Modified Stem Cell Transplant Procedure Shows Favorable Results in Adults Living with Severe Sickle Cell Disease – InvestorsObserver

Less Toxic Approach to Haploidentical Bone Marrow Transplantation in Adults Living with Severe Sickle Cell Disease Offers Promise

LBA-4 : Reduced Intensity Haploidentical Bone Marrow Transplantation in Adults with Severe Sickle Cell Disease: BMT CTN

SAN DIEGO , Dec. 12, 2023 /PRNewswire/ --Stem cell transplantation is a potentially curative treatment for sickle cell disease (SCD), but it is not feasible for most people, often due to a lack of suitable donors or the inability to tolerate the intensive chemotherapy required as part of the treatment. In a new study, presented during the 65th American Society of Hematology (ASH) Annual Meeting and Exposition, adults living with severe SCD saw good outcomes from a modified transplantation procedure that broadens the potential donor pool and includes a gentler conditioning regimen, suggesting a less toxic approach could allow a much broader array of people to benefit from the treatment.

"This is a pragmatic approach for adults with SCD, and the results are fantastic," said Adetola A. Kassim , MBBS, MS , professor of medicine at Vanderbilt University Medical Center, the study's lead author. "It actually beat our expectations. This study has clearly shown that you can take selected adult patients with significant comorbidities to transplant, and hopefully change the trajectory of their disease."

The trial is the largest multi-center study to date to test the modified approach in adults with SCD.

SCD is an inherited blood disorder in which red blood cells become misshapen, diminishing their ability to carry oxygen. It causes episodes of severe pain, called vaso-occlusive crises, as well as damage to tissues and organs that accrue over time and can lead to early death. A stem cell transplant can cure the disease by removing the stem cells that produce misshapen blood cells and replacing them with stem cells from a donor that will make healthy blood cells.

The standard transplantation procedure for SCD requires that the donor be a sibling with a high degree of genetic similarity and that the recipient be healthy enough to tolerate a high-intensity chemotherapy regimen as part of the procedure. In the modified procedure used for the study, called related, reduced intensity haploidentical bone marrow transplantation, the donor only needs to be "half-matched" genetically to the recipient, broadening the pool of potential donors to include not only siblings but parents, children, cousins, aunts, and uncles.

While fewer than one-quarter of people with SCD have a matched sibling who could potentially serve as a donor, about 90% have a relative who could serve as a half-matched donor. In addition, because it uses a lower intensity conditioning regimen, the modified approach is more easily tolerated by people with health problems such as organ damage, a complication of SCD that becomes more common with age.

As a result of these modifications, a much broader group of people living with SCD could be eligible for reduced intensity haploidentical bone marrow transplantation than for conventional matched-donor transplantation, including older individuals, those with more comorbidities, and those without a matched sibling donor.

For the study, researchers enrolled 54 individuals living with SCD with a history of stroke or reduced heart functioning, pain episodes, or frequent blood transfusions. Forty-two participants ultimately underwent the modified stem cell transplantation procedure. At two years, the overall rate of survival following the transplant was 95% and the estimated rate of event-free survival (defined as survival without graft failure or a second infusion of stem cells) was 88%.

At 100 days following the transplant, 4.8% of patients experienced a primary graft failure and 4.8% experienced adverse events of grade three or higher. Infections were common; 78.6% of patients experienced at least one hospital admission following their transplant, most due to infections. Two participants died within the first year after the transplant, one from organ failure and one from fluid buildup in the lungs associated with COVID-19 infection.

Most participants experienced significant improvements in markers of healthy blood functioning, a reduction in pain episodes and fatigue, and improved heart and lung functioning. Overall, researchers said that the results suggest the modified procedure can achieve results that are comparable to conventional stem cell transplantation and is tolerable even for people with health conditions that would make them ineligible for a conventional transplant.

In future studies, the researchers plan to focus on opportunities to reduce rates of infection, enhance supportive care, and preserve fertility among people undergoing the procedure. They also plan to continue to follow trial participants to track long-term outcomes.

"Some of these patients are really thriving and now getting back into the community," said Dr. Kassim. "Our hope is that long-term follow-up will be able to quantify the added value of curing patients of SCD." Dr. Kassim added that most patients were off immunosuppression therapy at both the one and two-year post-transplant timepoints with no significant chronic graft-versus-host disease, providing evidence that the study's cyclophosphamide-based post-transplant regimen helped to reduce the risk of this serious complication.

Researchers noted that for many people, the feasibility of this treatment will depend not only on the availability of family donors, but on costs and insurance coverage, the ability to take time off work and even temporarily relocate to undergo the procedure, and the availability of family and caregiver support.

This study was funded by the National Heart, Lung and Blood Institute and the National Cancer Institute.

Adetola Kassim , MBBS, MS, of Vanderbilt University , will discuss this study in the Late-Breaking Abstracts Session on Tuesday, Dec. 12, 2023 , at 9:00 a.m. Pacific time in Hall A ( San Diego Convention Center).

###

The American Society of Hematology (ASH) ( hematology.org ) is the world's largest professional society of hematologists dedicated to furthering the understanding, diagnosis, treatment, and prevention of disorders affecting the blood. For more than 60 years, the Society has led the development of hematology as a discipline by promoting research, patient care, education, training, and advocacy in hematology.

ASH's flagship journal, Blood ( bloodjournal.org ) is the most cited peer-reviewed publication in the field, and Blood Advances ( bloodadvances.org ) is an open-access, online journal that publishes more peer-reviewed hematology research than any other academic journal worldwide. Two new journals will be joining the Blood Journals portfolio in 2024, Blood Neoplasia ( bloodneoplasia.org ) and Blood Vessels, Thrombosis & Hemostasis ( bloodvth.org ).

View original content to download multimedia: https://www.prnewswire.com/news-releases/modified-stem-cell-transplant-procedure-shows-favorable-results-in-adults-living-with-severe-sickle-cell-disease-302011898.html

SOURCE American Society of Hematology

Read the rest here:
Modified Stem Cell Transplant Procedure Shows Favorable Results in Adults Living with Severe Sickle Cell Disease - InvestorsObserver

Stem cell therapy trial shows promise for regenerative treatment of heart failure – News-Medical.Net

Stem cell-based therapy improved quality of life for patients with advanced heart failure, Mayo Clinic researchers and international collaborators discovered in a late-stage multinational clinical trial. In one of the largest studies of cell intervention after a heart attack, patients reported their daily hardship lessened when stem cells optimized for heart repair supplemented standard of care. This clinical study further documented lower death and hospitalization rates among those treated with cell therapy. This research is published in Stem Cells Translational Medicine.

"In this era of global aging, people live longer, yet are at risk of chronic disease imposing a poor quality of life. Heart failure is an emerging epidemic in need of new healing options," says Andre Terzic, M.D., Ph.D., a Mayo Clinic cardiovascular researcher and lead author on the paper. "The stem cell-based approach in the present study demonstrates sustained benefit on physical and emotional health in response to biotherapy."

Dr. Terzic is the Marriott Family Director, Comprehensive Cardiac Regenerative Medicine for the Center for Regenerative Biotherapeutics.

Approximately 800,000 people in the U.S. suffer heart attacks every year. Damage to cardiac muscle weakens the heart's ability to pump blood through the body, leading to heart failure -; a debilitating and life-threatening disease. People with heart failure often suffer a diminished quality of life associated with shortness of breath, fatigue, swollen legs and limited daily activities. Standard of care for heart failure includes a heart-healthy diet and habits, medications, implantable devices, and rehabilitation. However, current regimens do not work for everyone, especially in advanced disease stages.

The study team recruited 315 patients from 39 hospitals in 10 countries who had advanced heart failure despite receiving standard of care. Patients were randomly divided into groups that would receive stem cell therapy versus those who would not. Patients assigned to cell treatment underwent cardiac catheterization. Then, stem cells taken from their own bone marrow and programmed to heal damaged heart tissue were delivered to the heart. Patients assigned not to receive stem cells had cardiac catheterization without cell delivery -; known as the sham treatment.

All participants were asked to complete a 21-question self-assessment at the beginning of the study and then again at 26-, 39- and 52-weeks following treatment. For each question, they rated their physical, behavioral and emotional states on a scale of 0 to 5.

During the one-year follow-up, patients with preexisting left cardiac chamber enlargement consistently reported improved quality of life after cell therapy over those who received the sham treatment. In parallel, lower death and hospitalization rates were recorded among those who received stem cells.

Data from one of the largest cardiovascular cell therapy trials, testing a regenerative technology discovered at Mayo Clinic, indicate benefit in both quantity and quality of life in advanced heart disease. The benefit of regenerative care has been typically evaluated on the basis of clinician-reported outcomes. What's unique in this study is that it was designed to listen to the patient's experience."

Satsuki Yamada, M.D., Ph.D., Mayo Clinic cardiovascular researcher and first author on the study

This clinical trial was conducted in a double-blinded fashion, with both participants and their healthcare professionals masked during the study assignment. A double-blind study is designed to reduce the risk of bias when evaluating patient outcomes.

Further independent clinical studies are needed to validate the findings of this research.

Marriott Family Foundation and National Institutes of Health (R01 HL 134664) provided funding. The Mayo Clinic Van Cleve Regenerative Medicine Program, Gerstner Family Foundation, Tanoto Foundation, and Mayo Clinic Center for Regenerative Biotherapeutics provided additional support.

Source:

Journal reference:

Yamada, S., et al. (2023). Cell Therapy Improves Quality-of-Life in Heart Failure: Outcomes From a Phase III Clinical Trial. Stem Cells Translational Medicine. doi.org/10.1093/stcltm/szad078.

More here:
Stem cell therapy trial shows promise for regenerative treatment of heart failure - News-Medical.Net

Companies Market Stem Cell Treatments to Long COVID Patients – Medpage Today

Clinics that sell stem cell and exosome treatments have turned their attention to long COVID patients, researchers found.

Among 38 businesses selling such treatments for COVID-19, the majority (36) marketed those therapies for long COVID, stated Leigh Turner, PhD, of the University of California Irvine, and colleagues in Stem Cell Reports.

"We didn't think the pattern was going to emerge as strongly as it did," Turner told MedPage Today.

Turner and his team have tracked stem cell clinics for years, building a database of clinics that operate in this arena. When the COVID-19 pandemic hit, they logged how these businesses were taking advantage of patients' fears by selling purported treatments for COVID.

They revisited some of those businesses last fall to see whether anything had changed as the pandemic shifted -- and lo and behold, it had.

"The pandemic has changed over time, and now there's a whole population of individuals who have had COVID-19, and they haven't completely recovered," Turner said. "They have lingering symptoms that are sometimes quite serious, sometimes life-altering" -- and that can make people desperate to find treatments, he added.

"We have a population of patients who are looking for symptomatic relief," Turner continued. "While we have long COVID clinics, people may not have an easy time getting access to them. There are long waits. And the interventions themselves may be rather limited in their effects."

That has left the door wide open for stem cell marketers to try to reach these people, Turner said.

For their study, the researchers used three strategies to find stem cell and exosome clinics marketing to COVID patients online. They looked at an earlier database of 1,480 stem cell or exosome businesses in the U.S., searched Google for additional companies both in the U.S. and abroad, and looked at businesses mentioned in Turner's 2021 Cell Stem Cell paper on companies selling stem cell treatments for COVID.

They revisited and re-analyzed all company websites in September 2022, with a final fact-check in October 2022.

Overall, they found 38 businesses that were advertising stem cell and exosome treatments for COVID, which were connected to 60 clinics.

Most of them were specifically marketing these therapies to patients with long COVID, while six businesses marketed their therapies as "immune boosters," five claimed to treat acute COVID infection, and two claimed their products could prevent COVID.

The vast majority of these businesses were based in the U.S. (40%) and Mexico (37%), while four were in Ukraine, two were in the Cayman Islands, and other countries appeared to have one business each: Guatemala, Malaysia, Panama, Philippines, Poland, Spain, Thailand, and the United Arab Emirates.

Turner and colleagues found that these products weren't cheap. Among the nine businesses that provided information on how much they charged, the least expensive product was $2,950, while the most expensive product cost $25,000. The average listed cost was $11,322, they found.

Turner said there are "plenty of things that can go wrong" when it comes to purported stem cell treatments for long COVID. These treatments are investigational and don't have scientific evidence behind them proving their success for the condition, he said.

A patient's "situation can be made dramatically worse if they're given an infusion of a product that hasn't been carefully studied or tested," Turner told MedPage Today. "There's a real possibility for serious injury in that situation, whether it's pulmonary embolism, an infection, or something else."

Indeed, many examples of stem cell treatments causing infections and other problems have been reported. The hit podcast "Bad Batch" examined an instance in which 12 people were hospitalized after getting contaminated stem cell injections. Nebraska health officials reported an outbreak of severe infections after exosome therapies. And researchers reported on three patients who had severe vision loss after intravitreal injections of autologous adipose tissue-derived stem cells.

There's also "an obvious possibility for financial scams," Turner said. "At an average price of $11,000, it's not like going to the store and buying some dietary supplements."

Turner said regulators should get tougher on companies peddling stem cell and exosome treatments for long COVID.

"I think it's a modest number," he said, referring to the 36 businesses his team discovered. "This seems like activity that probably deserves to be prioritized and seems like the kind of challenge the FDA and FTC [Federal Trade Commission] could actually do something about in a comprehensive way."

The FDA and FTC have pursued stem cell companies in the past, with both regulators issuing warning letters to such companies. One healthcare professional was even sentenced to jail time for selling a fake stem cell therapy.

Still, many businesses have avoided attracting regulators' attention, Turner said: "There's a lot the FDA has done, but there's still a massive marketplace."

The study was limited because it likely identified only some companies operating in this space. Also, the researchers searched only in English, and searches in other languages may reveal additional companies. In addition, businesses may have used other forms of advertising -- including billboards, newspaper or magazine ads, and radio or TV commercials -- to reach their potential customers.

"It is understandable that individuals seeking relief from shortness of breath, fatigue, 'brain fog,' heart palpitations, loss of smell, and other symptoms search for interventions that might help them," Turner and colleagues wrote. "Acknowledging the suffering and agency of such persons, members of this patient population are vulnerable to having their suffering, desperation, and hope exploited by entities making appealing therapeutic claims without having the scientific evidence needed to make such representations."

Kristina Fiore leads MedPages enterprise & investigative reporting team. Shes been a medical journalist for more than a decade and her work has been recognized by Barlett & Steele, AHCJ, SABEW, and others. Send story tips to k.fiore@medpagetoday.com. Follow

Disclosures

The project is supported by the Pew Charitable Trusts.

Turner disclosed serving as an expert witness in cases regarding unapproved stem cell treatments, as well as relationships with the International Society for Stem Cell Research and the International Society for Cell and Gene Therapy.

Primary Source

Stem Cell Reports

Source Reference: Turner L, et al "Businesses marketing purported stem cell treatments and exosome therapies for COVID-19: An analysis of direct-to-consumer online advertising claims" Stem Cell Rep 2023; DOI: 10.1016/j.stemcr.2023.09.015.

Visit link:
Companies Market Stem Cell Treatments to Long COVID Patients - Medpage Today

Stem cell study reveals how infantile cystinosis causes kidney failure and how to cure it – EurekAlert

image:

This image, produced by a fluorescence microscope,shows a normal renal proximal tubule, the specific nephron segment in the kidney that is impaired in the rare disease infantile cystinosis. The red, green and yellow regions indicate the presence of different proteins in the tubule and the blue indicates the presence of nuclei. The UB researchers generated the tubule in the image from stem cells derived from an individual who does not have the disease.

Credit: Alexandra Kojac

BUFFALO, N.Y. University at Buffalo research has identified how a misstep in the genesis of a key component of the kidney causes infantile cystinosis, a rare disease that significantly shortens the lifespan of patients. Published Nov. 30 in theInternational Journal of Molecular Sciences, the work reveals that the mechanisms that cause the disease could be addressed and potentially cured through the genome-editing technique CRISPR. That could make kidney transplants, the most effective treatment currently available for these patients, unnecessary.

Infantile cystinosis, the most common and most severe type of cystinosis, occurs as the result of an accumulation in the bodys cells of cystine, an amino acid. The buildup damages cells throughout the body, especially the kidneys and the eyes. Treatment consists of medications that work to lower the level of cystine in the body, as well as therapies that address the impaired growth of these children due to the inability to properly absorb nutrients. Some children require feeding tubes. Eventually, patients with infantile cystinosis, also called nephropathic cystinosis, will require dialysis and a kidney transplant.

Promise of stem cells

Human-induced pluripotent stem cells (hiPSCs) are stem cells that can differentiate into many different cell types. They hold tremendous potential for studying genetic diseases; the drawback has been that differentiation into certain cell types has been problematic. Such is the case with many cell types found in the kidney.

But a new protocol developed by this research team was successful.

When our normal human-induced pluripotent stem cells were subjected to the differentiation protocol we developed, we were able to demonstrate extensive expression of physiologically important markers of the renal proximal tubule, the specific nephron segment that is altered in this disease, saysMary L. Taub, PhD, senior author on the paper and professor of biochemistry in the Jacobs School of Medicine and Biomedical Sciences at UB.

Ramkumar Thiyagarajan, PhD, assistant professor of geriatric studies at the University of Kansas and formerly a postdoctoral fellow at UB, is first author on the paper.

The protocol involved extracting stem cells from a healthy individual and an individual with infantile cystinosis. The researchers developed a culture medium to grow stem cells that included a small number of defined components present in blood, including insulin, specific proteins, growth factors and others. Conducting the differentiation protocol under these conditions occurred in a timely manner, says Taub, we didnt have to wait for weeks on end, and it occurred in a reproducible manner.

The researchers were able to efficiently differentiate the hiPSCs into the kidney proximal tubule, the type of nephron in the kidney that is impaired in infantile cystinosis, as well as in other kidney diseases.

Unlike in other studies, we were able to retain a number of markers in the tubule that are physiologically important in the kidneys reabsorptive functions, says Taub. Although these markers were expressed in both the normal and the cystinosis-derived hiPSCs, the genesis of the tubule was impaired in the cystinosis-derived cells, mimicking what happens in infantile cystinosis.

A potential cure

That finding means that the CRISPR genome-editing technique could be used to repair the defective genome and potentially cure the disease. The normal gene can be introduced in the genome of cystinotic hiPSCs, which can then be injected in the kidney to replace the defective proximal tubules of individuals with infantile cystinosis, Taub says.

In cystinotic individuals, it is the renal proximal tubule that degenerates, presumably due to programmed cell death, explains Taub, so the entire kidney would not need to be replaced. The defective renal proximal tubules of individuals with this disease can be replaced with normal tubules following the introduction of the normal gene into cystinotic hiPSCs obtained from the patient. And because these tubules are from cells derived from the patient, there should be no problem with tissue rejection.

The findings are applicable to other kidney diseases where the renal proximal tubule is damaged, including acute kidney injury that can lead to chronic kidney disease and renal failure, and can be fatal.

Initial studies will need to be conducted with animal models as well as with in vitro tissue culture cells.

The research was funded byUBs WNYSTEM and The Cystinosis Research Foundation.

International Journal of Molecular Sciences

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the original:
Stem cell study reveals how infantile cystinosis causes kidney failure and how to cure it - EurekAlert

Orca-Q Demonstrates Early Efficacy, Tolerable Safety in Haploidentical Stem Cell Transplant Without PTCy – Targeted Oncology

Bone marrow: 7activestudio - stock.adobe.com

The high-precision cellular product Orca-Q showcased early signals of clinical activity and an acceptable safety profile in patients receiving a haploidentical stem cell transplantation (haplo-SCT) without posttransplant cyclophosphamide (PTCy), according to findings from a phase 1 trial (NCT03802695) presented during the 2023 ASH Annual Meeting.1

Results showed that both the graft-vs-host disease (GVHD) relapse-free survival (GRFS) rate and overall survival (OS) rate at 1 year was 82% (95% CI, 65%-94%) with Orca-Q. This is in comparison to historical data with conventional PTCy for haplo-SCT, with recent 1-year GRFS rates of 46%.

These findings show promising safety and efficacy outcomes using Orca-Q cell therapy for haploidentical transplant, said Samer A. Srour, MB ChB, MS, lead study author and assistant professor in the Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center in Houston, in an oral presentation during the meeting. No safety signals in this haploidentical setting were identified.

Standard allogeneic SCT can be a curative approach for patients across many high-risk hematologic cancers, although access to this therapy was previously limited to those who have a fully matched donor. The introduction of PTCy as prophylaxis for GVHD increased the utility of haploidentical donors; however, it has also increased relapse rates and toxicity issues such as cytokine release syndrome (CRS), delayed engraftment and T-cell reconstitution, mucositis, infections, cardiac events, and non-relapse mortality, Srour added.

However, GRFS rates in this patient population remain low. Through allograft optimization, Orca-Q improves haplo-SCT with its fully defined stem and immune cells, which consist of hematopoietic stem and progenitor cells, invariant natural killer cells, regulatory T cells, and CD4+/CD8+ T-cell subsets.

Orca-Q is derived from granulocyte colony stimulating factor that is mobilized during peripheral blood apheresis and is manufactured centrally at a Current Good Manufacturing Practice Manufacturing Facility in Sacramento, California. Its administration involves a vein-to-vein time of less than 72 hours across the United States, Srour noted, adding that the vein-to-vein time was within 60 hours for most cases on the study.

The multicenter, dose-expansion trial enrolled patients aged 18 to 65 years with the following high-risk hematologic cancers: acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), very high or high-risk myelodysplastic syndrome, or myelofibrosis. Patients were required to be undergoing a haplo-SCT with negative donor-specific antibodies and were eligible for myeloablative chemotherapy with a Hematopoietic Cell Transplantation-specific Comorbidity Index 4 or lower, a Karnofsky performance score of at least 70, and adequate organ function.

Orca-Qs regimen begins with myeloablative conditioning on days -10 to -2, followed only by single-agent tacrolimus on day -1no PTCy or additional immunosuppressive therapies are administered. A fresh Orca-Q infusion is given on day 0, and tacrolimus is tapered on day +60 (posttransplant).

The studys primary end points are dose-limiting toxicities and primary graft failure.

Off the 33 patients enrolled onto the study, the median age is 43 years (range, 21-63) and 27% of patients were female; a total 30.3% of patients identified as Hispanic or Latino. Patients were Asian (15.2%), Black or African American (21.2%), White (42.4%), or other (21.2%). Their primary disease was ALL (30.3%), AML (63.3%), or chronic myeloid leukemia (6.1%). Additionally, patients had high-/very highrisk disease (18%), intermediate-risk disease (79%). Disease risk index was not applicable for 3% of patients.

Patients disease status at time of transplant encompassed those who achieved their first complete remission (CR1; 73%), second CR (CR2; 24%) and CML accel phase (3%). Patients either had a total body irradiation (TBI)-based conditioning regimen (51.5%) or busulfan-based one (48.5%). Donor characteristics showed that there were more male donors (73%) vs female donors (27%), and the CMV status was positive (30.3%), negative/not detected (36.3%), or not available (33.3%).

Rapid engraftment with Orca-Q was observed in the patients. The median engraftment time with neutrophils was 12.0 days (range, 8-25) and 15.5 days with platelets (range, 8-79). Two patients experienced secondary graft failure, and grade 1/2 CRS occurred in 3 patients (grade 1, n = 2; grade 2, n = 1).

Additional data showed a low incidence of severe Common Terminology Criteria for Adverse Events grade 2 (CTCAE; n = 9) and CTCAE grade 3 (n = 15) infections. There were 5 events (15%) of acute grade 2 to 4 GVHD and 1 event of grade 3 acute GVHD. At a median follow-up of 375 days (range, 73-1384), no patients have developed moderate to severe chronic GVHD. This in comparison to historical cohorts with PTCy, which show 1-year chronic GVHD rates of 24% to 33%.2

The phase 1 trial is continuing to enroll patients across the United States. Srour stated that there are plans to increase the age criteria to 75 years and provide less-intensive conditioning therapy.

Editors Note: Dr Srour disclosed research funding from Orca Bio for this study.

See more here:
Orca-Q Demonstrates Early Efficacy, Tolerable Safety in Haploidentical Stem Cell Transplant Without PTCy - Targeted Oncology

Stem Cell-Based Therapy: A Ray of Hope for Advanced Heart Failure Patients – Medriva

In a groundbreaking multinational clinical trial led by Mayo Clinic researchers and international collaborators, it was discovered that stem cell-based therapy significantly improved the quality of life for patients suffering from advanced heart failure. The study, one of the largest of its kind, involved 315 patients from 10 countries and revealed lower death and hospitalization rates among those treated with cell therapy. The research, funded by the Marriott Family Foundation and National Institutes of Health, was published in Stem Cells Translational Medicine.

The study demonstrated that patients who received stem cell therapy experienced a lessened daily hardship and a sustained benefit on both physical and emotional health. This promising form of biotherapy involves extracting stem cells from the patients own bone marrow and programming them to heal damaged heart tissue.

This trial stands out in the field of regenerative medicine, showcasing the potential of stem cell-based therapy in improving the quality of life for patients with advanced heart failure. The reduced daily hardship reported by patients, as well as the lower death and hospitalization rates, indicate the effectiveness of this therapy. Moreover, the sustained benefits on physical and emotional health emphasize the potential of biotherapy in the management of advanced heart disease.

The clinical trial was conducted in a double-blinded fashion, involving 315 patients from 39 hospitals across 10 countries. The results showed a significant improvement in the patients who received stem cell therapy, with lower death and hospitalization rates. The research was one of the largest studies of cell intervention after a heart attack, and patients reported a lessening of their daily hardship when stem cells optimized for heart repair were added to the standard of care.

The Mayo Clinic has long been at the forefront of regenerative medicine, seeking to harness the power of cells, tissue, and genes to provide first-of-their-kind therapeutics for patients in early-stage clinical trials. In other studies, Mayo Clinic researchers have demonstrated a nearly 20% increase in human papillomavirus (HPV) vaccination rates among adolescents through a combination intervention approach.

While the results of this clinical trial are promising, further independent clinical studies are needed to validate the findings and better understand the potential of stem cell-based therapy in treating advanced heart failure. As advancements in this field continue to emerge, the hope for patients suffering from heart diseases grows stronger.

See the rest here:
Stem Cell-Based Therapy: A Ray of Hope for Advanced Heart Failure Patients - Medriva

Mayo Clinic researchers say stem cell therapy improves quality of life for patients with advanced heart failure – KIMT 3

ROCHESTER, Minn. A multinational clinical trial involving Mayo Clinic researchers has found stem cell-based therapy improved quality of life for patients with advanced heart failure.

In the study, patients reported their daily hardship lessened when stem cells optimized for heart repair supplemented the standard of care, and the study further documented lower death and hospitalization rates among those treated with cell therapy.

"In this era of global aging, people live longer, yet are at risk of chronic disease imposing a poor quality of life. Heart failure is an emerging epidemic in need of new healing options," says Andre Terzic, M.D., Ph.D., a Mayo Clinic cardiovascular researcher and lead author of the paper. "The stem cell-based approach in the present study demonstrates sustained benefit on physical and emotional health in response to biotherapy."

Dr. Terzic is the Marriott Family Director, Comprehensive Cardiac Regenerative Medicine for the Center for Regenerative Biotherapeutics.

Approximately 800,000 people in the U.S. suffer heart attacks every year.

The study team recruited 315 patients from 39 hospitals in 10 countries who had advanced heart failure despite receiving standard of care. Mayo Clinic says patients were randomly divided into groups that would receive stem cell therapy versus those who would not. Patients assigned to cell treatment underwent cardiac catheterization. Then, stem cells taken from their own bone marrow and programmed to heal damaged heart tissue were delivered to the heart. Patients assigned not to receive stem cells had cardiac catheterization without cell delivery known as the sham treatment.

"Data from one of the largest cardiovascular cell therapy trials, testing a regenerative technology discovered at Mayo Clinic, indicate benefit in both quantity and quality of life in advanced heart disease," saysSatsuki Yamada, M.D., Ph.D., a Mayo Clinic cardiovascular researcher, and first author on the study. "The benefit of regenerative care has been typically evaluated on the basis of clinician-reported outcomes. What's unique in this study is that it was designed to listen to the patient's experience."

This research is published in Stem Cells Translational Medicine.

Link:
Mayo Clinic researchers say stem cell therapy improves quality of life for patients with advanced heart failure - KIMT 3

Type 1 Diabetes Treatment Breakthrough with Stem Cells | Health News – Medriva

In a significant breakthrough for type 1 diabetes treatment, a new experimental device housing millions of stem cells has demonstrated promising results in reducing the need for insulin shots. This development could potentially revolutionize the management of type 1 diabetes and pave the way for advanced treatment options. However, a more comprehensive body of research and clinical trials are still required to confirm the effectiveness of this approach.

An experimental device containing millions of stem cells was tested on ten people with type 1 diabetes, a condition in which the immune system destroys insulin-making cells in the pancreas. After six months, three of the patients showed significant improvement. The device, developed by the biotech company ViaCyte, delivers a steady supply of insulin to the body, presenting hope for a potential cure for type 1 diabetes by 2024. While the trial has its limitations and failed to normalize blood glucose levels, it offers a promising start for cell replacement therapies for type 1 diabetes.

Cellular regenerative medicine approaches, particularly those involving the use of CRISPR/Cas-engineered cellular products, have been explored as potential therapies for type 1 diabetes. However, the use of CRISPR/Cas as a genome editing tool for the treatment of type 1 diabetes is not without its drawbacks and potential hidden threats.

Leading institutions around the world are accelerating their research efforts to develop new treatments for type 1 diabetes. One such initiative is the University of Oxfords RDM group, which was awarded 2.55 million for a diabetes research project as part of the Type 1 Diabetes Grand Challenge. Led by Professor David Hodson, the project aims to study insulin-boosting molecules on beta cells. These molecules could potentially be used to create better lab-grown beta cells, protect transplanted beta cells, or even stimulate the growth of new beta cells. This research is part of a larger 50 million pledge from the Steve Morgan Foundation to expedite research for new treatments for type 1 diabetes.

Recent studies have highlighted the potential of human pluripotent stem cells as an unlimited resource for generating functional cells, including pancreatic cells, for type 1 diabetes treatment. One such study focused on the role of circular RNA circRNA hsa_circ_0032449 in pancreatic specification and the differentiation of stem cells into functional cells. The deficiency of hsa_circ_0032449 resulted in a weakened progenitor state of pancreatic cells and inhibited the development of mature and glucose-responsive SC cells.

With these groundbreaking advancements in stem cell therapies, there is renewed hope for millions of people worldwide living with type 1 diabetes. However, medical researchers and healthcare professionals agree that extensive further research and clinical trials are vital to fully validate the effectiveness of these approaches.

The rest is here:
Type 1 Diabetes Treatment Breakthrough with Stem Cells | Health News - Medriva

The First Crispr Medicine Is Now Approved in the US – WIRED

This is a terrible disease, says Samarth Kulkarni, president and CEO of Crispr Therapeutics. Every day feels like a big burden. Patients have this constant specter of mortality hanging over them.

The culprit is abnormal hemoglobin, the protein that carries oxygen through the body. The problem arises from a mutation in the HBB gene. Everyone has two copies of the geneone from each parent. Children born with sickle cell disease inherit a copy of the mutated gene from both parents.

Casgevy uses the Nobel Prizewinning technology Crispr to modify patients cells so that they produce healthy hemoglobin instead. The Crispr system has two parts: a protein that cuts genetic material and a guide molecule that tells it where in the genome to make the cut.

To do this, a patients stem cells are taken out of their bone marrow and edited in a laboratory. Scientists make a single cut in a different gene, called BCL11A, to turn on the production of a fetal form of hemoglobin that typically shuts off shortly after birth. This fetal version compensates for the abnormal adult hemoglobin. The edited cells are then infused back into the patients bloodstream.

A total of 45 patients have received Casgevy in a clinical trial. Of the 31 patients followed for two years, 29 have been free of pain crises for at least a year after receiving a single dose of their own edited cells.

Until now, the only cure for sickle cell has been a stem cell transplant from a closely related donor, but this option is available to only a small fraction of people. Transplants can also involve life-threatening risks and dont always work.

The first commercial patients to get Casgevy likely wont be treated until early next year. It takes a few weeks to collect patients cells, edit them, and perform quality control checks before the cells are ready for infusion. It takes a little bit of time to treat the patients, Kulkarni says. But we dont want to waste any timeand patients dont want to waste any time, because theyve been waiting for this for a while.

Today, the FDA also approved a second type of gene treatment for sickle cell, called Lyfgenia. This therapy does not use Crispr to cut the genome but instead adds a therapeutic gene to cells so they can produce healthy hemoglobin. Made by Bluebird Bio of Somerville, Massachusetts, it also involves modifying patients cells outside the body. In a two-year trial, pain crises were eliminated in 28 out of 32 patients between six and 18 months after treatment with Lyfgenia.

The FDA has put a black box warning on Lyfgeniaan indication of severe safety riskssince some patients who were treated with it have developed blood cancer. The agency says patients receiving it should be monitored for the rest of their lives.

Alexis Thompson, chief of the division of hematology at Childrens Hospital of Philadelphia, says these new gene therapies will be transformative for patients. I can now talk to parents about the possibility of their child perhaps being cured of sickle cell, she says A few years ago, I wouldn't dare have that conversation with a family.

See the article here:
The First Crispr Medicine Is Now Approved in the US - WIRED

Exciting Clinical Trials of New Stem Cell Injection Treatment Shows Promise for Halting Multiple Sclerosis – Good News Network

University of Milano-Biocca credit University press

A collaborative study involving experts in Europe and the US found the treatment of stem cells appears to protect the brains of MS patients from further damage.

In the first-ever clinical trials in humans, the researchers found patients injected with the stem cells exhibited no increase in disability or worsening of symptoms.

The promising study, published in the journal Cell Stem Cell, is hoped to lead to further clinical trials that could provide treatment for progressive MS.

More than two million people live with MS across the globe and, whilst some treatments currently available can reduce the severity and frequency of relapses, two-thirds of patients still transition into a debilitating secondary progressive phase of the disease within 25 to 30 years of diagnosis.

An autoimmune disorder like Lupus, ALS, and Crohns, MS is characterized by the bodys immune system attacking and damaging myelinthe protective sheath of tissue around nerve fibers, disrupting messages sent around the brain and spinal cord.

An immune cell called a microglial can attack the central nervous system in progressive forms of MS, causing chronic inflammation and damage to nerve cells.

Recent scientific advances involving the transplantation of stem cells have raised expectations that therapies could be developed to help ameliorate this damage.

Previous experiments in mice from the Cambridge University unit of the new study team have shown that skin cells reprogrammed to be brain stem cells and transplanted into the nervous system can help to reduce inflammation, and may even be able to help repair damage caused by MS.

The research team behind the latest study, incorporating experts from the UK, US, Switzerland, and Italy, completed a world-first early-stage clinical trial in which neural stem cells were injected into the brains of 15 patients with secondary MS recruited from two Italian hospitals.

Along with the Cambridge unit, teams performed the trials at the University of Milano-Bicocca, the Casa Sollievo della Sofferenza and Santa Maria Terni hospitals in Italy, the Ente Ospedaliero Cantonale hospital in Lugano, Switzerland, and the University of Colorado in the United States.

The transplant patients were followed for 12 months. No deaths or serious adverse events related to the treatment were observed throughout the year. Side effects were mild, transient, and reversible.

All patients had a high degree of disability at the start of the clinical trialfor example, they were wheelchair-boundbut during the 12-month observation period, they showed no increase in disability or worsening of symptoms. None of the patients showed symptoms that would indicate a relapse or signs of clinical progression, suggesting substantial stability of the pathology.

A subgroup of patients was also assessed for changes in the volume of brain tissue associated with disease progression, which found that the larger the dose of injected stem cells, the smaller the reduction in this brain volume over time.

HOPE FOR AUTOIMMUNE DISORDERS: MS Breakthrough: New Genetic Clues to What Triggers Multiple Sclerosis Discovered by Scientists

The researchers speculate that this may be down to the stem cell transplant dampening inflammation.

Professor Stefano Pluchino, a co-leader of the study from the University of Cambridge, admitted that though the research had limitations, the findings were extremely promising.

We desperately need to develop new treatments for secondary progressive MS, and I am cautiously very excited about our findings, which are a step towards developing a cell therapy for treating MS, he said.

OTHER STEM CELL STUDIES: Sound Waves Convert Stem Cells Into Bone in Regenerative Breakthrough

We recognize that our study has limitations: it was only a small study and there may have been confounding effects from the immunosuppressant drugs, for example, but the fact that our treatment was safe and that its effects lasted over the 12 months of the trial means that we can proceed to the next stage of clinical trials.

Professor Angelo Vescovi, another co-leader of the study from the University of Milano-Bicocca, added that it has taken nearly three decades to translate the discovery of brain stem cells into this experiment, which he said will pave the way to broader studies soon to come.

SHARE This Latest In Stem Cell Science with Your Friends

Read more here:
Exciting Clinical Trials of New Stem Cell Injection Treatment Shows Promise for Halting Multiple Sclerosis - Good News Network