprisingly, when we removed the adrenal gland from the mice so that they couldn't produce cortisol-like hormones, their hair still turned gray under stress."

Image source: Judy Blomquist/Harvard University

Finally, the researchers investigate the possibility that the system responding to stressors was the mice's sympathetic nervous systems, the part of the nervous system that kicks into action with the fight-or-flight impulse. The sympathetic nervous system is a vast network of nerves that connects, among other places, to hair follicles in the skin. In response to stress, the system sends a rush of the chemical norepinephrine to the follicles' melanocyte stem cell, causing them to quickly burn through and deplete their stores of pigment.

Say Hsu, "After just a few days, all of the pigment-regenerating stem cells were lost. Once they're gone, you can't regenerate pigments anymore. The damage is permanent." Great for survival, not so good for hair color.

Sympathetic system nerves are magenta above. Melanocyte stem cells are yellow.

Image source: Hsu Laboratory, Harvard University

"Acute stress," says lead author of the study Bing Zhang, "particularly the fight-or-flight response, has been traditionally viewed to be beneficial for an animal's survival. But in this case, acute stress causes permanent depletion of stem cells."

The research, done in collaboration with other Harvard researchers, presents a new appreciation of the effect the sympathetic system can have on the body's cells during stress.

One of these collaborators, Harvard immunologist Isaac Chu, notes, "We know that peripheral neurons powerfully regulate organ function, blood vessels, and immunity, but less is known about how they regulate stem cells. With this study, we now know that neurons can control stem cells and their function, and can explain how they interact at the cellular and molecular levels to link stress with hair graying."

Given this finding regarding the direct impact of stress on follicular stem cells, the question of what it else it may affect becomes an obvious one. As Hsu sums it up, "By understanding precisely how stress affects stem cells that regenerate pigment, we've laid the groundwork for understanding how stress affects other tissues and organs in the body."

This importance of the study therefore goes way beyond graying heads. "Understanding how our tissues change under stress is the first critical step," says Hsu, "toward eventual treatment that can halt or revert the detrimental impact of stress. We still have a lot to learn in this area."

Related Articles Around the Web

Continued here:
Scientists figure out why stress turns your hair gray - Big Think

The Asia Pacific cell line development market is expected to reach US$ 2,813.78 Mn in 2027 from US$ 987.48 Mn in 2019 – Yahoo Finance

The market is estimated to grow with a CAGR of 14. 0% from 2020-2027. The growth of the cell line development market is primarily attributed to the increasing foreign direct investments in these countries, highly skilled, efficient, and a large number of human resources, streamlining government policies resulting in high expenditures for the biotechnology sector.

New York, March 19, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Asia Pacific Cell Line Development Market to 2027 - Regional Analysis and Forecasts by Type ; By Product ; Application ; and Geography" - https://www.reportlinker.com/p05875826/?utm_source=GNW

In the last few years, stem cell research became a significant field in the Asia Pacific medical sector, experiencing good development vision for the treatment of some challenging diseases.The government of the country organized various awareness programs for stem cell research.

Moreover, the growing number of players operating across the country manufactures products for cell line development. The countries such as Australia, India, and South Korea are estimated to serve various growth opportunities due to the rising development in the biotechnology sector.Moreover, the companies are performing various activities for the cell line development market, for instance, Selexis, Carestream Avacta, JSR Life Sciences. has done recent developments for products.In 2018, the recombinant cell line segment held the most significant market share of the cell line development market, by type.This segment is also anticipated to dominate the market in 2027 owing to its popularity among manufacturers for the production of therapeutic recombinant proteins.

The hybridomas segment is anticipated to witness growth at a significant rate during the forecast period.The Japan cell line development market is dominated by intraoral media and reagent segment in 2019 with a considerable market share, by product.This segment is also predicted to dominate the market in 2027.

Also, media and reagent segment is anticipated to witness growth at a significant rate during the forecast period, owing to the increasing research activities in biotechnology sector.In 2019, the Bioproduction segment held a considerable market of the cell line development market, by the application.This segment is also predicted to dominate the market in 2027 owing to higher demand of biologics.

However, the drug discovery segment is anticipated to witness growth at a significant rate during the forecast period.Some of the major primary and secondary sources for cell line development included in the report are Chinese Academy of Sciences, Council of Scientific and Industrial Research, and others.Read the full report: https://www.reportlinker.com/p05875826/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Clare: clare@reportlinker.comUS: (339)-368-6001Intl: +1 339-368-6001

Link:
The Asia Pacific cell line development market is expected to reach US$ 2,813.78 Mn in 2027 from US$ 987.48 Mn in 2019 - Yahoo Finance

Inside the outbreak: Harnessing high tech – Science & Tech – WORLD News Group

In some Chinese hospitals, robots clean, remove contaminated items, and deliver food and medicine to patients to keep humans from spreading the new coronavirus. The robots can work for up to eight hours after charging for 20 minutes and return to the charging station when their power runs low. Not only are they more sanitary, but they also save time and conserve the protective gear workers must don when they see patients, Luo Xiaodan, deputy director of Guangdong Provincial Peoples Hospital, told China Daily.

No other pandemic fight has had as much assistance from robots, drones, and artificial intelligence as the new coronavirus outbreak. But the extensive use of technology in public health also poses new risks to privacy that could last long after COVID-19 dies out.

Some tech companies are donating their products to help keep the public safe. Dimer UVC Innovations is offering free use of its GermFalcon machine to airlines at select U.S. airports during the outbreak. The robot uses ultraviolet light to kill 99.99 percent of bacteria, viruses, and superbugs on airplanes. Zoom Video Communications said it will make its conferencing program available for free to K-12 schools in Japan, Italy, and the United States, Tech Crunch reported.

Governments and healthcare providers are also investing in new technology as they search for creative ways to fight the pandemic. A Swiss startup company called Calyps supplies French hospitals with artificial intelligence that analyzes weather forecasts, hospital data, public events, and seasonal flu patterns to predict patient flow up to seven days in advance, France 24 reported.

At Beijings Qinghe Railway Station, infrared systems powered by artificial intelligence can check 200 temperatures a minute while people wait for trains without disrupting the flow of traffic, according to MIT Technology Review. Other AI programs can read thousands of CT scans in 20 seconds with 96 percent accuracy, helping doctors diagnose the pneumonia that often accompanies COVID-19.

Drone technology can help deliver medical supplies. Japans Terra Drone transports medical samples and quarantine material between control centers and hospitals. Drones can also patrol public spaces and track quarantine violations.

Other tech companies offer solutions to make social distancing and widespread closures easier to navigate. Baidu in China offers an online doctor consultation service for people with limited access to medical resources or to those who want to see a doctor without risk of exposing themselves or others to illness. The service offers a network of more than 100,000 respiratory specialists and has already handled more than 15 million inquiries, MIT Technology Review reported.

Web giant Alibaba designed an app that Chinese authorities use to track people who visited infected areas or had contact with anyone who tested positive for the coronavirus. Based on that information, the application sends a QR code to the persons phone. If the code is red or yellow, the person cannot access workplaces, residential buildings, or various transit stations. While some people like the ideaone person told France 24 it is reassuringit does have downsides. One man received a red code that blocked him from work for two days even though he had not traveled to an infected area or come near anyone with COVID-19. In a country known for intrusive surveillance, many fear the increased invasion of privacy will desensitize people to a new level of control. Over time we see more and more intrusive use of technology and less ability of people to push back, Maya Wang, senior China researcher for Human Rights Watch, told The Guardian.

Read the original here:
Inside the outbreak: Harnessing high tech - Science & Tech - WORLD News Group