Category Archives: Stem Cell Medicine

30,000-cell Study Maps the Development of Sound Sensing in the Mouse Inner Ear – Technology Networks

A team of researchers has generated a developmental map of a key sound-sensing structure in the mouse inner ear. Scientists at the National Institute on Deafness and Other Communication Disorders (NIDCD), part of the National Institutes of Health, and their collaborators analyzed data from 30,000 cells from mouse cochlea, the snail-shaped structure of the inner ear. The results provide insights into the genetic programs that drive the formation of cells important for detecting sounds. The study also sheds light specifically on the underlying cause of hearing loss linked to Ehlers-Danlos syndrome and Loeys-Dietz syndrome.

The study data is shared on a unique platform open to any researcher, creating an unprecedented resource that could catalyze future research on hearing loss. Led by Matthew W. Kelley, Ph.D., chief of the Section on Developmental Neuroscience at the NIDCD, the study appeared online in Nature Communications(link is external). The research team includes investigators at the University of Maryland School of Medicine, Baltimore; Decibel Therapeutics, Boston; and Kings College London.

Unlike many other types of cells in the body, the sensory cells that enable us to hear do not have the capacity to regenerate when they become damaged or diseased, said NIDCD Director Debara L. Tucci, M.D., who is also an otolaryngology-head and neck surgeon. By clarifying our understanding of how these cells are formed in the developing inner ear, this work is an important asset for scientists working on stem cell-based therapeutics that may treat or reverse some forms of inner ear hearing loss.

In mammals, the primary transducers of sound are hair cells, which are spread across a thin ribbon of tissue (the organ of Corti) that runs the length of the coiled cochlea. There are two kinds of hair cells, inner hair cells and outer hair cells, and they are structurally and functionally sustained by several types of supporting cells. During development, a pool of nearly identical progenitor cells gives rise to these different cell types, but the factors that guide the transformation of progenitors into hair cells are not fully understood.

To learn more about how the cochlea forms, Kelleys team took advantage of a method called single-cell RNA sequencing. This powerful technique enables researchers to analyze the gene activity patterns of single cells. Scientists can learn a lot about a cell from its pattern of active genes because genes encode proteins, which define a cells function. Cells gene activity patterns change during development or in response to the environment.

There are only a few thousand hair cells in the cochlea, and they are arrayed close together in a complex mosaic, an arrangement that makes the cells hard to isolate and characterize, said Kelley. Single-cell RNA sequencing has provided us with a valuable tool to track individual cells behaviors as they take their places in the intricate structure of the developing cochlea.

Building on their earlier work on 301 cells, Kelleys team set out to examine the gene activity profiles of 30,000 cells from mouse cochleae collected at four time points, beginning with the 14th day of embryonic development and ending with the seventh postnatal day. Collectively, the data represents a vast catalog of information that researchers can use to explore cochlear development and to study the genes that underlie inherited forms of hearing impairment.

Kelleys team focused on one such gene, Tgfbr1, which has been linked to two conditions associated with hearing loss, Ehlers-Danlos syndrome and Loeys-Dietz syndrome. The data showed that Tgfbr1 is active in outer hair cell precursors as early as the 14th day of embryonic development, suggesting that the gene is important for initiating the formation of these cells.

To explore Tgfbr1s role, the researchers blocked the Tgfbr1 proteins activity in cochleae from 14.5-day-old mouse embryos. When they examined the cochleae five days later, they saw fewer outer hair cells compared to the embryonic mouse cochleae that had not been treated with the Tgfbr1 blocker. This finding suggests that hearing loss in people with Tgfbr1 mutations could stem from impaired outer hair cell formation during development.

The study revealed additional insights into the early stages of cochlear development. The developmental pathways of inner and outer hair cells diverge early on; researchers observed distinct gene activity patterns at the earliest time point in the study, the 14th day of embryonic development. This suggests that the precursors from which these cells derive are not as uniform as previously believed. Additional research on cells collected at earlier stages is needed to characterize the initial steps in the formation of hair cells.

In the future, scientists may be able to use the data to steer stem cells toward the hair cell lineage, helping to produce the specialized cells they need to test cell replacement approaches for reversing some forms of hearing loss. The studys results also represent a valuable resource for research on the hearing mechanism and how it goes awry in congenital forms of hearing loss.

The authors have made their data available through the gEAR portal(link is external) (gene Expression Analysis Resource), a web-based platform for sharing, visualizing, and analyzing large multiomic datasets. The portal is maintained by Ronna Hertzano, M.D., Ph.D., and her team in the Department of Otorhinolaryngology and the Institute for Genome Sciences (IGS)(link is external) at the University of Maryland School of Medicine.

Single-cell RNA sequencing data are highly complex and typically require significant skill to access, said Hertzano. By disseminating this study data via the gEAR, we are creating an encyclopedia of the genes expressed in the developing inner ear, transforming the knowledge base of our field and making this robust information open and understandable to biologists and other researchers.

This news release describes a basic research finding. Basic research increases our understanding of human behavior and biology, which is foundational to advancing new and better ways to prevent, diagnose, and treat disease. Science is an unpredictable and incremental process; each research advance builds on past discoveries, often in unexpected ways. Most clinical advances would not be possible without the knowledge gained through basic research.

Reference: Kolla, L., Kelly, M. C., Mann, Z. F., Anaya-Rocha, A., Ellis, K., Lemons, A., Palermo, A. T., So, K. S., Mays, J. C., Orvis, J., Burns, J. C., Hertzano, R., Driver, E. C., & Kelley, M. W. (2020). Characterization of the development of the mouse cochlear epithelium at the single cell level. Nature Communications, 11(1), 116. https://doi.org/10.1038/s41467-020-16113-y

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more:
30,000-cell Study Maps the Development of Sound Sensing in the Mouse Inner Ear - Technology Networks

Stem Cell Therapy Market Analysis and Demand 2017 2025 – Cole of Duty

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Know the Growth Opportunities in Emerging Markets

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

The regional analysis covers:

Order this Report TOC for Detailed Statistics

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1787<ype=S

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

More:
Stem Cell Therapy Market Analysis and Demand 2017 2025 - Cole of Duty

Genetic features pave way for targeted BPDCN therapies – Dermatology Times

Researchers are learning more about genetic aberrations common in the rare but clinically aggressive hematological cancer blastic plasmacytoid dendritic cell neoplasm. There is one targeted therapy approved by the U.S. Food and Drug Administration: Elzonris (tagraxofusp-erzs, Stemline). However, more treatment options are needed to improve the cancers clinical outcome, according to a review published May 2020 in Critical Reviews Oncology/Hematology.1

Dermatologists might be the first providers to encounter patients with blastic plasmacytoid dendritic cell neoplasm because more than 70% of these patients have cutaneous lesions. Those lesions often are asymptomatic and vary in size. The skin lesions tend to have nodules, plaques or bruise-like areas, a brown to violet color and might be solitary or multifocal, according to the authors.

Blastic plasmacytoid dendritic cell neoplasm often originates from type 2 myeloid-derived resting plasmacytoid dendritic cell precursors. Recent research suggests providers can diagnose the cancer when patients express at least four of five plasmacytoid dendritic cell specific markers, CD4, CD56, CD123, TCL1 and BDCA-2, without expressing myeloid, T-cell or B-cell lineage markers.

Commonly, [blastic plasmacytoid dendritic cell neoplasm] is characterized by high CD123 expression, aberrant NF-B [nuclear factor-B] activation, dependence on TCF4-/BRD4-network, and deregulated cholesterol metabolism, they wrote.

Despite advancing knowledge about the cancer type, patients median overall survival remains at 12 to 14 months, according to the paper. Conventional treatment approaches include chemotherapy, radiotherapy and ultimately hematopoietic stem cell transplantation. The challenges with conventional therapies are while blastic plasmacytoid dendritic cell neoplasm is sensitive to some chemotherapy regimens, patient relapse is high at more than 60%. And many patients with blastic plasmacytoid dendritic cell neoplasm are too old or frail to have intensive chemotherapy or hematopoietic stem cell transplantation, according to the authors.

Recently, the most attractive agent for [blastic plasmacytoid dendritic cell neoplasm] is tagraxofusp, which is composed of the catalytic and translocation domains of diphtheria toxin (DT) fused to interleukin-3 (IL-3), the authors wrote.

Blastic plasmacytoid dendritic cell neoplasm cells overexpress interleukin-3 receptor subunit alpha (IL3RA, also called CD123). Elzonris, or tagraxofusp-erzs, is a CD123-directed cytotoxin given intravenously, which is used to treat blastic plasmacytoid dendritic cell neoplasm in adults and in pediatric patients 2 years and older.

Researchers reported in a study of 47 blastic plasmacytoid dendritic cell neoplasm patients published in 2019 in the New England Journal of Medicine that tagraxofusp led to clinical responses in untreated and relapsed patients.2 The overall response rate with tagraxofusp was 90% and the primary outcome of complete response and clinical complete response was 72% among the previously untreated patients. Overall response was 67% in the previously treated patients. Serious adverse events including capillary leak syndrome, hepatic dysfunction and thrombocytopenia were common, according to the NEJM paper.

More targeted therapies are needed to treat blastic plasmacytoid dendritic cell neoplasm, but many potential therapeutic agents are not advancing to clinical trials, according to authors of the paper in Critical Reviews Oncology/Hematology.

Common blastic plasmacytoid dendritic cell neoplasm characteristics are genetically heterogeneous and provide valuable drug targets, according to the authors.

Apart from aberrant activation of NF-B signaling pathway, which is highly dependent on TCF4- and BRD4- transcriptional networks, cholesterol metabolism deregulation and CD123 expression, defects of DNA damage repair and mitosis are new, potential common features of the cancer. Corresponding therapies might be promising, the authors wrote.

Venetoclax, anti-CD123 CAR-T, XmAb14045 and IMGN632 are in clinical trials for blastic plasmacytoid dendritic cell neoplasm. But the authors noted that bortezomib, lenalidomide, 5-aza and pralatrexate could easily be pushed to the front line of the cancers treatment.

Disclosures:

The authors report no relevant disclosures.

References:

1. Zhang X, Sun J, Yang M, Wang L, Jin J. New perspectives in genetics and targeted therapy for blastic plasmacytoid dendritic cell neoplasm. Crit Rev Oncol Hematol. 2020 May;149:102928.2. Pemmaraju N, Lane AA, Sweet KL, et al. Tagraxofusp in Blastic Plasmacytoid Dendritic-Cell Neoplasm. N Engl J Med. 2019;380(17):1628-1637.

See more here:
Genetic features pave way for targeted BPDCN therapies - Dermatology Times

COVID-19 Impact on Stromal Vascular Fraction Market Marked US$ 76 Mn in forecast Years 2019 to 2029 – Cole of Duty

With the outbreak of COVID-19 in worldwide and stipulated lockdown, the healthcare sector is witnessing an unprecedented slowdown as per EY-FICCI study titled, COVID-19 impact assessment for healthcare sector and key financial measures recommendations for the sector. The study is predicated on an assessment of healthcare players within the country to assess the economic impact of the COVID-19 pandemic and provides recommendations on the fiscal stimulus measures it needs within the coming months.

Stromal vascular fraction is gaining significant importance in various fields, including internal medicine, orthopaedics, plastic and general surgery,and wound healing.

Ease of harvest, abundant availability, and stable phenotype are some factors increasing the demand for stromal vascular fraction. Also, stromal vascular fraction secretes several soluble factors with anti-inflammatory, immunomodulatory, and analgesic effects, which leads to an alternative treatment option for various diseases, significantly benefitting the growth of thestromal vascular fraction marketduring the forecast period.

Get Sample Copy of Report @ https://www.persistencemarketresearch.com/samples/20914

Company Profiles

Delivery of stromal vascular fraction by intra-articular injection has advantages over surgical implantation, such as less invasiveness, better patient compliance, and lower cost.

The global stromal vascular fraction market was valued atUS$ 76 Mnin 2018, and is expected to witness a CAGR of around4%over the forecast period (2019-2029).

Key Takeaways of Stromal Vascular Fraction Market Study

Get To Know Methodology of Report @ https://www.persistencemarketresearch.com/methodology/20914

Stromal vascular fraction has emerged as an efficient alternative in the field of regenerative medication. However, better-structured and significant clinical investigations need to be carried out to demonstrate and define the therapeutic potential of stromal vascular fraction,says a PMR analyst.

Stromal Vascular Fraction Manufacturers Focusing on Innovative Methods to Optimize Tissue Recovery

Consistent up-gradation and innovation in methods to recover adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medication applications are expected to offer significant opportunities for the stromal vascular fraction market.

For instance, LipoCell from Tissyou, is furnished with a semipermeable film that separates fat tissues from squander components with the assistance of continuous irrigation. The dialysis of the tissue limits the pressure and trauma to the cell and extracellular matrix, evacuating the blood and oil deposits, which are pro-inflammatory.

Access Full Report @ https://www.persistencemarketresearch.com/checkout/20914

More Valuable Insights on Stromal vascular fraction Market

Persistence Market Research brings a comprehensive research report on the forecasted revenue growth at global, regional, and country levels, and provides an analysis of the latest industry trends in each of the segments from 2014 to 2029.

The global stromal vascular fraction market is segmented in detail to cover every aspect of the market and present a complete market intelligence approach to the reader.

The study provide compelling insights on the stromal vascular fraction market on basis of product (SVF isolation products, SVF aspirate purification products, and SVF transfer products), application (cosmetic applications, orthopedic applications, soft tissue applications, and others), and end user (hospitals, ambulatory surgical centers, stem cell laboratories, and others), across six major regions.

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Feminine Hygiene Product Market Feminine Hygiene Products Market Segmented By Sanitary Pads/Napkins, Tampons, Panty Liners, Menstrual Cups, and Feminine Hygiene Wash.For More Information

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Ashish KoltePersistence Market ResearchAddress 305 Broadway, 7th FloorNew York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com

View original post here:
COVID-19 Impact on Stromal Vascular Fraction Market Marked US$ 76 Mn in forecast Years 2019 to 2029 - Cole of Duty

Rejuvenated fibroblasts can recover the ability to contract – Newswise

Newswise Fibroblasts are the most common connective tissue cells. They produce the structural framework for animal tissues, synthesise the extracellular matrix and collagen, and play a critical role in wound healing. However, during the cellular aging process, fibroblasts lose their ability to contract, leading to stiffness due to reduced connective tissues.

A study from the Mechanobiology Institute at the National University of Singapore has shown that these fibroblasts can be rejuvenated, or redifferentiated, by being geometrically confined on micropatterns. The above shows microscopic imaging of the control (left) and rejuvenated fibroblasts (right), with fluorescent labels highlighting the nucleus (blue), nuclear envelope (green), and cytoskeleton (in magenta). The presence of more contractile proteins (in red) in the rejuvenated fibroblasts indicates that they have recovered their ability to contract. These rejuvenated cells were observed to have reduced DNA damage, and enhanced cytoskeletal gene expression.

The results of this study were first published in the Proceedings of the National Academy of Sciences on 29 April 2020.

The research team believes that their mechanical reprogramming approach can overcome the shortcomings of conventional rejuvenation methods, including generation of short-lived or oncogenic fibroblasts. These mechanically rejuvenated fibroblasts could potentially be used as clinical implants in regenerative medicine and stem cell engineering.

Go here to see the original:
Rejuvenated fibroblasts can recover the ability to contract - Newswise

COVID-19: Responding to the business impacts of Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) Market-Segment Market Trends, Analysis and…

The global Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market player in a comprehensive way. Further, the Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market report emphasizes the adoption pattern of the Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) across various industries.

The Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.

The report on the Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market provides a birds eye view of the current proceeding within the Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market and offers a clear assessment of the projected market fluctuations during the forecast period.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2647159&source=atm

Regional and Country-level AnalysisThe report offers an exhaustive geographical analysis of the global Induced Pluripotent Stem Cells (iPSCs) market, covering important regions, viz, North America, Europe, China, Japan and Brazil. It also covers key countries (regions), viz, U.S., Canada, Germany, France, U.K., Italy, Russia, China, Japan, South Korea, India, Australia, Taiwan, Indonesia, Thailand, Malaysia, Philippines, Vietnam, Mexico, Brazil, Turkey, Saudi Arabia, UAE, etc.The report includes country-wise and region-wise market size for the period 2015-2026. It also includes market size and forecast by each application segment in terms of revenue for the period 2015-2026.Competition AnalysisIn the competitive analysis section of the report, leading as well as prominent players of the global Induced Pluripotent Stem Cells (iPSCs) market are broadly studied on the basis of key factors. The report offers comprehensive analysis and accurate statistics on revenue by the player for the period 2015-2020. It also offers detailed analysis supported by reliable statistics on price and revenue (global level) by player for the period 2015-2020.On the whole, the report proves to be an effective tool that players can use to gain a competitive edge over their competitors and ensure lasting success in the global Induced Pluripotent Stem Cells (iPSCs) market. All of the findings, data, and information provided in the report are validated and revalidated with the help of trustworthy sources. The analysts who have authored the report took a unique and industry-best research and analysis approach for an in-depth study of the global Induced Pluripotent Stem Cells (iPSCs) market.The following players are covered in this report:Fujifilm Holding Corporation (CDI)NcardiaSumitomo Dainippon PharmaAstellas Pharma IncFate Therapeutics, IncPluricell BiotechCell Inspire BiotechnologyReproCELLInduced Pluripotent Stem Cells (iPSCs) Breakdown Data by TypeHuman iPSCsMouse iPSCsHuman iPSCs had a market share of 89.65% in 2019, followed by Mouse iPSCs.Induced Pluripotent Stem Cells (iPSCs) Breakdown Data by ApplicationAcademic ResearchDrug Development and DiscoveryToxicity ScreeningRegenerative MedicineOthersAcademic Research is the largest segment of Induced Pluripotent Stem Cells (iPSCs) application,with a share of 32% in 2019.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2647159&source=atm

The Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market report offers a plethora of insights which include:

The Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market report answers important questions which include:

The Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) market report considers the following years to predict the market growth:

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2647159&licType=S&source=atm

Why Choose Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) Market Report?

Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) Market Reportfollows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.

Originally posted here:
COVID-19: Responding to the business impacts of Covid-19 Impact on Induced Pluripotent Stem Cells (iPSCs) Market-Segment Market Trends, Analysis and...

Regenerative Therapies: Helping Horses Self-Heal The Horse – TheHorse.com

The art (and existing science) of regenerative medicine in equine practice, and whats to come

Regenerative therapy is an umbrellaterm encompassing any method that encourages the body to self- heal. Because it is drawing onits own properties, healing tissue more closely resembles native tissue than weak, disorganized scar tissue typically seen post-injury.

The goal is to allow restoration of normal function and structure of the injured tissue to allow horses to perform at their previous level, whatever that might be, with a reduced risk of reinjury, says Kyla Ortved, DVM, PhD, Dipl. ACVS, ACVSMR, assistant professor of large animal surgery at the University of Pennsylvanias New Bolton Center, in Kennett Square.

She says the three main components of regenerative medicine that help tissues self-heal include:

A specific therapy may incorporate some or all three of these components, says Ortved.

Due to the regenerative therapy industrys popularity and continued growth, many articles weve published review recent laboratory studies about stem cell production and data on efficacy andsafety (you can find them at TheHorse.com/topics/regenerative-medicine). Here, well review the basics of three regenerative modalities commonly used in equine medicine and when veterinarians and horse owners might consider each.

With this approach the practitioner collects blood from a horse and processes it using a commercial system that concentrates the platelets. When he or she injects that concentrated platelet product back into the horse, granules within the platelets release an array of growth factors that aim to facilitate and modulate the healing process. Specifically, granule-derived growth factors encourage target tissue cells at the injury site to migrate and proliferate, improve extracellular matrix synthesis, and stimulate blood vessel development.

Recently, leukocyte-reduced PRP hasbecome many equine veterinarians PRP product of choice. These preparations contain fewer white blood cells (leukocytes) and, reportedly, inflammatory mediators than normal PRP products do. These mediators break tissues down, effectively counteracting the anabolic (tissue-building) effects of the platelets and their granules.

Veterinarians can easily prepare ACS by collecting a blood sample from the patient, then incubating it with special commercially available glass beads to stimulate interleukin-1 receptor antago- nist protein (IRAP) production. Theythen inject the resultant IRAP-rich serumsample back into the patient at the target location or injury site. This protein blocks the action of interleukin-1, a powerful and damaging pro-inflammatory mediator. Additionally, glass bead incubation stimulates the production of anti-inflammatory mediators and growth factors similar to those found in PRP.

Ortved says its important to remember that all biologics, including PRP and IRAP, contain various concentrations of growth factors and bioactive protein.

Remember, they are made from your horses blood and, therefore, containall of the components in blood, just in varying concentrations, she says.

Regenerative therapies that contain highconcentrations of IRAP include IRAP II, autologous protein solution (APS), and bone marrow aspirate concentrate (BMAC).

In certain tissues, such as adipose (fat) and bone marrow, we can find specific cells that have the ability to self-renew and grow more than 200 types of body cells. Veterinarians can isolate these cells, called stem cells or progenitor cells, and either:

Perhaps more important than theirability to differentiate into other celltypes, stem cells have powerful anti-inflammatoryproperties and play acentral role in coordinating healing in alltypes of tissues through cell-to-cell signaling,Ortved says.

Which of these three modality typeswill provide the most benefit to yourhorse depends on a variety of factors thatyou and your veterinarian will consider.

See more here:
Regenerative Therapies: Helping Horses Self-Heal The Horse - TheHorse.com

High Rate of Responses Seen With Ide-cel in Heavily Pretreated Myeloma – Targeted Oncology

Treatment with idecabtagene vicleucel (ide-cel; bb2121) led to responses in 73% of heavily pretreated patients with relapsed or refractory multiple myeloma, and complete responses (CRs) in 33%, according to topline findings from the pivotal phase 2 KarMMA trial.

Data shared during the 2020 ASCO Virtual Scientific Program demonstrated a median duration of response (DOR) of 10.7 months, and amedian progression-free survival (PFS) of 8.8 months (95% CI, 5.6-11.6).

Ide-cel demonstrated frequent, deep, and durable responses in heavily pretreated, highly relapsed/refractory patients with myeloma, said Nikhil C. Munshi, MD, director of Basic and Correlative Science, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, and professor of Medicine, Harvard Medical School. Overall, ide-cel provides an attractive option for the treatment of patients with triple-class exposed relapsed/refractory myeloma.

In March 2020, Bristol Myers Squibb andbluebird bio, Inc., the codevelopers of ide-cel, submitted a Biologics License Application (BLA) to the FDA for the use of the BCMA-targeting chimeric antigen receptor (CAR) T-cell therapy as a treatment for adult patients with multiple myeloma who have received at least 3 prior therapies, including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 antibody.

However, earlier this month, the FDA issued aRefusal to File letter tothe companies regarding the BLA. In its initial review, the agency concluded that additional information was needed for the Chemistry, Manufacturing and Control module of the BLA. The FDA did not ask for any further clinical or nonclinical data according to the companies, which plan to resubmit the application by the end of July of this year.

The phase 2 KarMMA trial (NCT03361748) included 128 patients with relapsed/refractory multiple myeloma who received at least 3 prior therapies, including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 antibody.

The median age was 61 months (range 33-78), 35% of patients had high-risk cytogenetics, 51% had high tumor burden, 39% had extramedullary disease, and 85% had 50% tumor BCMA expression. ECOG performance status was 0 (45%), 1 (53%), or 2 (2%). R-ISS disease stage was I (11%), 2 (70%), or III (16%). Patients had received a median of 6 (range, 3-16) prior antimyeloma regimens.

Ninety-four percent of patients had received 1 prior autologous stem cell transplant, and 34% had received more than 1. Eighty-eight percent of patients received bridging therapies during CAR T-cell manufacturing; however, only 4% of patients responded to the treatment. Regarding refractory status, 94% of patients were refractory to anti-CD38 antibodies and 84% were triple refractory.

Patients were treated at CAR+ T cell doses of 150 x 106 (n = 4), 300 x 106 (n = 70), or 450 x 106 (n = 54). The median follow-up was 18 months, 15.8 months, and 12.4 months, respectively. Across all patients, the median follow-up was 13.3 months. The primary end point was objective response rate (ORR), with secondary end points including CR, DOR, PFS, overall survival (OS), and quality of life.

Across all patients, the 73% ORR (95% CI, 65.8%-81.1%; P <.0001) included a 33% CR rate (95% CI, 24.7-40.9; P <.0001), a 20% very good partial response rate, and a 21% partial response rate. The overall CR rate comprised 26% of patients who achieved a CR/stringent CR (sCR) and were minimal residual disease (MRD)-negative, and 7% of patients who achieved a CR/sCR but who did not have MRD data. The median time to first response was 1 month (range, 0.5-8.8) and the median time to CR was 2.8 months (range, 1-11.8).

Durable responses were observed across all doses, said Munshi. At the dose of 450 x 106 CAR+ T cells, the ORR was 82% and the CR/sCR rate was 39%.

Clinically meaningful efficacy in terms of ORR was observed across subgroups, irrespective of age, risk categorization, tumor burden, BCMA expression level, extramedullary disease, triple-refractory status, penta-refractory status, and bridging therapy.

PFS increased as the target dose increased. At the 450 x 106 CAR+ T-cell dose, the median PFS was 12.1 months (95% CI, 8.8-12.3). The median PFS also increased by depth of response with a median of 20.2 months (95% CI, 12.3not evaluable) among patients who achieved a CR/sCR.

Munshi said the survival data are immature. At the time of the analysis, the median OS was 19.4 months (95% CI, 18.2not evaluable) and the 1-year OS rate was 78%.

Cytokine release syndrome (CRS) frequency increased with dose but was mostly low-grade, said Munshi. Overall, 84% of patients had 1 CRS event, with the majority (78%) being grade 1/2. There were 5 cases of grade 3 CRS, 1 case of grade 4, and 1 case of grade 5. The median time to onset of CRS was 1 day (range, 1-12), and the median duration of CRS was 5 days (range, 1-63). Fifty-two percent of patients received tocilizumab (Actemra) for CRS management, and 15% of patients received corticosteroids.

Neurotoxicity was mostly low grade and was similar across target doses, said Munshi. Overall, 18% of patients had 1 neurotoxicity event. There were 19 cases of grade 1/2 neurotoxicity and 4 cases of grade 3. There were no grade 4 or 5 incidents. The median time to onset of neurotoxicity was 2 days (range, 1-10), and the median duration was 3 days (range, 1-26). Two percent of patients received tocilizumab for neurotoxicity, and 8% of patients received corticosteroids.

The other significant adverse event, according to Munshi, was cytopenia91% of patients had any grade neutropenia (89% grade 3), and 63% (52% grade 3) had any grade thrombocytopenia. The median time to recovery of grade 3 neutropenia and thrombocytopenia was 2 months and 3 months, respectively, said Munshi.

There were 5 deaths within 8 weeks of ide-cel infusion2 following myeloma progression and 3 from AEs (CRS, aspergillus pneumonia, and GI hemorrhage). There was also 1 other AE-related death (CMV pneumonia) that occurred within 6 months, in the absence of myeloma progression.

Reference

Munshi NC, Anderson Jr LD, Jagannath S, et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results. Presented at: 2020 ASCO Virtual Scientific Program; May 29-31, 2020. Abstract 8503.

Continue reading here:
High Rate of Responses Seen With Ide-cel in Heavily Pretreated Myeloma - Targeted Oncology

ViaCyte Announces $27 Million Financing to Advance Next Generation Cell Therapies for Diabetes – PRNewswire

SAN DIEGO, May 26, 2020 /PRNewswire/ --ViaCyte, Inc., a privately held regenerative medicine company, today announced the close of an approximately $27 million private financing, part of the Series D preferred stock financing entered into in late 2018. Investors included, Bain Capital Life Sciences, TPG Capital, RA Capital Management, Sanderling Ventures, and several individual supporters of the Company. Proceeds from the financing will be used to further advance the Company's multi-product candidate approach to develop medicines that have the potential to transform the way insulin-requiring diabetes is managed, potentially providing a functional cure for patients with type 1 diabetes.

Coinciding with the financing, the Company also appointed Ian F. Smithas Executive Chairperson. Mr. Smith was appointed to the Company's Board of Directors in July 2019 and succeeds Fred Middleton, who remains on the board.

Commenting on the financing, Paul Laikind, Ph.D., Chief Executive Officer and President of ViaCyte, said, "During these difficult times we are grateful for the continued support of our investors as well as our clinical trial participants, whose safety and health remains our focus and commitment. We are steadfast in our mission to deliver potentially life sustaining therapies for patients with insulin-requiring diabetes and to continue the significant progress we have made in the past year. ViaCyte is the first company to demonstrate production of C-peptide, a biomarker for insulin, in patients with type 1 diabetes receiving a stem cell-derived islet replacement. Moving forward, we are optimizing the effectiveness of both PEC-Direct and PEC-Encap, the latter of which incorporates novel device material technology created in collaboration with W.L. Gore & Associates. We are also making important progress on our PEC-QT program with our partner, CRISPR Therapeutics, and are now moving into pre-IND activities. This program is designed to eliminate the need for immuno-suppression and could have a transformative impact on a broader population of insulin-dependent patients."

Dr. Laikind continued, "In conjunction with the closure of the financing, we are also pleased to announce the appointment of Ian F. Smith as our Executive Chairperson, succeeding Fred Middleton. Since joining the board last July, Ian and I have worked closely to accelerate ViaCyte's growth and prepare for the future. We are extremely grateful to Fred for his many years of service as Chairperson of ViaCyte's Board of Directors. Throughout his time leading the Board, Fred provided expert guidance as ViaCyte has consistently broken new ground in the field of regenerative medicine and cell replacement therapies."

Mr. Middleton said, "I am proud to have chaired the Board as ViaCyte developed into a leading company in the regenerative medicine field.I am confident that Ian's unique expertise and executive leadership, specifically with innovative growth-oriented companies, and specifically in corporate strategy and operations, as well as capital markets will help ViaCyte progress its important work and firmly establish itself as a leader in the cell therapy sector."

About ViaCyte's Pipeline

The PEC-Direct product candidate, currently being evaluated in the clinic, delivers ViaCyte's PEC-01 cells (pancreatic islet progenitor cells) in a non-immunoprotective device and is being developed for type 1 diabetes patients who have hypoglycemia unawareness, extreme glycemic lability, and/or recurrent severe hypoglycemic episodes. The PEC-Encap (also known as VC-01) product candidate, also undergoing clinical evaluation, delivers the same pancreatic islet progenitor cells but in an immunoprotective device. PEC-Encap is being developed for all patients with type 1 diabetes. In collaboration with CRISPR Therapeutics, ViaCyte is developing immune-evasive stem cell lines from its proprietary CyT49 cell line. These immune-evasive stem cell lines, which are being used in the PEC-QT program, have the potential to further broaden the availability of cell therapy for all patients with insulin-requiring diabetes, type 1 and type 2. In addition, a pluripotent, immune evasive cell line has the potential to be used to produce any cell in the body, thus enabling many other potential indications.

About ViaCyte

ViaCyte is a privately held regenerative medicine company developing novel cell replacement therapies as potential long-term diabetes treatments to achieve glucose control targets and reduce the risk of hypoglycemia and diabetes-related complications. ViaCyte's product candidates are based on directed differentiation of pluripotent stem cells into PEC-01 pancreatic islet progenitor cells, which are then implanted in durable and retrievable cell delivery devices. Over a decade ago, ViaCyte scientists were the first to report on the production of pancreatic cells from a stem cell starting point and the first to demonstrate in an animal model of diabetes that, once implanted and matured, these cells secrete insulin and other pancreatic hormones in response to blood glucose levels and can be curative. More recently, ViaCyte demonstrated that when effectively engrafted, PEC-01 cells can mature into glucose-responsive insulin producing cells in patients with type 1 diabetes. To accelerate and expand its efforts, ViaCyte has established collaborative partnerships with leading companies including CRISPR Therapeutics and W.L. Gore & Associates. ViaCyte is headquartered in San Diego, California. The Company also has a robust intellectual property portfolio, which includes hundreds of issued patents and pending applications worldwide. ViaCyte is funded in part by the California Institute for Regenerative Medicine (CIRM) and JDRF. For more information on ViaCyte, please visit http://www.viacyte.comand connect with ViaCyte on Twitter, Facebook, and LinkedIn.

SOURCE ViaCyte, Inc.

Home

See the original post here:
ViaCyte Announces $27 Million Financing to Advance Next Generation Cell Therapies for Diabetes - PRNewswire

Study reveals factors influencing outcomes in kidney cancer treated with immunotherapy – Science Codex

BOSTON - By analyzing tumors from patients treated with immunotherapy for advanced kidney cancer in three clinical trials, Dana-Farber Cancer Institute scientists have identified several features of the tumors that influence their response to immune checkpoint inhibitor drugs.

The research was presented during the Clinical Science Symposium at the American Society of Clinical Oncology (ASCO) Annual Meeting and published simultaneously in Nature Medicine. The researchers say the study provides important clues about kidney cancer genetics and its interaction with the immune system that may prove to be vital in our ability to predict which patients are likely to benefit from immunotherapy drugs, which have been approved for first- and second-line treatment in the disease, but which don't work in all patients. The study showed that features that are typically linked to immunotherapy response or resistance in other types of cancer don't work the same way in advanced clear cell renal cell cancer (ccRCC).

"Kidney cancer breaks all those rules," said David Braun, MD, PhD, a Dana-Farber kidney cancer specialist and first author of the report. Co-senior authors are Toni Choueiri, MD, Catherine J. Wu, MD, Sachet A. Shukla, PhD, and Sabina Signoretti, MD all of Dana-Farber. Other authors are from the Broad Institute of MIT and Harvard, Bristol Myers Squibb, and Brigham and Women's Hospital.

Clear cell renal cell cancer is the most common form of kidney cancer. There are about 74,000 new cases of kidney cancer in the United States each year, and about 15,000 deaths. Checkpoint inhibitor immunotherapy drugs such as pembrolizumab (Keytruda) and nivolumab (Opdivo) used in advanced kidney cancer work by blocking PD-1, a protein on immune T cells that normally keep these cells from attacking other cells in the body. By blocking PD-1, these drugs boost the immune response against kidney cancer cells.

PD-1 checkpoint inhibitors have brought a powerful new weapon to bear on advanced kidney cancer, which generally doesn't respond to standard chemotherapy. In cancers such as melanoma and lung cancer, checkpoint inhibitors - drugs like pembrolizumab (Keytruda) and nivolumab (Opdivo) - tend to be more effective against tumors with a "high mutational burden," that is, their DNA is riddled with many mutations. Advanced clear cell renal cell cancer, by contrast, has a moderate number of mutations yet is relatively responsive to checkpoint inhibitors - and scientists don't know why that is. Another puzzling difference is that in melanoma and some other cancers, tumors that are infiltrated with large numbers of immune CD8 T cells, creating what's termed an inflamed or "hot" environment within the tumor, respond better to PD-1 blockade. But the reverse is true in advanced kidney cancer - high infiltration by CD8 T cells is associated with a worse outcome.

In this study, the scientists analyzed 592 tumors collected from patients with advanced kidney cancer who were enrolled in clinical trials of PD-1 blocking drugs. They used whole-exome and RNA sequencing and other methods to uncover the genomic changes and other factors that were associated with how the patients' tumors responded to the drugs - specifically, the patients' progression-free survival and overall survival.

The study was aimed at determining what features of advanced kidney cancer cells were associated with their response or resistance to PD-1 inhibitors. In analyzing the tumors from advanced ccRCC patients treated with PD-1 inhibitors, the investigators looked for biomarkers - genetic changes, mutations, copy number alterations, and so forth - in the genomes of the kidney cancer cells that might be correlated with patient outcomes - such as progression-free survival and overall survival.

Braun said that some of the most interesting findings were characteristics of the kidney tumors that - unlike with other types of cancer - did not influence responsiveness to PD-1 inhibitor drugs. For example, tumors containing a large number of neoantigens - proteins made by cancer-related DNA mutations that may make the tumors more responsive to immunotherapy, but this proved not to be true of the kidney tumors. Also, even though the kidney tumors were heavily infiltrated by CD8 immune T cells - which causes other kinds of cancer to provoke a strong immune attack against the tumors - this actually led to no difference in outcome for these kidney cancer patients. "To our surprise, the immunologically 'hot' tumors did not respond any better than the 'cold' tumors," said Braun.

Another factor that affects responsiveness in some types of cancer - the specific HLA molecules inherited by individuals that present antigens to the immune system - didn't affect the immune response to advanced kidney tumors. "That surprised us," said Dr. Wu, chief of Division of Stem Cell Transplantation and Cellular Therapies. "We reasonably hypothesized that the potential of the patient's immune system to present and react to a greater diversity of antigens may be associated with better outcomes, but clearly kidney cancer does not fit the standard mold," noted Wu.

"However, we did uncover some factors that may explain the unexpected observations," said Dr. Shukla who leads the computational group at the Dana-Farber Translational Immunogenomics Laboratory. The study uncovered that advanced kidney tumors heavily infiltrated with CD8 T cells did not respond well to immune checkpoint blockers even though they were immunologically "hot" tumors. The scientists, with their comprehensive analysis of changes in the kidney tumors' genomes, found that the tumors were depleted of mutated PBRM1 genes - which are correlated with improved survival with PD-1 blockade therapy - and also had an abundance of deletions of a chromosomal segment known as 9p21.3, which is associated with worse outcomes with PD-1 blockade. "We believe that these two factors may explain why CD8 T cell infiltration of the tumors did not make them responsive to checkpoint blocker therapy," explained Shukla, "while other types of cancer that exhibited CD8 T cell infiltration but did not have those chromosomal changes did respond."

"Our work highlights the importance of integrating genomic data with immunopathologic data generated through painstaking review by expert pathologists," said Dr. Signoretti, professor of pathology at Harvard Medical School. "Our findings reveal that interactions between immune T cell infiltration and alterations in the tumor DNA (such as inactivation of the PBRM1 gene and the abundance of 9p21.3 deletions) can be important influences on tumors' response to PD-1 blockade - perhaps not only in kidney cancer but in other types of tumors as well."

"The current study provides critical insights into immunogenomic mechanisms contributing to response and resistance to immunotherapy in clear cell renal cell cancer," said Dr. Choueiri, director of the Lank Center for Genitourinary Oncology and the Jerome and Nancy Kohlberg Professor of Medicine at Harvard Medical School. "The detailed clinical, genomic, transcriptomic, and immunopathology data produced by this study will serve as a valuable resource for the cancer immunology community. This work, therefore, will be important for ongoing research in precision medicine and immuno-oncology, helping to identify which patients are likely to respond to current therapies, and providing fundamental information to aid in development of rational combination therapies to overcome resistance in the future."

"One notable thing," said Choueiri, "is the collaboration between multiple disciplines and stakeholders: Immunology, pathology, genetics, computational and clinical expertise all converged on one tumor, while involving academic and industry stakeholders."

See the rest here:
Study reveals factors influencing outcomes in kidney cancer treated with immunotherapy - Science Codex