Archive for the ‘Somatic Stem Cells’ Category

Stem Cell Quick Reference – Learn.Genetics

Somatic Stem Cells | Posted by admin
Sep 09 2018

Are you confused about all the different types of stem cells? Read on to learn where different types of stem cells come from, what their potential is for use in therapy, and why some types of stem cells are shrouded in controversy.

Researchers are working on new ways to use stem cells to cure diseases and heal injuries. Learn more about unlocking stem cell potential.

Somatic stem cells (also called adult stem cells) exist naturally in the body. They are important for growth, healing, and replacing cells that are lost through daily wear and tear.

Stem cells from the blood and bone marrow are routinely used as a treatment for blood-related diseases. However, under natural circumstances somatic stem cells can become only a subset of related cell types. Bone marrow stem cells, for example, differentiate primarily into blood cells. This partial differentiation can be an advantage when you want to produce blood cells; but it is a disadvantage if you’re interested in producing an unrelated cell type.

Most types of somatic stem cells are present in low abundance and are difficult to isolate and grow in culture. Isolation of some types could cause considerable tissue or organ damage, as in the heart or brain. Somatic stem cells can be transplanted from donor to patient, but without drugs that suppress the immune system, a patient’s immune system will recognize transplanted cells as foreign and attack them.

Therapy involving somatic stem cells is not controversial; however, it is subject to the same ethical considerations that apply to all medical procedures.

Embryonic stem (ES) cells are formed as a normal part of embryonic development. They can be isolated from an early embryo and grown in a dish.

ES cells have the potential to become any type of cell in the body, making them a promising source of cells for treating many diseases.

Without drugs that suppress the immune system, a patient’s immune system will recognize transplanted cells as foreign and attack them.

When scientists isolate human embryonic stem (hES) cells in the lab, they destroy an embryo. The ethical and legal implications of this have made some reluctant to support research involving hES cells. In recent years, some researchers have focused their efforts on creating stem cells that don’t require the destruction of embryos.

Learn more about the controversy behind embryonic stem cells and why new stem-cell technologies may bring it to an end. The Stem Cell Debate: Is It Over?

Induced pluripotent stem (iPS) cells are created artificially in the lab by “reprogramming” a patient’s own cells. iPS cells can be made from readily available cells including fat, skin, and fibroblasts (cells that produce connective tissue).

Mouse iPS cells can become any cell in the body (or even a whole mouse). Although more analysis is needed, the same appears to be true for human iPS cells, making them a promising source of cells for treating many diseases. Importantly, since iPS cells can be made from a patient’s own cells, there is no danger that their immune system will reject them.

iPS cells are much less expensive to create than ES cells generated through therapeutic cloning (another type of patient-specific stem cell; see below). However, because the “reprogramming” process introduces genetic modifications, the safety of using iPS cells in patients is uncertain.

Therapy involving iPS cells is subject to the same ethical considerations that apply to all medical procedures.

Therapeutic cloning is a method for creating patient-specific embryonic stem (ES) cells.

Therapeutic cloning can, in theory, generate ES cells with the potential to become any type of cell in the body. In addition, since these cells are made from a patient’s own DNA, there is no danger of rejection by the immune system.

In 2013, for the first time, a group of researchers used therapeutic cloning to make ES cells. The donor nucleus came from a child with a rare genetic disorder. However, the cloning process remains time consuming, inefficient, and expensive.

Therapeutic cloning brings up considerable ethical considerations. It involves creating a clone of a human being and destroying the cloned embryo, and it requires a human egg donor.

APA format:

Genetic Science Learning Center. (2014, July 10) Stem Cell Quick Reference. Retrieved September 07, 2018, from https://learn.genetics.utah.edu/content/stemcells/quickref/

CSE format:

Stem Cell Quick Reference [Internet]. Salt Lake City (UT): Genetic Science Learning Center; 2014 [cited 2018 Sep 7] Available from https://learn.genetics.utah.edu/content/stemcells/quickref/

Chicago format:

Genetic Science Learning Center. “Stem Cell Quick Reference.” Learn.Genetics. July 10, 2014. Accessed September 7, 2018. https://learn.genetics.utah.edu/content/stemcells/quickref/.

Continue reading here:
Stem Cell Quick Reference – Learn.Genetics

Where Do Stem Cells Come From? – verywellhealth.com

Somatic Stem Cells | Posted by admin
Jul 02 2018

Stem cells are specialized cells that have the potential to develop into not one but many different types of cell. They are unlike any other cell for three specific reasons:

Currently, blood stem cells are the only type regularly used for treatment. In cases of leukemia or lymphoma, this type of cell is used in a procedure we commonly refer to as a bone marrow transplant. For this purpose, only adult stems cells are used.

When it comes to stem cell research, the cells may come from any number of different sources, including adult donors, embryos, or genetically altered human cells.

The cells of the bone marrow produce all of your healthy blood cells, including red blood cells, white blood cells, and platelets. Hematopoietic stem cells are those found in bone marrow that serves as the “parent” for all of these different types of cells.

Hematopoietic stem cells are transplanted into a person with cancer to help replenish bone marrow. The procedure is often used when high dose chemotherapy effectively destroys the existing stem cells in a persons bone marrow.

To remedy this, donated stem cells are injected into a vein and eventually settle in the bone marrow where they start producing healthy, new blood cells.

Years ago, the only source for hematopoietic stem cells were those taken from bone marrow. It was soon after discovered that many of these cells were circulating freely in the bloodstream.

In time, scientists learned how to harvest these cells from circulating blood and to transplant them directly into a donor.

This type of transplant known as a peripheral blood stem cell transplant, or PBSCT has become the more common procedure, although both methods are still used. PBSCT is far less invasive and doesnt require the removal of marrow from the hip bone.

Adult stem cells, called somatic stem cells, are derived from a human donor. Hematopoietic stem cells are the most widely known example. Scientists have found somatic stem cells in more tissues than was once imagined, including the brain, skeletal muscle, skin, teeth, heart, gut, liver, ovarian cells, and testis.

Embryonic stem cells are controversial since they are derived from human embryos that have either been destroyed or harvested for science. Embryonic stem cells were first grown in a laboratory in 1998 for reproductive purposes. Today, they are used primarily for research into treatments or cures for cancers, blindness, juvenile diabetes, Parkinsons, spinal cord injuries, and genetic disorders of the immune system.

Embryonic stem cells are pluripotent, meaning they are able to grow into the three types of germ cell layers that make up the human body (ectoderm, mesoderm, endoderm).

In other words, they can develop into each of the more than 200 cell types if specified to do so.

Induced pluripotent stem cells, or iPSCs, are somatic stem cells that have been genetically reprogrammed to be more like embryonic stem cells. iPSCs usually start out as skin or blood cells which then undergo genetic programming.

iPSCs were first developed in 2006 and pose one major advantage over somatic and embryonic stem cells: they can be made in a patient-matched manner. What this means is that a lab can tailor-make a pluripotent stem cell line individualized from a persons own cells or tissues.

See the original post here:
Where Do Stem Cells Come From? – verywellhealth.com

What Is Another Name for Somatic Stem Cells and What Do …

Somatic Stem Cells | Posted by admin
Jun 22 2018

Somatic stem cells are also referred to as adult stem cells. Unlike embryonic stem cells, somatic stem cells come from a fully developed human being. Somatic stem cells are somewhat specialized to produce certain kinds of cells. However, scientists are currently working on ways to increase their range of use in cutting-edge therapies.

Adult stem cells have been found in a wide range of organs and tissues, including bone marrow, blood vessel, brain, epithelium, heart, intestine, liver, ovary, skeletal muscle, skin, teeth, and testis.

While these cells are programmed to become a certain type of cell, they are still capable of differentiation. For example, bone marrow stem cells can differentiate into either red or white blood cells. While brain stem cells could form neurons or supporting brain cells, they would typically not become cell types found in other organs.

Somatic stem cells typically divide to form mature cell types that have the characteristics necessary to become a functional part of tissues or organs, a process called normal differentiation.

Certain types of somatic stem cells have been found to have the capacity to give rise to cell types for organs or tissues not in their lineage. For example, brain stem cells that differentiate into cardiac muscle cells. This phenomenon is called transdifferentiation.

Doctors performed the first bone marrow transplant in 1968. The procedure also marked the first medical use of somatic stem cells, as bone marrow cells can differentiate into red blood cells or white blood cells. Today bone marrow transplants are used to treat a range of ailments, from blood cancers to immune disorders.

In 2010, a biotech company called Neuralstem began conducting clinical trials for the use of spinal cord stem cells to treat Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrigs Disease. The second phase of these trials was conducted in September 2013.

With embryonic stem cells, which are stem cells derived from fertilized human eggs, sparking an intense political and ethical debate, many researchers are turning to somatic stem cells as a less divisive alternative.

The problems is that embryonic stem cells can become any type of cell in the body — while somatic cells are more restricted to a specific lineage. Embryonic stem cells are also more easily grown in culture, according to the National Institutes of Health.

However, because a patient’s own cells can be used in a somatic stem cell treatment regimen — they are thought to be less likely to cause a rejection after transplantation. The lack of a rejection response by the body’s immune system would eliminate the need for immunosuppressive drugs, which often cause undesirable side effects.

Visit link:
What Is Another Name for Somatic Stem Cells and What Do …

Difference Between Somatic Cells and Gametes …

Somatic Stem Cells | Posted by admin
Jun 19 2018

Somatic Cells vs Gametes

The most important structures in the cell during division are the chromosomes, which contain DNA. This is because they are responsible for the transmission of the hereditary information from one generation to the next. Cells in the body are of two types depending on the number of chromosomes present in the nucleus. The two types are somatic cells and gametes.

What are Somatic Cells?

A somatic cell is any cell other than a germline cell found in the body of a multicellular organism. These are diploid cells having two sets of chromosomes; one is maternal and the other is paternal. When considering one homologous pair, one chromosome is inherited from the mother, and the other is inherited from the father. For an example, a human somatic cell contains 46 chromosomes arranged in to 23 pairs in which one chromosome of each pair is maternal, and the other is paternal. Stem cells produced by mitosis undergo differentiation and give rise to different types of somatic cells, which intern form almost all the internal and external structures of the body.

What are Gametes?

Unlike the somatic cells, gametes are haploid cells, which carry unpaired chromosomes. A gamete of a particular multicellular organism always carries only half the number of chromosomes carried by a somatic cell of that particular organism. For an example, a human gamete contains only 23 chromosomes where as a human somatic cell contains 46 chromosomes. Germ cells are the cells which give rise to gametes. Meiosis takes place during gametogenesis (process of gamete production) giving rise to haploid cells. Haploid gametes fuse during sexual reproduction giving rise to a diploid zygote.

What is the Difference between Somatic Cells and Gametes?

Somatic cells are diploid cells, whereas the gametes are haploid cells.

Stem cells give rise to somatic cells, and germ cells give rise to gametes.

Meiosis does not take place during the production of somatic cells, whereas meiosis takes place during gametogenesis (production of gametes) giving rise to haploid cells.

Somatic cells contain homologous pairs of chromosomes, whereas gametes contain only unpaired chromosomes.

Somatic cells form internal and external structures of the body, whereas gametes do not.

Somatic cells are found almost everywhere in the body, whereas gametes are restricted to certain parts.

Somatic cells do not fuse during sexual reproduction, whereas gametes fuse during sexual reproduction giving rise to a diploid zygote.

Coming from Engineering cum Human Resource Development background, has over 10 years experience in content developmet and management.

Continue reading here:
Difference Between Somatic Cells and Gametes …

Skin graft gene therapy could treat obesity and diabetes – ResearchGate (blog)

Somatic Stem Cells | Posted by admin
Aug 03 2017

In a new study, researchers at the University of Chicago have provided proof of concept for a new form of gene therapy that is administered via a skin transplant. In the study, they treated type-2 diabetes and obesity in mice by inserting the gene for a glucagon-like peptide 1 (GLP1) that stimulates the pancreas to secrete insulin. The extra insulin can prevent diabetes complications by removing excessive glucose from the bloodstream. It can also delay gastric emptying and reduce appetite.

We spoke to one of the studys authors, Xiaoyang Wu, about the work.

ResearchGate: What motivated this study?

Xiaoyang Wu: We have been working on skin somatic stem cells for a long time. As one of the most studied adult stem cell systems, skin stem cells have several unique advantages as the novel vehicle for somatic gene therapy. For one, the system is well established. Human skin transplantation using a CEA device developed from skin stem cells has been used clinically for decades for burn wound treatment, and is proven to be safe and effective.

RG: Can you tell us what you achieved?

Xiaoyang Wu: We established a novel mouse to mouse skin transplantation system to test skin gene therapy. In the proof-of-concept study, we showed that we can achieve the systematic release of GLP1 at therapeutic concentration by engineered skin grafts.

RG: How does this work to treat obesity and diabetes?

Xiaoyang Wu: When engineered to express therapeutic hormones, such as GLP1, the skin grafts can be used to suppress body weight gain, and development of type 2 diabetes.

RG: What were some of the challenges in development? How did you overcome them?

Xiaoyang Wu: The mouse skin transplantation system has not been well established before. We circumvented the technical issues by building a novel skin organoid culture system in vitro.

RG: Are there alternate methods to delivery this type of therapy, and if so why is skin better?

Xiaoyang Wu: The GLP1 receptor agonist can be applied with an injection, but the half-life will be short. Skin based gene delivery provides a long term and safe way for drug delivery in vivo.

RG: Do think this would have a similar effect in humans?

Xiaoyang Wu: Our proof-of-concept work demonstrated its possible to use engineered skin grafts to treat many non-skin diseases. Clinical translation of our findings will be relatively easy, as skin transplantation in human patients has been well established and clinically used for treatment of burn wounds for many years.

RG: Whats next for your research?

Xiaoyang Wu: Before clinical translation, we will further characterize our mouse model of skin therapy, looking at potential immune reaction, stability of skin grafts, and duration of the therapeutic effects. We are also interested in using our mouse model to test other potential applications of skin gene therapy, such as human genetic diseases, including hemophilia and urea cycle disorders.

Featured image courtesy ofMehmet Pinarci.

The rest is here:
Skin graft gene therapy could treat obesity and diabetes – ResearchGate (blog)

Cloning – Wikipedia

Somatic Stem Cells | Posted by admin
Dec 07 2016

In biology, cloning is the process of producing similar populations of genetically identical individuals that occurs in nature when organisms such as bacteria, insects or plants reproduce asexually. Cloning in biotechnology refers to processes used to create copies of DNA fragments (molecular cloning), cells (cell cloning), or organisms. The term also refers to the production of multiple copies of a product such as digital media or software.

The term clone, invented by J. B. S. Haldane, is derived from the Ancient Greek word kln, “twig”, referring to the process whereby a new plant can be created from a twig. In horticulture, the spelling clon was used until the twentieth century; the final e came into use to indicate the vowel is a “long o” instead of a “short o”.[1][2] Since the term entered the popular lexicon in a more general context, the spelling clone has been used exclusively.

In botany, the term lusus was traditionally used.[3]:21, 43

Cloning is a natural form of reproduction that has allowed life forms to spread for more than 50 thousand years. It is the reproduction method used by plants, fungi, and bacteria, and is also the way that clonal colonies reproduce themselves.[4][5] Examples of these organisms include blueberry plants, hazel trees, the Pando trees,[6][7] the Kentucky coffeetree, Myricas, and the American sweetgum.

Molecular cloning refers to the process of making multiple molecules. Cloning is commonly used to amplify DNA fragments containing whole genes, but it can also be used to amplify any DNA sequence such as promoters, non-coding sequences and randomly fragmented DNA. It is used in a wide array of biological experiments and practical applications ranging from genetic fingerprinting to large scale protein production. Occasionally, the term cloning is misleadingly used to refer to the identification of the chromosomal location of a gene associated with a particular phenotype of interest, such as in positional cloning. In practice, localization of the gene to a chromosome or genomic region does not necessarily enable one to isolate or amplify the relevant genomic sequence. To amplify any DNA sequence in a living organism, that sequence must be linked to an origin of replication, which is a sequence of DNA capable of directing the propagation of itself and any linked sequence. However, a number of other features are needed, and a variety of specialised cloning vectors (small piece of DNA into which a foreign DNA fragment can be inserted) exist that allow protein production, affinity tagging, single stranded RNA or DNA production and a host of other molecular biology tools.

Cloning of any DNA fragment essentially involves four steps[8]

Although these steps are invariable among cloning procedures a number of alternative routes can be selected; these are summarized as a cloning strategy.

Initially, the DNA of interest needs to be isolated to provide a DNA segment of suitable size. Subsequently, a ligation procedure is used where the amplified fragment is inserted into a vector (piece of DNA). The vector (which is frequently circular) is linearised using restriction enzymes, and incubated with the fragment of interest under appropriate conditions with an enzyme called DNA ligase. Following ligation the vector with the insert of interest is transfected into cells. A number of alternative techniques are available, such as chemical sensitivation of cells, electroporation, optical injection and biolistics. Finally, the transfected cells are cultured. As the aforementioned procedures are of particularly low efficiency, there is a need to identify the cells that have been successfully transfected with the vector construct containing the desired insertion sequence in the required orientation. Modern cloning vectors include selectable antibiotic resistance markers, which allow only cells in which the vector has been transfected, to grow. Additionally, the cloning vectors may contain colour selection markers, which provide blue/white screening (alpha-factor complementation) on X-gal medium. Nevertheless, these selection steps do not absolutely guarantee that the DNA insert is present in the cells obtained. Further investigation of the resulting colonies must be required to confirm that cloning was successful. This may be accomplished by means of PCR, restriction fragment analysis and/or DNA sequencing.

Cloning a cell means to derive a population of cells from a single cell. In the case of unicellular organisms such as bacteria and yeast, this process is remarkably simple and essentially only requires the inoculation of the appropriate medium. However, in the case of cell cultures from multi-cellular organisms, cell cloning is an arduous task as these cells will not readily grow in standard media.

A useful tissue culture technique used to clone distinct lineages of cell lines involves the use of cloning rings (cylinders).[9] In this technique a single-cell suspension of cells that have been exposed to a mutagenic agent or drug used to drive selection is plated at high dilution to create isolated colonies, each arising from a single and potentially clonal distinct cell. At an early growth stage when colonies consist of only a few cells, sterile polystyrene rings (cloning rings), which have been dipped in grease, are placed over an individual colony and a small amount of trypsin is added. Cloned cells are collected from inside the ring and transferred to a new vessel for further growth.

Somatic-cell nuclear transfer, known as SCNT, can also be used to create embryos for research or therapeutic purposes. The most likely purpose for this is to produce embryos for use in stem cell research. This process is also called “research cloning” or “therapeutic cloning.” The goal is not to create cloned human beings (called “reproductive cloning”), but rather to harvest stem cells that can be used to study human development and to potentially treat disease. While a clonal human blastocyst has been created, stem cell lines are yet to be isolated from a clonal source.[10]

Therapeutic cloning is achieved by creating embryonic stem cells in the hopes of treating diseases such as diabetes and Alzheimer’s. The process begins by removing the nucleus (containing the DNA) from an egg cell and inserting a nucleus from the adult cell to be cloned.[11] In the case of someone with Alzheimer’s disease, the nucleus from a skin cell of that patient is placed into an empty egg. The reprogrammed cell begins to develop into an embryo because the egg reacts with the transferred nucleus. The embryo will become genetically identical to the patient.[11] The embryo will then form a blastocyst which has the potential to form/become any cell in the body.[12]

The reason why SCNT is used for cloning is because somatic cells can be easily acquired and cultured in the lab. This process can either add or delete specific genomes of farm animals. A key point to remember is that cloning is achieved when the oocyte maintains its normal functions and instead of using sperm and egg genomes to replicate, the oocyte is inserted into the donors somatic cell nucleus.[13] The oocyte will react on the somatic cell nucleus, the same way it would on sperm cells.[13]

The process of cloning a particular farm animal using SCNT is relatively the same for all animals. The first step is to collect the somatic cells from the animal that will be cloned. The somatic cells could be used immediately or stored in the laboratory for later use.[13] The hardest part of SCNT is removing maternal DNA from an oocyte at metaphase II. Once this has been done, the somatic nucleus can be inserted into an egg cytoplasm.[13] This creates a one-cell embryo. The grouped somatic cell and egg cytoplasm are then introduced to an electrical current.[13] This energy will hopefully allow the cloned embryo to begin development. The successfully developed embryos are then placed in surrogate recipients, such as a cow or sheep in the case of farm animals.[13]

SCNT is seen as a good method for producing agriculture animals for food consumption. It successfully cloned sheep, cattle, goats, and pigs. Another benefit is SCNT is seen as a solution to clone endangered species that are on the verge of going extinct.[13] However, stresses placed on both the egg cell and the introduced nucleus can be enormous, which led to a high loss in resulting cells in early research. For example, the cloned sheep Dolly was born after 277 eggs were used for SCNT, which created 29 viable embryos. Only three of these embryos survived until birth, and only one survived to adulthood.[14] As the procedure could not be automated, and had to be performed manually under a microscope, SCNT was very resource intensive. The biochemistry involved in reprogramming the differentiated somatic cell nucleus and activating the recipient egg was also far from being well-understood. However, by 2014 researchers were reporting cloning success rates of seven to eight out of ten[15] and in 2016, a Korean Company Sooam Biotech was reported to be producing 500 cloned embryos per day.[16]

In SCNT, not all of the donor cell’s genetic information is transferred, as the donor cell’s mitochondria that contain their own mitochondrial DNA are left behind. The resulting hybrid cells retain those mitochondrial structures which originally belonged to the egg. As a consequence, clones such as Dolly that are born from SCNT are not perfect copies of the donor of the nucleus.

Organism cloning (also called reproductive cloning) refers to the procedure of creating a new multicellular organism, genetically identical to another. In essence this form of cloning is an asexual method of reproduction, where fertilization or inter-gamete contact does not take place. Asexual reproduction is a naturally occurring phenomenon in many species, including most plants (see vegetative reproduction) and some insects. Scientists have made some major achievements with cloning, including the asexual reproduction of sheep and cows. There is a lot of ethical debate over whether or not cloning should be used. However, cloning, or asexual propagation,[17] has been common practice in the horticultural world for hundreds of years.

The term clone is used in horticulture to refer to descendants of a single plant which were produced by vegetative reproduction or apomixis. Many horticultural plant cultivars are clones, having been derived from a single individual, multiplied by some process other than sexual reproduction.[18] As an example, some European cultivars of grapes represent clones that have been propagated for over two millennia. Other examples are potato and banana.[19]Grafting can be regarded as cloning, since all the shoots and branches coming from the graft are genetically a clone of a single individual, but this particular kind of cloning has not come under ethical scrutiny and is generally treated as an entirely different kind of operation.

Many trees, shrubs, vines, ferns and other herbaceous perennials form clonal colonies naturally. Parts of an individual plant may become detached by fragmentation and grow on to become separate clonal individuals. A common example is in the vegetative reproduction of moss and liverwort gametophyte clones by means of gemmae. Some vascular plants e.g. dandelion and certain viviparous grasses also form seeds asexually, termed apomixis, resulting in clonal populations of genetically identical individuals.

Clonal derivation exists in nature in some animal species and is referred to as parthenogenesis (reproduction of an organism by itself without a mate). This is an asexual form of reproduction that is only found in females of some insects, crustaceans, nematodes,[20] fish (for example the hammerhead shark[21]), the Komodo dragon[21] and lizards. The growth and development occurs without fertilization by a male. In plants, parthenogenesis means the development of an embryo from an unfertilized egg cell, and is a component process of apomixis. In species that use the XY sex-determination system, the offspring will always be female. An example is the little fire ant (Wasmannia auropunctata), which is native to Central and South America but has spread throughout many tropical environments.

Artificial cloning of organisms may also be called reproductive cloning.

Hans Spemann, a German embryologist was awarded a Nobel Prize in Physiology or Medicine in 1935 for his discovery of the effect now known as embryonic induction, exercised by various parts of the embryo, that directs the development of groups of cells into particular tissues and organs. In 1928 he and his student, Hilde Mangold, were the first to perform somatic-cell nuclear transfer using amphibian embryos one of the first moves towards cloning.[22]

Reproductive cloning generally uses “somatic cell nuclear transfer” (SCNT) to create animals that are genetically identical. This process entails the transfer of a nucleus from a donor adult cell (somatic cell) to an egg from which the nucleus has been removed, or to a cell from a blastocyst from which the nucleus has been removed.[23] If the egg begins to divide normally it is transferred into the uterus of the surrogate mother. Such clones are not strictly identical since the somatic cells may contain mutations in their nuclear DNA. Additionally, the mitochondria in the cytoplasm also contains DNA and during SCNT this mitochondrial DNA is wholly from the cytoplasmic donor’s egg, thus the mitochondrial genome is not the same as that of the nucleus donor cell from which it was produced. This may have important implications for cross-species nuclear transfer in which nuclear-mitochondrial incompatibilities may lead to death.

Artificial embryo splitting or embryo twinning, a technique that creates monozygotic twins from a single embryo, is not considered in the same fashion as other methods of cloning. During that procedure, an donor embryo is split in two distinct embryos, that can then be transferred via embryo transfer. It is optimally performed at the 6- to 8-cell stage, where it can be used as an expansion of IVF to increase the number of available embryos.[24] If both embryos are successful, it gives rise to monozygotic (identical) twins.

Dolly, a Finn-Dorset ewe, was the first mammal to have been successfully cloned from an adult somatic cell. Dolly was formed by taking a cell from the udder of her 6-year old biological mother.[25] Dolly’s embryo was created by taking the cell and inserting it into a sheep ovum. It took 434 attempts before an embryo was successful.[26] The embryo was then placed inside a female sheep that went through a normal pregnancy.[27] She was cloned at the Roslin Institute in Scotland by British scientists Sir Ian Wilmut and Keith Campbell and lived there from her birth in 1996 until her death in 2003 when she was six. She was born on 5 July 1996 but not announced to the world until 22 February 1997.[28] Her stuffed remains were placed at Edinburgh’s Royal Museum, part of the National Museums of Scotland.[29]

Dolly was publicly significant because the effort showed that genetic material from a specific adult cell, programmed to express only a distinct subset of its genes, can be reprogrammed to grow an entirely new organism. Before this demonstration, it had been shown by John Gurdon that nuclei from differentiated cells could give rise to an entire organism after transplantation into an enucleated egg.[30] However, this concept was not yet demonstrated in a mammalian system.

The first mammalian cloning (resulting in Dolly the sheep) had a success rate of 29 embryos per 277 fertilized eggs, which produced three lambs at birth, one of which lived. In a bovine experiment involving 70 cloned calves, one-third of the calves died young. The first successfully cloned horse, Prometea, took 814 attempts. Notably, although the first[clarification needed] clones were frogs, no adult cloned frog has yet been produced from a somatic adult nucleus donor cell.

There were early claims that Dolly the sheep had pathologies resembling accelerated aging. Scientists speculated that Dolly’s death in 2003 was related to the shortening of telomeres, DNA-protein complexes that protect the end of linear chromosomes. However, other researchers, including Ian Wilmut who led the team that successfully cloned Dolly, argue that Dolly’s early death due to respiratory infection was unrelated to deficiencies with the cloning process. This idea that the nuclei have not irreversibly aged was shown in 2013 to be true for mice.[31]

Dolly was named after performer Dolly Parton because the cells cloned to make her were from a mammary gland cell, and Parton is known for her ample cleavage.[32]

The modern cloning techniques involving nuclear transfer have been successfully performed on several species. Notable experiments include:

Human cloning is the creation of a genetically identical copy of a human. The term is generally used to refer to artificial human cloning, which is the reproduction of human cells and tissues. It does not refer to the natural conception and delivery of identical twins. The possibility of human cloning has raised controversies. These ethical concerns have prompted several nations to pass legislature regarding human cloning and its legality.

Two commonly discussed types of theoretical human cloning are therapeutic cloning and reproductive cloning. Therapeutic cloning would involve cloning cells from a human for use in medicine and transplants, and is an active area of research, but is not in medical practice anywhere in the world, as of 2014. Two common methods of therapeutic cloning that are being researched are somatic-cell nuclear transfer and, more recently, pluripotent stem cell induction. Reproductive cloning would involve making an entire cloned human, instead of just specific cells or tissues.[57]

There are a variety of ethical positions regarding the possibilities of cloning, especially human cloning. While many of these views are religious in origin, the questions raised by cloning are faced by secular perspectives as well. Perspectives on human cloning are theoretical, as human therapeutic and reproductive cloning are not commercially used; animals are currently cloned in laboratories and in livestock production.

Advocates support development of therapeutic cloning in order to generate tissues and whole organs to treat patients who otherwise cannot obtain transplants,[58] to avoid the need for immunosuppressive drugs,[57] and to stave off the effects of aging.[59] Advocates for reproductive cloning believe that parents who cannot otherwise procreate should have access to the technology.[60]

Opponents of cloning have concerns that technology is not yet developed enough to be safe[61] and that it could be prone to abuse (leading to the generation of humans from whom organs and tissues would be harvested),[62][63] as well as concerns about how cloned individuals could integrate with families and with society at large.[64][65]

Religious groups are divided, with some opposing the technology as usurping “God’s place” and, to the extent embryos are used, destroying a human life; others support therapeutic cloning’s potential life-saving benefits.[66][67]

Cloning of animals is opposed by animal-groups due to the number of cloned animals that suffer from malformations before they die,[68][69] and while food from cloned animals has been approved by the US FDA,[70][71] its use is opposed by groups concerned about food safety.[72][73][74]

Cloning, or more precisely, the reconstruction of functional DNA from extinct species has, for decades, been a dream. Possible implications of this were dramatized in the 1984 novel Carnosaur and the 1990 novel Jurassic Park.[75][76] The best current cloning techniques have an average success rate of 9.4 percent[77] (and as high as 25 percent[31]) when working with familiar species such as mice,[note 1] while cloning wild animals is usually less than 1 percent successful.[80] Several tissue banks have come into existence, including the “Frozen Zoo” at the San Diego Zoo, to store frozen tissue from the world’s rarest and most endangered species.[75][81][82]

In 2001, a cow named Bessie gave birth to a cloned Asian gaur, an endangered species, but the calf died after two days. In 2003, a banteng was successfully cloned, followed by three African wildcats from a thawed frozen embryo. These successes provided hope that similar techniques (using surrogate mothers of another species) might be used to clone extinct species. Anticipating this possibility, tissue samples from the last bucardo (Pyrenean ibex) were frozen in liquid nitrogen immediately after it died in 2000. Researchers are also considering cloning endangered species such as the giant panda and cheetah.

In 2002, geneticists at the Australian Museum announced that they had replicated DNA of the thylacine (Tasmanian tiger), at the time extinct for about 65 years, using polymerase chain reaction.[83] However, on 15 February 2005 the museum announced that it was stopping the project after tests showed the specimens’ DNA had been too badly degraded by the (ethanol) preservative. On 15 May 2005 it was announced that the thylacine project would be revived, with new participation from researchers in New South Wales and Victoria.

In January 2009, for the first time, an extinct animal, the Pyrenean ibex mentioned above was cloned, at the Centre of Food Technology and Research of Aragon, using the preserved frozen cell nucleus of the skin samples from 2001 and domestic goat egg-cells. The ibex died shortly after birth due to physical defects in its lungs.[84]

One of the most anticipated targets for cloning was once the woolly mammoth, but attempts to extract DNA from frozen mammoths have been unsuccessful, though a joint Russo-Japanese team is currently working toward this goal. In January 2011, it was reported by Yomiuri Shimbun that a team of scientists headed by Akira Iritani of Kyoto University had built upon research by Dr. Wakayama, saying that they will extract DNA from a mammoth carcass that had been preserved in a Russian laboratory and insert it into the egg cells of an African elephant in hopes of producing a mammoth embryo. The researchers said they hoped to produce a baby mammoth within six years.[85][86] It was noted, however that the result, if possible, would be an elephant-mammoth hybrid rather than a true mammoth.[87] Another problem is the survival of the reconstructed mammoth: ruminants rely on a symbiosis with specific microbiota in their stomachs for digestion.[87]

Scientists at the University of Newcastle and University of New South Wales announced in March 2013 that the very recently extinct gastric-brooding frog would be the subject of a cloning attempt to resurrect the species.[88]

Many such “de-extinction” projects are described in the Long Now Foundation’s Revive and Restore Project.[89]

After an eight-year project involving the use of a pioneering cloning technique, Japanese researchers created 25 generations of healthy cloned mice with normal lifespans, demonstrating that clones are not intrinsically shorter-lived than naturally born animals.[31][90]

In a detailed study released in 2016 and less detailed studies by others suggest that once cloned animals get past the first month or two of life they are generally healthy. However, early pregnancy loss and neonatal losses are still greater with cloning than natural conception or assisted reproduction (IVF). Current research endeavors are attempting to overcome this problem.[32]

In an article in the 8 November 1993 article of Time, cloning was portrayed in a negative way, modifying Michelangelo’s Creation of Adam to depict Adam with five identical hands. Newsweek’s 10 March 1997 issue also critiqued the ethics of human cloning, and included a graphic depicting identical babies in beakers.

Cloning is a recurring theme in a wide variety of contemporary science fiction, ranging from action films such as Jurassic Park (1993), The 6th Day (2000), Resident Evil (2002), Star Wars (2002) and The Island (2005), to comedies such as Woody Allen’s 1973 film Sleeper.[91]

Science fiction has used cloning, most commonly and specifically human cloning, due to the fact that it brings up controversial questions of identity.[92][93]A Number is a 2002 play by English playwright Caryl Churchill which addresses the subject of human cloning and identity, especially nature and nurture. The story, set in the near future, is structured around the conflict between a father (Salter) and his sons (Bernard 1, Bernard 2, and Michael Black) two of whom are clones of the first one. A Number was adapted by Caryl Churchill for television, in a co-production between the BBC and HBO Films.[94]

A recurring sub-theme of cloning fiction is the use of clones as a supply of organs for transplantation. The 2005 Kazuo Ishiguro novel Never Let Me Go and the 2010 film adaption[95] are set in an alternate history in which cloned humans are created for the sole purpose of providing organ donations to naturally born humans, despite the fact that they are fully sentient and self-aware. The 2005 film The Island[96] revolves around a similar plot, with the exception that the clones are unaware of the reason for their existence.

The use of human cloning for military purposes has also been explored in several works. Star Wars portrays human cloning in Clone Wars.[97]

The exploitation of human clones for dangerous and undesirable work was examined in the 2009 British science fiction film Moon.[98] In the futuristic novel Cloud Atlas and subsequent film, one of the story lines focuses on a genetically-engineered fabricant clone named Sonmi~451 who is one of millions raised in an artificial “wombtank,” destined to serve from birth. She is one of thousands of clones created for manual and emotional labor; Sonmi herself works as a server in a restaurant. She later discovers that the sole source of food for clones, called ‘Soap’, is manufactured from the clones themselves.[99]

Cloning has been used in fiction as a way of recreating historical figures. In the 1976 Ira Levin novel The Boys from Brazil and its 1978 film adaptation, Josef Mengele uses cloning to create copies of Adolf Hitler.[100]

In 2012, a Japanese television show named “Bunshin” was created. The story’s main character, Mariko, is a woman studying child welfare in Hokkaido. She grew up always doubtful about the love from her mother, who looked nothing like her and who died nine years before. One day, she finds some of her mother’s belongings at a relative’s house, and heads to Tokyo to seek out the truth behind her birth. She later discovered that she was a clone.[101]

In the 2013 television show Orphan Black, cloning is used as a scientific study on the behavioral adaptation of the clones.[102] In a similar vein, the book The Double by Nobel Prize winner Jos Saramago explores the emotional experience of a man who discovers that he is a clone.[103]

Continue reading here:
Cloning – Wikipedia

Characterization of Regenerative Phenotype of Unrestricted …

Somatic Stem Cells | Posted by admin
Dec 01 2016

Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC’s secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.

2015 by The American Society for Biochemistry and Molecular Biology, Inc.

Original post:
Characterization of Regenerative Phenotype of Unrestricted …

Somatic cell nuclear transfer – Wikipedia

Somatic Stem Cells | Posted by admin
Nov 25 2016

In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a donor nucleus from a somatic (body) cell. It is used in both therapeutic and reproductive cloning. Dolly the Sheep became famous for being the first successful case of the reproductive cloning of a mammal.[1] “Therapeutic cloning” refers to the potential use of SCNT in regenerative medicine; this approach has been championed as an answer to the many issues concerning embryonic stem cells (ESC) and the destruction of viable embryos for medical use, though questions remain on how homologous the two cell types truly are.

The process of somatic cell nuclear transplant involves two different cells. The first being a female gamete, known as the ovum (egg/oocyte). In human SCNT experiments, these eggs are obtained through consenting donors, many times utilizing ovarian stimulation. The second being a somatic cell, referring to the cells of the human body. Skin cells, fat cells, and liver cells are only a few examples. The nucleus of the donor egg cell is removed and discarded, leaving it ‘deprogrammed.’ The nucleus of the somatic cell is also removed but is kept, the enucleated somatic cell is discarded. What is left is a lone somatic nucleus and an enucleated egg cell. These are then fused by inserting the somatic nucleus into the ’empty’ ovum. After being inserted into the egg, the somatic cell nucleus is reprogrammed by its host egg cell. The ovum, now containing the somatic cell’s nucleus, is stimulated with a shock and will begin to divide. The egg is now viable and capable of producing an adult organism containing all the necessary genetic information from just one parent. Development will ensue normally and after many mitotic divisions, this single cell forms a blastocyst (an early stage embryo with about 100 cells) with an identical genome to the original organism (i.e. a clone).[2] Stem cells can then be obtained by the destruction of this clone embryo for use in therapeutic cloning or in the case of reproductive cloning the clone embryo is implanted into a host mother for further development and brought to term.

Somatic cell nuclear transplantation has become a focus of study in stem cell research. The aim of carrying out this procedure is to obtain pluripotent cells from a cloned embryo. These cells genetically matched the donor organism from which they came.This gives them the ability to create patient specific pluripotent cells, which could then be used in therapies or disease research.[3]

Embryonic stem cells are undifferentiated cells of an embryo. These cells are deemed to have a pluripotent potential because they have the ability to give rise to all of the tissues found in an adult organism. This ability allows stem cells to create any cell type, which could then be transplanted to replace damaged or destroyed cells. Controversy surrounds human ESC work due to the destruction of viable human embryos. Leading scientists to seek an alternative method of obtaining stem cells, SCNT is one such method.

A potential use of stem cells genetically matched to a patient would be to create cell lines that have genes linked to a patient’s particular disease. By doing so, an in vitro model could be created, would be useful for studying that particular disease, potentially discovering its pathophysiology, and discovering therapies.[4] For example, if a person with Parkinson’s disease donated his or her somatic cells, the stem cells resulting from SCNT would have genes that contribute to Parkinson’s disease. The disease specific stem cell lines could then be studied in order to better understand the condition.[5]

Another application of SCNT stem cell research is using the patient specific stem cell lines to generate tissues or even organs for transplant into the specific patient.[6] The resulting cells would be genetically identical to the somatic cell donor, thus avoiding any complications from immune system rejection.[5][7]

Only a handful of the labs in the world are currently using SCNT techniques in human stem cell research. In the United States, scientists at the Harvard Stem Cell Institute, the University of California San Francisco, the Oregon Health & Science University,[8]Stemagen (La Jolla, CA) and possibly Advanced Cell Technology are currently researching a technique to use somatic cell nuclear transfer to produce embryonic stem cells.[9] In the United Kingdom, the Human Fertilisation and Embryology Authority has granted permission to research groups at the Roslin Institute and the Newcastle Centre for Life.[10] SCNT may also be occurring in China.[11]

In 2005, a South Korean research team led by Professor Hwang Woo-suk, published claims to have derived stem cell lines via SCNT,[12] but supported those claims with fabricated data.[13] Recent evidence has proved that he in fact created a stem cell line from a parthenote.[14][15]

Though there has been numerous successes with cloning animals, questions remain concerning the mechanisms of reprogramming in the ovum. Despite many attempts, success in creating human nuclear transfer embryonic stem cells has been limited. There lies a problem in the human cell’s ability to form a blastocyst; the cells fail to progress past the eight cell stage of development. This is thought to be a result from the somatic cell nucleus being unable to turn on embryonic genes crucial for proper development. These earlier experiments used procedures developed in non-primate animals with little success. A research group from the Oregon Health & Science University demonstrated SCNT procedures developed for primates successfully reprogrammed skin cells into stem cells. The key to their success was utilizing oocytes in metaphase II (MII) of the cell cycle. Egg cells in MII contain special factors in the cytoplasm that have a special ability in reprogramming implanted somatic cell nuclei into cells with pluripotent states. When the ovum’s nucleus is removed, the cell loses its genetic information. This has been blamed for why enucleated eggs are hampered in their reprogramming ability. It is theorized the critical embryonic genes are physically linked to oocyte chromosomes, enucleation negatively affects these factors. Another possibility is removing the egg nucleus or inserting the somatic nucleus causes damage to the cytoplast, affecting reprogramming ability. Taking this into account the research group applied their new technique in an attempt to produce human SCNT stem cells. In May 2013, the Oregon group reported the successful derivation of human embryonic stem cell lines derived through SCNT, using fetal and infant donor cells. Using MII oocytes from volunteers and their improved SCNT procedure, human clone embryos were successfully produced. These embryos were of poor quality, lacking a substantial inner cell mass and poorly constructed trophectoderm. The imperfect embryos prevented the acquisition of human ESC. The addition of caffeine during the removal of the ovum’s nucleus and injection of the somatic nucleus improved blastocyst formation and ESC isolation. The ESC obtain were found to be capable of producing teratomas, expressed pluripotent transcription factors, and expressed a normal 46XX karyotype, indicating these SCNT were in fact ESC-like.[8] This was the first instance of successfully using SCNT to reprogram human somatic cells. This study used fetal and infantile somatic cells to produce their ESC.

In April 2014, an international research team expanded on this break through. There remained the question of whether the same success could be accomplished using adult somatic cells. Epigenetic and age related changes were thought to possibly hinder an adult somatic cells ability to be reprogrammed. Implementing the procedure pioneered by the Oregon research group they indeed were able to grow stem cells generated by SCNT using adult cells from two donors, aged 35 and 75.Indicating age does not impede a cells ability to be reprogrammed[16][17]

Late April 2014, the New York Stem Cell Foundation was successful in creating SCNT stem cells derived from adult somatic cells. One of these lines of stem cells was derived from the donor cells of a type 1 diabetic. The group was then able to successfully culture these stem cells and induce differentiation. When injected into mice, cells of all three of the germ layers successfully formed. The most significant of these cells, were those who expressed insulin and were capable of secreting the hormone.[18] These insulin producing cells could be used for replacement therapy in diabetics, demonstrating real SCNT stem cell therapeutic potential.

The impetus for SCNT-based stem cell research has been decreased by the development and improvement of alternative methods of generating stem cells. Methods to reprogram normal body cells into pluripotent stem cells were developed in humans in 2007. The following year, this method achieved a key goal of SCNT-based stem cell research: the derivation of pluripotent stem cell lines that have all genes linked to various diseases.[19] Some scientists working on SCNT-based stem cell research have recently moved to the new methods of induced pluripotent stem cells. Though recent studies have put in question how similar iPS cells are to embryonic stem cells. Epigenetic memory in iPS affects the cell lineage it can differentiate into. For instance, an iPS cell derived from a blood cell will be more efficient at differentiating into blood cells, while it will be less efficient at creating a neuron.[20] This raises the question of how well iPS cells can mimic the gold standard ESC in experiments, as stem cells are defined as having the ability to differentiate into any cell type. SCNT stem cells do not pose such a problem and continue to remain relevant in stem cell studies.

This technique is currently the basis for cloning animals (such as the famous Dolly the sheep),[21] and has been theoretically proposed as a possible way to clone humans. Using SCNT in reproductive cloning has proven difficult with limited success. High fetal and neonatal death make the process very inefficient. Resulting cloned offspring are also plagued with development and imprinting disorders in non-human species. For these reasons, along with moral and ethical objections, reproductive cloning in humans is proscribed.[22] Most researchers believe that in the foreseeable future it will not be possible to use the current cloning technique to produce a human clone that will develop to term. It remains a possibility, though critical adjustments will be required to overcome current limitations during early embryonic development in human SCNT.[23][24]

There is also the potential for treating diseases associated with mutations in mitochondrial DNA. Recent studies show SCNT of the nucleus of a body cell afflicted with one of these diseases into a healthy oocyte prevents the inheritance of the mitochondrial disease. This treatment does not involve cloning but would produce a child with three genetic parents. A father providing a sperm cell, one mother providing the egg nucleus and another mother providing the enucleated egg cell.[6]

Interspecies nuclear transfer (iSCNT) is a means of somatic cell nuclear transfer used to facilitate the rescue of endangered species, or even to restore species after their extinction. The technique is similar to SCNT cloning which typically is between domestic animals and rodents, or where there is a ready supply of oocytes and surrogate animals. However, the cloning of highly endangered or extinct species requires the use of an alternative method of cloning. Interspecies nuclear transfer utilizes a host and a donor of two different organisms that are closely related species and within the same genus. In 2000, Robert Lanza was able to produce a cloned fetus of a gaur, Bos gaurus, combining it successfully with a domestic cow, Bos taurus.[25]

Interspecies nuclear transfer provides evidence of the universality of the triggering mechanism of the cell nucleus reprogramming. For example, Gupta et al.,[26] explored the possibility of producing transgenic cloned embryos by interspecies somatic cell nuclear transfer (iSCNT) of cattle, mice, and chicken donor cells into enucleated pig oocytes. Moreover, NCSU23 medium, which was designed for in vitro culture of pig embryos, was able to support the in vitro development of cattle, mice, and chicken iSCNT embryos up to the blastocyst stage. Furthermore, ovine oocyte cytoplast may be used for remodeling and reprogramming of human somatic cells back to the embryonic stage.[27]

SCNT can be inefficient. Stresses placed on both the egg cell and the introduced nucleus in early research were enormous, resulting in a low percentage of successfully reprogrammed cells. For example, in 1996 Dolly the sheep was born after 277 eggs were used for SCNT, which created 29 viable embryos. Only three of these embryos survived until birth, and only one survived to adulthood.[21] As the procedure was not automated, but had to be performed manually under a microscope, SCNT was very resource intensive. The biochemistry involved in reprogramming the differentiated somatic cell nucleus and activating the recipient egg was also far from understood. However, by 2014, researchers were reporting success rates of 70-80% with cloning pigs[28] and in 2016 a Korean company, Sooam Biotech, was reported to be producing 500 cloned embryos a day.[29]

In SCNT, not all of the donor cell’s genetic information is transferred, as the donor cell’s mitochondria that contain their own mitochondrial DNA are left behind. The resulting hybrid cells retain those mitochondrial structures which originally belonged to the egg. As a consequence, clones such as Dolly that are born from SCNT are not perfect copies of the donor of the nucleus. This fact may also hamper the potential benefits of SCNT derived tissues/organs for therapy, as there may be an immunoresponse to the non-self mtDNA after transplant.

Proposals to use nucleus transfer techniques in human stem cell research raise a set of concerns beyond the moral status of any created embryo. These have led to some individuals and organizations who are not opposed to human embryonic stem cell research to be concerned about, or opposed to, SCNT research.[30][31][32]

One concern is that blastula creation in SCNT-based human stem cell research will lead to the reproductive cloning of humans. Both processes use the same first step: the creation of a nuclear transferred embryo, most likely via SCNT. Those who hold this concern often advocate for strong regulation of SCNT to preclude implantation of any derived products for the intention of human reproduction,[33] or its prohibition.[30]

A second important concern is the appropriate source of the eggs that are needed. SCNT requires human eggs, which can only be obtained from women. The most common source of these eggs today are eggs that are produced and in excess of the clinical need during IVF treatment. This is a minimally invasive procedure, but it does carry some health risks, such as ovarian hyperstimulation syndrome.

One vision for successful stem cell therapies is to create custom stem cell lines for patients. Each custom stem cell line would consist of a collection of identical stem cells each carrying the patient’s own DNA, thus reducing or eliminating any problems with rejection when the stem cells were transplanted for treatment. For example, to treat a man with Parkinson’s disease, a cell nucleus from one of his cells would be transplanted by SCNT into an egg cell from an egg donor, creating a unique lineage of stem cells almost identical to the patient’s own cells. (There would be differences. For example, the mitochondrial DNA would be the same as that of the egg donor. In comparison, his own cells would carry the mitochondrial DNA of his mother.)

Potentially millions of patients could benefit from stem cell therapy, and each patient would require a large number of donated eggs in order to successfully create a single custom therapeutic stem cell line. Such large numbers of donated eggs would exceed the number of eggs currently left over and available from couples trying to have children through assisted reproductive technology. Therefore, healthy young women would need to be induced to sell eggs to be used in the creation of custom stem cell lines that could then be purchased by the medical industry and sold to patients. It is so far unclear where all these eggs would come from.

Stem cell experts consider it unlikely that such large numbers of human egg donations would occur in a developed country because of the unknown long-term public health effects of treating large numbers of healthy young women with heavy doses of hormones in order to induce hyperovulation (ovulating several eggs at once). Although such treatments have been performed for several decades now, the long-term effects have not been studied or declared safe to use on a large scale on otherwise healthy women. Longer-term treatments with much lower doses of hormones are known to increase the rate of cancer decades later. Whether hormone treatments to induce hyperovulation could have similar effects is unknown. There are also ethical questions surrounding paying for eggs. In general, marketing body parts is considered unethical and is banned in most countries. Human eggs have been a notable exception to this rule for some time.

To address the problem of creating a human egg market, some stem cell researchers are investigating the possibility of creating artificial eggs. If successful, human egg donations would not be needed to create custom stem cell lines. However, this technology may be a long way off.

SCNT involving human cells is currently legal for research purposes in the United Kingdom, having been incorporated into the Human Fertilisation and Embryology Act 1990 in 2001.[34] Permission must be obtained from the Human Fertilisation and Embryology Authority in order to perform or attempt SCNT.

In the United States, the practice remains legal, as it has not been addressed by federal law.[35] However, in 2002, a moratorium on United States federal funding for SCNT prohibits funding the practice for the purposes of research. Thus, though legal, SCNT cannot be federally funded.[36] American scholars have recently argued that because the product of SCNT is a clone embryo, rather than a human embryo, these policies are morally wrong and should be revised.[37]

In 2003, the United Nations adopted a proposal submitted by Costa Rica, calling on member states to “prohibit all forms of human cloning in as much as they are incompatible with human dignity and the protection of human life.”[38] This phrase may include SCNT, depending on interpretation.

The Council of Europe’s Convention on Human Rights and Biomedicine and its Additional Protocol to the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine, on the Prohibition of Cloning Human Being appear to ban SCNT of human beings. Of the Council’s 45 member states, the Convention has been signed by 31 and ratified by 18. The Additional Protocol has been signed by 29 member nations and ratified by 14.[39]

Read the original here:
Somatic cell nuclear transfer – Wikipedia

Embryonic and Somatic Stem Cells, Whats the Difference?

Somatic Stem Cells | Posted by admin
Nov 02 2016

Stem cells are undifferentiated cells found in body having capability to develop into different types of cells in the body. Whenever there is a cell division of stem cells, each stem cell has the ability to remain a stem cell or become another type of cell having more specialized functions. In body, stem cells can differentiate into other kind of body cells by having the following capabilities;

1) Proliferation; The stem cells are capable to renew even after long periods of inactivity and capable of self-renewal during cell division. 2) Unspecialized; They are unspecialized which later give arise to specialized cells. 3) Differentiation; They are able to differentiate them under special conditions and functions.

There are two kinds of stem cell:

1) Embryonic stem cells. Those stem cells are derived from developing embryo. These cells are mostly use for in-vitro fertilization. 2) Somatic stem cells. Commonly known as adult stem cell. They are defined according to their location within the body.

Embryonic stem cells Somatic Pluripotent. Non pluripotent. Can easily grow in culture Not that easy. A large number of cells are required for stem cell replacement therapies.

The somatic stem cells can be further classified into mesenchymal stem cells and hematopoietic stem cells. The somatic stem cells are found in specific region of organ known as stem cell niche. The organs from where stem cell niche are found are in brain, skeletal muscle, gut, liver, pancreas, bone marrow, ovarian epithelium teeth, and testis.

The Somatic stem cells have been demonstrated as; Hematopoietic stem cells; Give rise to all kinds of blood cells. Mesenchymal stem cells; Give rise to all kinds of bone cells. Neural stem cells; Give rise to all kinds of neuronal and non neuronal cells in brain. Epithelial stem cells; Give rise to different kinds of cells of digestive tract. Skin stem cells; give rise to all the epidermis and ketatinocytes of skin.

Read the original post:
Embryonic and Somatic Stem Cells, Whats the Difference?

Somatic cell – Wikipedia

Somatic Stem Cells | Posted by admin
Nov 02 2016

A somatic (Greek: /soma = body) or vegetal cell is any biological cell forming the body of an organism; that is, in a multicellular organism, any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell.[1]

In contrast, gametes are cells that fuse during sexual reproduction, germ cells are cells that give rise to gametes, and stem cells are cells that can divide through mitosis and differentiate into diverse specialized cell types. For example, in mammals, somatic cells make up all the internal organs, skin, bones, blood and connective tissue, while mammalian germ cells give rise to spermatozoa and ova which fuse during fertilization to produce a cell called a zygote, which divides and differentiates into the cells of an embryo. There are approximately 220 types of somatic cells in the human body.[1]

Theoretically, these cells are not germ cells (the source of gametes), they never transmit to their descendants the mutations they have undergone. However, in sponges, non-differentiated somatic cells form the germ line and, in Cnidaria, differentiated somatic cells are the source of the germline.

The word “somatic” is derived from the Greek word sma, meaning “body”.

As multicellularity evolved many times, sterile somatic cells did too. The evolution of an immortal germline producing specialized somatic cells involved the emergence of mortality, and can be viewed in its simplest version in volvocine algae.[2] Those species with a separation between sterile somatic cells and a germ line are called Weismannists. However, Weismannist development is relatively rare (e.g., vertebrates, arthropods, Volvox), as great part of species have the capacity for somatic embryogenesis (e.g., land plants, most algae, many invertebrates).[3][4]

Like all cells, somatic cells contain DNA arranged in chromosomes. If a somatic cell contains chromosomes arranged in pairs, it is called diploid and the organism is called a diploid organism. (The gametes of diploid organisms contain only single unpaired chromosomes and are called haploid.) Each pair of chromosomes comprises one chromosome inherited from the father and one inherited from the mother. For example, in humans, somatic cells contain 46 chromosomes organized into 23 pairs. By contrast, gametes of diploid organisms contain only half as many chromosomes. In humans, this is 23 unpaired chromosomes. When two gametes (i.e. a spermatozoon and an ovum) meet during conception, they fuse together, creating a zygote. Due to the fusion of the two gametes, a human zygote contains 46 chromosomes (i.e. 23 pairs).

However, a large number of species have the chromosomes in their somatic cells arranged in fours (“tetraploid”) or even sixes (“hexaploid”). Thus, they can have diploid or even triploid germline cells. An example of this is the modern cultivated species of wheat, Triticum aestivum L., a hexaploid species whose somatic cells contain six copies of every chromatid.

In recent years, the technique of cloning whole organisms has been developed in mammals, allowing almost identical genetic clones of an animal to be produced. One method of doing this is called “somatic cell nuclear transfer” and involves removing the nucleus from a somatic cell, usually a skin cell. This nucleus contains all of the genetic information needed to produce the organism it was removed from. This nucleus is then injected into an ovum of the same species which has had its own genetic material removed. The ovum now no longer needs to be fertilized, because it contains the correct amount of genetic material (a diploid number of chromosomes). In theory, the ovum can be implanted into the uterus of a same-species animal and allowed to develop. The resulting animal will be a nearly genetically identical clone to the animal from which the nucleus was taken. The only difference is caused by any mitochondrial DNA that is retained in the ovum, which is different from the cell that donated the nucleus. In practice, this technique has so far been problematic, although there have been a few high-profile successes, such as Dolly the Sheep and, more recently, Snuppy, the first cloned dog. Somatic cells have also been collected in the practice of cryoconservation of animal genetic resources as a means of conserving animal genetic material, including to clone livestock.

Development of biotechnology has allowed for the genetic manipulation of somatic cells. This biotechnology deals with some ethical controversy in human genetic engineering.

Originally posted here:
Somatic cell – Wikipedia