Freezing Life: The Current Trends in Cryopreservation – Technology Networks

Cryopreservation has become an indispensable step in the daily routine of scientific research as well as in a number of medical applications, ranging from assisted reproduction and transplantations to cell-based therapies and biomarker identification. It is hardly possible to picture todays scientific and medical advancements without this technique.The successful development and implementation of all the therapeutic and scientific discoveries involving cryopreservation relies on the correct and safe translation of the method from the laboratory to the clinical and manufacturing scale.

With the need to correctly use this technique, more research is focusing on optimizing cryopreservation methods and investigating what the long-term effects and consequences are on the physiology of the cryopreserved material.

An important part of cell therapy research is focused on adult stem cells (ASCs). ASCs can be derived from different sources such as peripheral blood, bone marrow or adipose tissue and display strong promises because of their capacity to differentiate into any cell type of the human body.In recent work3, the team of Michael Pepper at the Institute for Cellular and Molecular Medicine in Pretoria, South Africa, explored the effects of cryopreservation on the differentiation ability of adipose tissue-derived stem cells (ADSCs). After analyzing gene expression of key adipogenic genes and the degree of differentiating cells, characterized with high levels of CD36 and intracellular lipid droplets, the scientists reported that slow freeze cryopreservation of cells shortly after their isolation causes no alterations on their ability to differentiate. Pepper is convinced of the necessity to perform such analysis when cryopreserving important cell pools: It is critical to do a post-thaw analysis of cell function to determine how the cryopreservation may have affected the cells.His team is analyzing the effects of cryopreservation on other cell types largely used in cell-based therapies such as hematological stem cells and peripheral blood mononuclear cells (PBMCs). Although they didnt observe major alterations in terms of immunophenotyping or the post-thaw proliferation of the cells, Pepper expresses his concern that more subtle characteristics might be affected.

Correct cryopreservation of cells intended for therapeutic use is crucial. This is very important particularly as cells may persist for a long time in the recipient. This area of cell therapy research definitely requires more attention, Pepper says. Moreover, his words reflect on the need to evaluate not only the direct post-thaw recovery, but to look deeper into the late-onset effects cryopreservation might have and ensure that transplanted cells have preserved their therapeutic properties.

In contrast to slow freezing, vitrification relies on the fast freezing of the material by putting it in high concentration of cryoprotectant and in contact with liquid nitrogen. This method allows the direct transition of water from liquid to solid state without crystal formation. The highly concentrated cryoprotectant prevents ice formation and therefore there is no need for slow cooling.

Although vitrification has a great potential, there are a couple of parameters that are a point of concern. The quick and drastic freeze is possible thanks to the high concentration of cryoprotectant, but the latter is also associated with higher toxicity. In some cases, an additional limitation is the direct contact of the sample with liquid nitrogen which is a predisposition for viral or bacterial contamination.The team of Christiani Amorim at the Institute for Experimental and Clinical Research in Louvain, Belgium, is approaching the challenges of vitrification in the context of ovarian auto-transplantation. Ovarian auto-transplantation consists of preserving a piece of ovarian tissue with active follicles from the pre-therapeutic ovary of a cancer patient, as chemotherapy often has damaging effects on the reproductive organs. This tissue sample will be conserved and auto-transplanted onto the patients ovary when she has recovered and wishes to become pregnant.In their recent research4, the authors used stepped vitrification, in which the concentration of the cryoprotectant is gradually increased while simultaneously temperature decreases. This avoids ice crystal formation and also prevents cryoprotectant toxicity.Although stepped vitrification has previously given good results in bovine ovarian tissue5, this was not the case for human ovarian tissue. The scientists didnt detect normal follicles following thawing and linked this to high cryoprotectant toxicity. Indeed, they observed all signs of dimethyl sulfoxide (DMSO)-related cell membrane damage: significant organelle damage, cell membrane disintegration and apoptosis. These observations imply on the variability of outcomes that the method could give when applied to the same type of tissue but from a different organism.Amorim is positive about the future of their method and recognizes the need for further research on the topic: I can see a great potential in the stepped vitrification approach, but I also believe that there is a lot we still need to learn before thinking about using it as method of choice for human ovarian tissue cryopreservation. The high cryoprotectant concentration that should be applied in this approach is my first concern. () Our study clearly showed that 50% DMSO is too high, so we need to try lower concentrations or combine it with other cryoprotectants.

More here:
Freezing Life: The Current Trends in Cryopreservation - Technology Networks

Needs way to measure pain besides the scale of 1-10 – Coastal Courier

By Keith Roach, M.D.

DEAR DR. ROACH: Why is pain measured by numbers? I have severe pain, and doctors do not know what to do when I say it is an 11 on a scale of 1-10. My pain cant be measured by numbers. It depends on the time of day, what I have done during the day and the weather.

I have arthritis in most of my joints, specifically my spine and hips. Having had five spine surgeries, epidurals and hip shots, I have pain every day. There is not much more that can be done but to take opioids. It can be hard to make the decision either to take an opioid and go out shopping or for coffee feeling like I am in a vacuum, or to go out in pain.

There is no chronic pain support group in my area, and no one can understand how I feel, even the professionals, unless they have gone through it. So when asked how I am, I say fine. Other people dont want to hear about my pain.

Why is there not another way the doctor can measure your pain? I have given up everything I love to do in life because of pain. Theres no way to get better from pain. -- M.L.D.

ANSWER: I am very sorry to hear your story, as it is similar to those I have heard before from people with chronic pain due to many different causes. It is disappointing for me to hear that you havent found a pain specialist in your area who seems to care about helping you.

Although the 1-10 pain scale is thoroughly entrenched, it has its flaws. The biggest one is that what one person might consider a two, another person might consider a nine. Ive seen people with horrifying injuries gritting their teeth and saying their pain is a 3 while other people claim their pain from what seems to be a minor condition is a 10 (I had one person tell me the pain from getting his blood pressure taken was a 10). Because pain is subjective, there is no way of standardizing what a person means with their pain rating. However, a 10 on a scale of 1-10 is supposed to be the worst pain imaginable.

DEAR DR. ROACH: My father, 90, has neuropathy in his feet and legs, and it is very painful. He recently talked to a clinic that is offering stem cell treatment to relieve the pain. The clinic says it helps 85% of those who get the treatment; however, because of HIPAA laws, they dont provide any referrals.

The treatments are very expensive ($16,000), and results are seen in six weeks to six months. Are you familiar with this treatment, and is it effective for most people? Is this something you can recommend? -- D.B.

ANSWER: I also have seen advertisements for stem cell treatments for many conditions. For neuropathy in particular, there are no good studies that give an estimate of effectiveness. It may be the case that 85% of people treated at the clinic report improvement. But the risk of a placebo effect is very high with this kind of procedure, and I could not recommend stem cell treatments for neuropathy without better information about the risks, the benefits and how long those benefits might last.

Dr. Roach regrets that he is unable to answer individual questions, but will incorporate them in the column whenever possible. Readers may email questions to ToYourGoodHealth@med.cornell.edu.

Read the original:
Needs way to measure pain besides the scale of 1-10 - Coastal Courier

Brave intensive care nurse, 27, diagnosed with rare cancer just weeks after dream wedding dies of disease – The Sun

A BRAVE intensive care nurse diagnosed with rare cancer just weeks after her dream wedding has died of the disease.

Julia Cullen, 27, from Hartlepool, won plaudits for her no-holds-barred insight into life battling a rare form of leukaemia.

8

8

8

The fit and healthy nurse fell ill just weeks after marrying her beloved fiance, Peter, 29, in October 2018.

She underwent gruelling treatment programmes to combat the disease - only for it to return aggressively in February.

Julia died at home in her sleep last week surrounded by her devastated family.

She lost her mum, Cath, who was also a nurse, to the cruel disease four years ago.

Heartbroken Peter wrote on Facebook: I need to let everybody who knew my beautiful wife Julia Cullen know that tonight she unfortunately passed away after a long battle with leukaemia.

She went peacefully in her sleep surrounded by her family. Thank you for all for your support during this difficult past year.

Goodnight darling be at peace I will never forget you.

Julias dad Graham, 57, sister Louisa, 28, brother Ste, 41, and twin Jack tragically lost their mum, Cath, 61, also a nurse, to bowel cancer in May 2016.

The family has now launched an appeal in support of Anthony Nolan and encouraged people to sign up as stem cell donors.

Louisa said: My best friend, my soul, my rock, my beautiful brave sister, took her last breath last night.

Its been such a hard journey for her and us all over the last year from her diagnosis.

Goodnight darling be at peace I will never forget you.

Julia, we always said we could get through anything as long as we have each other, so Im a bit lost what to do in life now.

Julia had shared blunt photos on Instagram from her 15-month fight to show how cancer does not discriminate.

She told her followers after being diagnosed aged 26: If theres anything I want to do after going through this experience of cancer, its to raise awareness that its happening.

Its happening to the young and old, the fit and unfit, the employed and the unemployed.

Its happening now and it could happen to you. Yes. You.

It isnt glamorous, it isnt a story - its hard, its painful, its gruelling, its terrifying.

In her Instagram story, Julia told how she then spotted spots on her legs and messaged Louisa: Ive Googled it, Ive got leukaemia.

Julia was admitted to a hospital ward in January 2019, where doctors dropped the bombshell that she had Acute Lymphoblastic Leukaemia - a blood cancer rare in adults and mainly found in children.

In Julias Instagram story, she tells how she went pink after an allergic reaction to antibiotics and how shaving her head was freeing yet upsetting as f***.

She shared the highs of spending time with her friends and the lows of having to have a plastic tube - known as a Hickman line - fed through her chest.

THREESY DOES ITBoris to reveal three-pronged 'roadmap' back to normality next week

BUM DEALLag who horrified PM after stuffing Kinder Egg up his own bum gets longer sentence

VACCINE HOPEScientists to find virus vaccine 'by summer' with Brits at front of queue

DANCE MACABRESick vid shows nurses dancing as they carry corpse of coronavirus victim

FUR-LOWDuncan Bannatyne quits lockdown for 3m Portugal villa after furloughing 2.5k staff

LONG HAULMonths more lockdown 'until cases below 1,000 a day - & 2nd peak could be WORSE'

In February, she wrote on Instagram of her determination to win her fight, and said: You will get through it.

You wont fight it as people say, youll face it. Youll face it with whoever and whatever you have to. Because life is precious. So be thankful. Always thankful.

Brother Jack, a hospital porter, said: Words cant describe how heartbroken and devastated I am to lose my twin sister.

I love you so much and I will continue to look after our wonderful family.

To support and donate to the family's appeal visit: https://www.justgiving.com/crowdfunding/louisa-siddle-1

8

8

8

8

8

View post:
Brave intensive care nurse, 27, diagnosed with rare cancer just weeks after dream wedding dies of disease - The Sun

RIP Rishi Kapoor! Succumbing to Leukemia, Veteran Actor Dies at 67 in Mumbai, Here is all You Need to Know Ab – India.com

Veteran actor Rishi Kapoor passed away today morning at around 8:45 am. He was suffering from leukemia, a type of cancer. The 67-year old actor was admitted to H N Reliance hospital in Mumbai on Wednesday morning after his health deteriorated. Rishi Kapoor took his last breath in the hospital surrounded by his family. Also Read - Twin Tragedies: After Irrfan Khan, Veteran Actor Rishi Kapoor Dies at 67; Twitter Overwhelmed With Sadness

Kapoor & Sons actor was diagnosed with leukemia in 2018 and was in New York for a long time for his treatment. Indias one of the finest actors, Rishi Kapoor lost his battle with cancer and left the world a day after actor Irrfan Khans demise. While we mourn his death and pray for his souls peace, here we tell you all about the condition he was suffering from. Also Read - Rishi Kapoor Dies at 67 (1952-2020) in Mumbai HN Reliance Foundation Hospital

Leukemia is a blood cancer in which there is an uncontrollable growth of the white blood cells (WBCs), which are responsible for protecting your body from invasion of harmful pathogens and abnormal cells. When the WBCs start dividing too quickly, they do not work normally and crowd out the red blood cells and blood platelets. Notably, WBCs are produced in the bone marrow. In case of leukemia, this spongy tissue produces abnormal WBCs. Also Read - Rishi Kapoor Fans Pray For Speedy Recovery After Actor is Shifted to ICU

Leukemia is characterised by symptoms including fever, persistent fatigue, unexplained weight loss, enlarged spleen, swollen lymph nodes, and recurrent nosebleed. People suffering from this deadly condition also experience excessive sweating, bone pain, and tiny red spots on skin.

Though the exact cause behind leukemia is unknown, doctors believe, it occurs when the WBCs undergo mutation in their DNA. This leads to rapid and abnormal growth of these cells.

Doctors conduct a physical exam to check for signs and symptoms of leukemia. They also recommend blood tests to determine if you have abnormal level of WBCs. Bone marrow test is also performed to confirm the condition. As a part of this test, a sample of bone marrow is removed from the hipbone of the patient and is sent to a lab for test.

As far as treatment of leukemia is concerned, options like chemotherapy, biological therapy, targeted therapy, radiation therapy, and stem cell transplant are currently available.

Link:
RIP Rishi Kapoor! Succumbing to Leukemia, Veteran Actor Dies at 67 in Mumbai, Here is all You Need to Know Ab - India.com

The teenager who survived cancer, sepsis and a collapsed lung – Wales Online

Teenager Libby Waite first noticed something was wrong with her health on a family holiday to Florida. She felt exhausted the entire time and struggled to walk the shortest of diatances.

And once she returned home and her friends spotted a lump on her neck while admiring her necklace, she knew something more sinister was going on.

After seeing her GP, who sent Libby for blood tests, a private scan and biopsy revealed she had cancer.

She was immediately referred to the Noah's Ark Children's Hospital for Wales in Cardiff where she was diagnosed with the blood cancer Hodgkin lymphoma.

"As a teenage girl, my first concern was about how it would affect my appearance. I was scared I would lose my hair," Libby said.

Her mum Joanne added: "As a mother it's your worst nightmare. I felt like I had my guts wrenched out, it was awful."

Unfortunately, Libby's first few weeks in hospital took a dramatic turn when she contracted sepsis because of her suppressed immune system caused by the first dose of chemotherapy.

"I was so shocked. The doctors had first thought she would have very little side-effects, so no-one expected that reaction," mum Joanne explained.

"One minute she was sat having breakfast, the next she went quiet and unresponsive. It was frightening."

As a result of the sepsis, Libby's lung also collapsed and she had to spend two weeks in intensive care while she recovered.

Libby was eventually able to leave hospital on Christmas Eve 2015.

"Although it had been scary it was so nice to be able to get home for Christmas," said Libby.

Libby, now 18, from Pontypool, returned to hospital where she was able to continue with a different type of chemotherapy.

Despite having four doses, tests revealed that the cancer had not gone away, so she was referred to a specialist consultant in London who recommended immunotherapy - a treatment which uses a persons own modified cells to treat cancer.

It is thought that Libby was one of the first patients in Wales to receive the relatively new treatment back in 2016.

Libby had a stem cell transplant where her own cells were harvested, treated and planted back in to her body to fight the cancer.

This required a three-week isolation period where her immune system was completely supressed.

Unfortunately, Libby did lose her hair as a result of the earlier chemotherapy treatment, but she said: "It actually wasn't as bad as I thought it would be. I had a really cool wig and I was able to use make-up for my eyebrows."

Thankfully the treatment was successful and Libby is now in remission after a long recuperation period at home while she gathered her strength.

She recalled: "I felt so weak, I was confined to the sofa for weeks and I had to rebuild my strength to walk again"

Eventually Libby said she was was able to return to school and sit her GCSEs and go to her year 11 prom.

"Going to prom was the first time I finally felt like a young person again," she admitted.

"I just wanted to go out with my friends and do everything they were doing."

Libby, who is currently applying for university, is now helping Cancer Research UK launch Race for Life at Home in Wales to help carry on the fight against the disease in these unprecedented times.

She took part in her local Race for Life 5k event in Cwmbran in 2017 after her treatment.

The Cwmbran event is among many which the organisers have postponed this spring and summer to protect the countrys health during the coronavirus outbreak.

But as the nation continues on lockdown, undeterred women and men are already vowing to carry on and complete a Race for Life at Home challenge at home, in their garden or their nearest green space.

Many of the scientists and researchers funded by Cancer Research UK are currently being redeployed to help in the fight against Covid-19, including assisting with testing.

By helping to beat coronavirus, the charity said it can lessen the impact it is having on the care of cancer patients.

Video Unavailable

Click to playTap to play

Play now

Cassandra Miles, Cancer Research UKs spokeswoman for Wales, said: "At a time when it feels like everything is at a standstill, there is one thing that hasnt stopped, cancer.

"Our priority as a charity is ensuring that people affected by cancer are getting the support they need right now.

"But we are already getting people asking about doing Race for Life at Home because they dont want to see the charity lose out on vital funding. Its truly humbling to see the response.

"So from their homes, wed love for supporters to join us and Race for Life at Home in these challenging times.

"From a run or 5K walk around the garden to limbo in the living room, there is no wrong way to Race for Life at Home. With no entry fee, people might choose to twerk, limbo, star jump, squat, skip, dance, or come up with their own novel way of taking part and share it with friends. The message is very much that while we might be apart, were doing this together. There is no wrong way to get involved and join our community.

"Those lucky enough to have a garden may choose to make use of it but whatever people decide to do, we are immensely grateful for the support, now more than ever. If the idea takes off, we could be looking at hundreds of people in Wales stepping forward to Race for Life at Home and perhaps collecting sponsorship to do so."

People can visit raceforlife.org and sign up free for ideas on how they can create their own Race for Life at Home challenge.

And the Cancer Research UK Race for Life Facebook page will help people feel energised with weekly live workout sessions.

Organisers are also inviting participants to join the Race for Life at Home community by sharing photos and videos on social media using the hashtag, #RaceForLifeAtHome.

Read the rest here:
The teenager who survived cancer, sepsis and a collapsed lung - Wales Online

Four UTSW Researchers Named to The National Academy of Sciences – D Magazine

Four UT Southwestern Medical Center scientists have been elected to the The National Academy of Sciences, one of the top honors for American scientists.

Peer scientists selected Sean Morrison, Kim Orth, Michael Rosen, and Sandra Schmid for their original research and achievements. UT Southwestern now has 25 members of the academy, the most of any institution in Texas.

Election to the prestigious National Academy of Sciences recognizes the pioneering contributions these scientists have made to advance our understanding of basic cellular function and molecular processes with application to addressing a broad spectrum of unmet medical needs including cancer and treatments for bacterial infections, said Dr. Daniel K. Podolsky, President of UT Southwestern Medical Center via release. Their election enriches the National Academy of Sciences efforts to provide data and advice on the nations most critical issues in science, health, and medicine.

Morrison is the Director of the Childrens Medical Center Research Institute (CRI) at UT Southwestern and Professor of Pediatrics and has worked in the fields of stem cell biology and cancer, and has created new methods to purify stem cells and allow them to persist and regenerate after injury. This recognizes, first and foremost, the work of many talented people over the years in my lab, most of whom have now gone on to their own laboratories at UT Southwestern and other institutions. Many of the key insights for the important discoveries that were made came from them so this really recognizes their work. Id also like to acknowledge all my colleagues, all of you at UT Southwestern and at Childrens Health, for the incredible environment that you created for science, Morrison said via release.

Orth is a Professor of Molecular Biology and Biochemistry and has discovered biochemical mechanisms behind many bacterial infections, revealing how pathogens use host cells for their own benefit. I want to thank you all for this wonderful celebration, even though we have to Zoom . Thanks to this amazing institution, UT Southwestern, the wonderful administration including Drs. (Daniel) Podolsky and (David) Russell and the other administrators and staff. As (Chair of Molecular Biology) Eric Olson said, I have moved up the ranks here, starting as a technician, to a student, a postdoc, and now Professor, Orth said via release. And this path has driven my success. Another major key to my success is all of the talented people that have worked in my lab and my mentors, friends, collaborators, and, of course, my family.

Rosen is the Chair of Biophysics and Professor in the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational, and Systems Biology, and investigates how cells compartmentalize processes without the use of membranes. When we began our work on phase separation about a decade ago, it really was not obvious at all whether this was going to be some weird, esoteric little thing that a few proteins did or (if) it was going to become a more general principle in biology. So it wasa tremendous risk that many of us took in making a move in this new direction. More than anything, I want to thank the various people whojoined me in taking this great risk a decade ago that I think has proved to be very much worthwhile, Rosen said via release.

Schmid is the Professor and Chair of Cell Biology and is recognized for her work on endocytosis, or how cells absorb nutrients and other molecules, including the major pathway for uptake within the cell. Ive been lucky to start and end my academic career at two unique institutions, Schmid said via release. As a PhD student in the early 80s, I was supported and challenged by my peers and faculty in the Biochemistry department at Stanford to ask important questions and do the most impactful research. Over decades, the leadership at UT Southwestern has inspired, supported and celebrated the very best research creating a collegial culture that breeds success.

This important recognition by their peers reflects the breadth and quality of research underway at UT Southwestern, and serves as inspiration for new generations of trainees and scientists to carry on the tradition of discovery that is the hallmark of distinguished academic medical centers, said Dr. W. P. Andrew Lee., Executive Vice President for Academic Affairs, Provost and Dean of UT Southwestern Medical School via release.

See the article here:
Four UTSW Researchers Named to The National Academy of Sciences - D Magazine

CHMP Grants Positive Opinion for DARZALEX (daratumumab) Subcutaneous Formulation for the Treatment of Patients with Multiple Myeloma – Yahoo Finance

The Janssen Pharmaceutical Companies of Johnson & Johnson announced today that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has issued a Positive Opinion recommending approval for DARZALEX (daratumumab) subcutaneous (SC) formulation for the treatment of adult patients with multiple myeloma in frontline and relapsed/refractory settings. The novel SC formulation of daratumumab is co-formulated with recombinant human hyaluronidase PH20 (rHuPH20) [Halozyme's ENHANZE drug delivery technology] and reduces treatment time from hours to approximately three to five minutes, with similar efficacy, and fewer infusion-related reactions compared to intravenous (IV) administration.1,2 The CHMPs Positive Opinion for daratumumab SC formulation applies to all current daratumumab indications including newly diagnosed and transplant-ineligible patients, as well as relapsed or refractory patients.

"Despite therapeutic advances in the treatment of multiple myeloma, the time taken for administration of most intravenous treatments is relatively long and there have been few significant improvements over the years," said Maria-Victoria Mateos, M.D., Ph.D., COLUMBA primary investigator and Director of the Myeloma Unit at University Hospital of Salamanca-IBSAL, Salamanca, Spain. "The daratumumab subcutaneous formulation has the potential to transform the treatment experience for patients and physicians as it reduces time in the chair from hours to minutes, and, because it is administered as a fixed dose from the first treatment, it reduces preparation time and chances of error by eliminating the need for dose calculations."

The Positive Opinion is supported by data from the Phase 3 COLUMBA (MMY3012) and Phase 2 PLEIADES (MMY2040) studies presented at the 2019 American Society of Clinical Oncology (ASCO) Annual Meeting and 62nd American Society of Hematology (ASH) Annual Meeting, respectively.1,2 The COLUMBA presentation included a non-inferiority comparison of daratumumab SC formulation to daratumumab IV formulation for co-primary endpoints of overall response rate and maximum Ctrough concentration.1 Furthermore, in a subsequent paper published in The Lancet Haematology, patient-reported treatment satisfaction scores with daratumumab SC versus daratumumab IV were reported using the modified-Cancer Therapy Satisfaction Questionnaire.3 The PLEIADES study evaluated the daratumumab SC formulation in different combination regimens in patients with newly diagnosed multiple myeloma or with relapsed/refractory disease.2

"The subcutaneous formulation of daratumumab showed similar efficacy and fewer infusion-related reactions compared to intravenous daratumumab, and, overall, patients expressed satisfaction with subcutaneous therapy. If approved, we are hopeful this new formulation could offer improved quality of life for patients with multiple myeloma," said Patrick Laroche, M.D., Haematology Therapy Area Lead, Europe, Middle East and Africa (EMEA), Janssen-Cilag. "Janssen is proud to have developed a new formulation to meet the needs of our patients and continue to make a meaningful difference to the lives of those living with multiple myeloma."

"Since its first European approval in 2016, intravenous daratumumab has been used in the treatment of more than 100,000 patients worldwide and, if approved, both new and existing patients with multiple myeloma will be able to start or switch to the subcutaneous formulation as part of their multiple myeloma daratumumab-based treatment regimens," adds Craig Tendler, M.D., Vice President, Clinical Development and Global Medical Affairs, Oncology at Janssen Research & Development, LLC. "Todays Positive Opinion represents Janssens commitment to continuing to improve the treatment experience for patients living with multiple myeloma."

#ENDS#

In Europe, daratumumab is indicated:4

About the COLUMBA Study (MMY3012)3,5The randomised, open-label, multicentre Phase 3 study included 522 patients with multiple myeloma who had received at least three prior lines of therapy including a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD), or whose disease was refractory to both a PI and an IMiD. In the arm that received the subcutaneously (SC) administered formulation of daratumumab (n=263), patients (median age of 65) received a fixed dose of daratumumab 1,800 milligrams (mg) co-formulated with recombinant human hyaluronidase PH20 (rHuPH20) 2,000 Units per millilitre (U/mL), SC weekly for cycles 1 2, every two weeks for cycles 3 6, and every four weeks for cycle 7 and thereafter. In the daratumumab IV arm (n=259), patients (median age of 67) received daratumumab for intravenous infusion 16 milligrams per kilogram (mg/kg) weekly for cycles 1 2, every two weeks for cycles 3 6, and every four weeks for cycle 7 and thereafter. Each cycle was 28 days. Patients in both treatment arms continued until disease progression or unacceptable toxicity. Co-primary endpoints were overall response rate (ORR) (non-inferiority = 60 percent retention of the lower bound [208%] of the 95% CI of the SIRIUS trial, with relative risk [RR] analysed by Farrington-Manning test) and pre-dose cycle 3, day 1 (C3D1) daratumumab Ctrough (non-inferiority = lower bound of 90 percent confidence interval (CI) for the ratio of the geometric means [GM] 80%).

Story continues

About the PLEIADES Study (MMY2040)6 The non-randomised, open-label, parallel assignment study Phase 2 PLEIADES trial included 240 adults either newly diagnosed or with relapsed or refractory multiple myeloma. Patients with newly diagnosed multiple myeloma were treated with 1,800 mg of the subcutaneous formulation in combination with either bortezomib, lenalidomide and dexamethasone (D-VRd) or bortezomib, melphalan and prednisone (D-VMP). Patients with relapsed or refractory disease were treated with 1,800 mg of the subcutaneous formulation plus lenalidomide and dexamethasone (D-Rd). The primary endpoint for the D-VMP and D-Rd cohorts was overall response rate. The primary endpoint for the D-VRd cohort was very good partial response or better rate. An additional cohort of patients with relapsed and refractory multiple myeloma treated with daratumumab plus carfilzomib and dexamethasone was subsequently added to the study.

About daratumumabDaratumumab is a first-in-class7 biologic targeting CD38, a surface protein that is highly expressed across multiple myeloma cells, regardless of disease stage.8 Daratumumab is believed to induce tumour cell death through multiple immune-mediated mechanisms of action, including complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), as well as through apoptosis, in which a series of molecular steps in a cell lead to its death.4 A subset of myeloid derived suppressor cells (CD38+ MDSCs), CD38+ regulatory T cells (Tregs) and CD38+ B cells (Bregs) were decreased by daratumumab.4 Since launch, it is estimated that 100,000 patients have been treated with daratumumab worldwide.9 Daratumumab is being evaluated in a comprehensive clinical development programme across a range of treatment settings in multiple myeloma, such as in frontline and relapsed settings.10,11,12,13,14,15,16,17 Additional studies are ongoing or planned to assess its potential in other malignant and pre-malignant haematologic diseases in which CD38 is expressed, such as smouldering myeloma.18,19 For more information, please see https://www.clinicaltrials.gov/.

For further information on daratumumab, please see the Summary of Product Characteristics at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex.

In August 2012, Janssen Biotech, Inc. and Genmab A/S entered a worldwide agreement, which granted Janssen an exclusive licence to develop, manufacture and commercialise daratumumab.20

About Multiple MyelomaMultiple myeloma (MM) is an incurable blood cancer that starts in the bone marrow and is characterised by an excessive proliferation of plasma cells.21 In Europe, more than 48,200 people were diagnosed with MM in 2018, and more than 30,800 patients died.22 Almost 60 percent of patients with MM do not survive more than five years after diagnosis.23

Although treatment may result in remission, unfortunately, patients will most likely relapse as there is currently no cure.24 Refractory MM is when a patients disease progresses within 60 days of their last therapy.25,26 Relapsed cancer is when the disease has returned after a period of initial, partial or complete remission.27 While some patients with MM have no symptoms at all, most patients are diagnosed due to symptoms that can include bone problems, low blood counts, calcium elevation, kidney problems or infections.28 Patients who relapse after treatment with standard therapies, including proteasome inhibitors and immunomodulatory agents, have poor prognoses and few treatment options available.29

About the Janssen Pharmaceutical Companies of Johnson & JohnsonAt Janssen, were creating a future where disease is a thing of the past. Were the Pharmaceutical Companies of Johnson & Johnson, working tirelessly to make that future a reality for patients everywhere by fighting sickness with science, improving access with ingenuity, and healing hopelessness with heart. We focus on areas of medicine where we can make the biggest difference: Cardiovascular & Metabolism, Immunology, Infectious Diseases & Vaccines, Neuroscience, Oncology, and Pulmonary Hypertension.

Learn more at http://www.janssen.com/emea. Follow us at http://www.twitter.com/janssenEMEA for our latest news. Janssen-Cilag, Janssen Research & Development, LLC and Janssen Biotech, Inc. are part of the Janssen Pharmaceutical Companies of Johnson & Johnson.

Cautions Concerning Forward-Looking StatementsThis press release contains "forward-looking statements" as defined in the Private Securities Litigation Reform Act of 1995 regarding the benefits of daratumumab for the treatment of patients with multiple myeloma. The reader is cautioned not to rely on these forward-looking statements. These statements are based on current expectations of future events. If underlying assumptions prove inaccurate or known or unknown risks or uncertainties materialise, actual results could vary materially from the expectations and projections of Janssen Pharmaceutical Companies and/or Johnson & Johnson. Risks and uncertainties include, but are not limited to: challenges and uncertainties inherent in product research and development, including the uncertainty of clinical success and of obtaining regulatory approvals; uncertainty of commercial success; manufacturing difficulties and delays; competition, including technological advances, new products and patents attained by competitors; challenges to patents; product efficacy or safety concerns resulting in product recalls or regulatory action; changes in behaviour and spending patterns of purchasers of health care products and services; changes to applicable laws and regulations, including global health care reforms; and trends toward health care cost containment. A further list and descriptions of these risks, uncertainties and other factors can be found in Johnson & Johnson's Annual Report on Form 10-K for the fiscal year ended December 29, 2019, including in the sections captioned "Cautionary Note Regarding Forward-Looking Statements" and "Item 1A. Risk Factors," and in the companys most recently filed Quarterly Report on Form 10-Q, and the companys subsequent filings with the Securities and Exchange Commission. Copies of these filings are available online at http://www.sec.gov, http://www.jnj.com or on request from Johnson & Johnson. None of the Janssen Pharmaceutical Companies nor Johnson & Johnson undertakes to update any forward-looking statement as a result of new information or future events or developments.

ENHANZE is a registered trademark of Halozyme.

# # #

References

1 Mateos MV, Nahi H, Legiec W, et al. Efficacy and safety of the randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients (pts) with relapsed or refractory multiple myeloma (RRMM): COLUMBA. J Clin Oncol. 2019;37(Suppl.): abstract 8005.2 Chari A, San-Miguel J, McCarthy H, et al. Subcutaneous daratumumab plus standard treatment regimens in patients with multiple myeloma across lines of therapy: Pleiades study update. Blood. 2019;134(Suppl.1):abstract 3152.3 Mateos MV, Nahi H, Legiec W, et al. Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol. 2020 Mar 23 [epub ahead of print].4 European Medicines Agency. DARZALEX summary of product characteristics. Available at:https://www.ema.europa.eu/documents/product-information/darzalex-epar-productinformation_en.pdf Last accessed April 2020.5 ClinicalTrials.gov. A Study of Subcutaneous Versus (vs.) Intravenous Administration of Daratumumab in Participants With Relapsed or Refractory Multiple Myeloma. NCT03277105. Available at: https://clinicaltrials.gov/ct2/show/NCT03277105 Last accessed April 2020.6 ClinicalTrials.gov. A Study to Evaluate Subcutaneous Daratumumab in Combination With Standard Multiple Myeloma Treatment Regimens. NCT03412565. Available at: https://clinicaltrials.gov/ct2/show/NCT03412565 Last accessed April 2020.7 Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016;9:51.8 Fedele G, di Girolamo M, Recine U, et al. CD38 ligation in peripheral blood mononuclear cells of myeloma patients induces release of protumorigenic IL-6 and impaired secretion of IFNgamma cytokines and proliferation. Mediat Inflamm. 2013;2013:564687.9 [Data on file]. DARZALEX: New Patient Starts Launch to Date. RF-8220310 ClinicalTrials.gov. A study to evaluate daratumumab in transplant eligible participants with previously untreated multiple myeloma (Cassiopeia). NCT02541383. Available at: https://clinicaltrials.gov/ct2/show/NCT02541383 Last accessed April 202011 ClinicalTrials.gov. A study comparing daratumumab, lenalidomide, and dexamethasone with lenalidomide and dexamethasone in relapsed or refractory multiple myeloma. NCT02076009. Available at: https://clinicaltrials.gov/ct2/show/NCT02076009 Last accessed April 2020.12 ClinicalTrials.gov. Addition of daratumumab to combination of bortezomib and dexamethasone in participants with relapsed or refractory multiple myeloma. NCT02136134. Available at: https://clinicaltrials.gov/ct2/show/NCT02136134 Last accessed April 2020.13 ClinicalTrials.gov. A study of combination of daratumumab and Velcade (bortezomib) melphalan-prednisone (DVMP) compared to Velcade melphalan-prednisone (VMP) in participants with previously untreated multiple myeloma. NCT02195479. Available at: https://clinicaltrials.gov/ct2/show/NCT02195479 Last accessed April 2020.14 ClinicalTrials.gov. Study comparing daratumumab, lenalidomide, and dexamethasone with lenalidomide and dexamethasone in participants with previously untreated multiple myeloma. NCT02252172. Available at: https://clinicaltrials.gov/ct2/show/NCT02252172 Last accessed April 2020.15 ClinicalTrials.gov. A study of Velcade (bortezomib) melphalan-prednisone (VMP) compared to daratumumab in combination with VMP (D-VMP), in participants with previously untreated multiple myeloma who are ineligible for high-dose therapy (Asia Pacific region). NCT03217812. Available at: https://clinicaltrials.gov/ct2/show/NCT03217812 Last accessed April 2020.16 ClinicalTrials.gov. Comparison of pomalidomide and dexamethasone with or without daratumumab in subjects with relapsed or refractory multiple myeloma previously treated with lenalidomide and a proteasome inhibitor daratumumab/pomalidomide/dexamethasone vs pomalidomide/dexamethasone (EMN14). NCT03180736. Available at: https://clinicaltrials.gov/ct2/show/NCT03180736 Last accessed April 2020.17 ClinicalTrials.gov. Study of carfilzomib, daratumumab and dexamethasone for patients with relapsed and/or refractory multiple myeloma (CANDOR). NCT03158688. Available at: https://clinicaltrials.gov/ct2/show/NCT03158688 Last accessed April 2020.18 ClinicalTrials.gov. A study to evaluate 3 dose schedules of daratumumab in participants with smoldering multiple myeloma. NCT02316106. Available at: https://clinicaltrials.gov/ct2/show/NCT02316106 Last accessed April 2020.19 ClinicalTrials.gov. An efficacy and safety proof of concept study of daratumumab in relapsed/refractory mantle cell lymphoma, diffuse large B-cell lymphoma, and follicular lymphoma. NCT02413489. Available at: https://clinicaltrials.gov/ct2/show/NCT02413489 Last accessed April 2020.20 Johnson & Johnson. Janssen Biotech announces global license and development agreement for investigational anti-cancer agent daratumumab. Press release August 30, 2012. Available at: https://www.jnj.com/media-center/press-releases/janssen-biotech-announces-global-license-and-development-agreement-for-investigational-anti-cancer-agent-daratumumab Last accessed April 2020.21 American Society of Clinical Oncology. Multiple myeloma: introduction. Available at: https://www.cancer.net/cancer-types/multiple-myeloma/introduction Last accessed April 2020.22 GLOBOCAN 2018. Cancer Today Population Factsheets: Europe Region. Available at: https://gco.iarc.fr/today/data/factsheets/populations/908-europe-fact-sheets.pdf Last accessed April 2020.23 De Angelis R, Minicozzi P, Sant M, et al. Survival variations by country and age for lymphoid and myeloid malignancies in Europe 2000-2007: results of EUROCARE-5 population-based study. Eur J Cancer. 2015;51:2254-68.24 Abdi J, Chen G, Chang H, et al. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4:2186207.25 National Cancer Institute. NCI dictionary of cancer terms: refractory. Available at: https://www.cancer.gov/publications/dictionaries/cancer-terms?CdrID=350245 Last accessed April 2020.26 Richardson P, Mitsiades C, Schlossman R, et al. The treatment of relapsed and refractory multiple myeloma. Hematology Am Soc Hematol Educ Program. 2007:317-23.27 National Cancer Institute. NCI dictionary of cancer terms: relapsed. Available at: https://www.cancer.gov/publications/dictionaries/cancer-terms?CdrID=45866 Last accessed April 2020.28 American Cancer Society. Multiple myeloma: early detection, diagnosis and staging. Available at: https://www.cancer.org/content/dam/CRC/PDF/Public/8740.00.pdf Last accessed April 2020.29 Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26:149-57.

April 2020CP-152796

View source version on businesswire.com: https://www.businesswire.com/news/home/20200430005934/en/

Contacts

Media Enquiries: Noah ReymondMobile: +31 621 38 5718Email: NReymond@ITS.JNJ.com

Investor Relations: Christopher DelOreficePhone: +1 732-524-2955

Jennifer McIntyrePhone: +1 732 524 3922

More here:
CHMP Grants Positive Opinion for DARZALEX (daratumumab) Subcutaneous Formulation for the Treatment of Patients with Multiple Myeloma - Yahoo Finance

Verify the URL – InnovationMap

Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine which usually take years to make, test, and get approved.

Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

"The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

"It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

"If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

"This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

The project is led by Fars el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

"Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

"We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."

A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines like a potential coronavirus vaccine more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

"Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

"Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

Read more:
Verify the URL - InnovationMap

Houston banking exec shares tips for keeping online information secure amid COVID-19 threats – InnovationMap

Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine which usually take years to make, test, and get approved.

Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

"The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

"It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

"If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

"This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

The project is led by Fars el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

"Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

"We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."

A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines like a potential coronavirus vaccine more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

"Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

"Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

Read the original:
Houston banking exec shares tips for keeping online information secure amid COVID-19 threats - InnovationMap

San Diego biotech firm seeks approval for stem cell research against COVID-19 – CBS News 8

Personalized Stem Cells Incorporated (PSC) in Poway said the therapy could reduce the most serious complications of the infection in the lungs.

SAN DIEGO A San Diego biotech company is seeking emergency FDA approval for an experimental trial of stem cell therapy for coronavirus patients.

Personalized Stem Cells Incorporated (PSC) in Poway said the therapy could reduce the most serious complications of the infection in the lungs.

PSC CEO, Dr. Bob Harman, said the company is asking to test the treatment on a group of 20 hospitalized COVID-19 patients in the first phase of a clinical trial.

"Stem cell doses will be ready for clinical trial use in May, depending on FDA approval," Harman said.

Harman said they've already scaled up production of stem cells in anticipation of FDA approval.

PSC Medical Director, Dr. Christopher Rogers, stated, "I believe this is the most promising therapy being explored by medical scientists at this time and stem cells may potentially reduce the most serious complications of coronavirus infection."

The FDA has a new program called the Coronavirus Therapeutic Accelerator Program (CTAP) to help speed up the launch of FDA clinical trials for hopeful COVID-19 therapies.

PSC was asked by the White House Coronavirus Task Force to apply to the FDA CTAP program for expedited review of their application.

PSC hopes to rapidly complete the CoronaStem 1 study and then proceed into a larger Phase 2 clinical trial and potentially into FDA compassionate use programs to reach more patients.

More information can be found on the PSC website.

Continue reading here:
San Diego biotech firm seeks approval for stem cell research against COVID-19 - CBS News 8