Category Archives: Stem Cell Medicine

Comprehensive Study on Regenerative Medicine Market 2020 | Trends, Drivers, Strategies, Applications and Competitive Landscape Forecast to 2024 – Cole…

Becton Dickinson and Company

Scope of the Report:

As per the , regenerative medicines are used to repair, replace, and regenerate the tissues and organs affected by injury, disease, or the natural aging process. These medicines restore the functionality of cells and tissues and are used in several degenerative disorders, such as dermatology, neurodegenerative diseases, cardiovascular, and orthopedic applications.

The Report Covers:

For More Information or Query or Customization Before Buying, Visit at https://www.industryresearch.co/enquiry/pre-order-enquiry/14244620

Key Market Trends:

Dermatology is the Segment by Application that is Expected to be the Largest During the Forecast Period

Dermatology is estimated to have the largest share in revenue generation, and this high contribution is attributive to the presence of easy grafting techniques for dermatological wounds and diseases. Skin, being an organ with great cell replication characteristics, provides various types of stem cells from its different layers. Therefore, there are a broad range of products present, from patches to cure small injuries to matrix and grafts for chronic wounds and burns. Thus, the segment is expected to continue to dominate the market through to the forecast period.

The increasing number of accidents and bone defects is also expected to drive the regenerative medicine market. There are also several research studies that are being conducted on tissue engineering for the development of bone graft substitutes, with the help of regenerative medicine. So, with the new advances in bone graft, the market is expected to grow over the forecast period.

North America Holds the Largest Share and is Expected to Follow the Same Trend Over the Forecast Period

North America is estimated to have the largest share, in terms of revenue, owing to the presence of major players and rapid advances in technology, along with high investments in stem cell and oncology research. There is also an increasing prevalence of diseases, such as cancer and diabetes, which can now be cured by various stem cell therapies. Additionally, the awareness regarding the available stem cell procedures and therapies among people is rising, which in turn, is increasing the demand for the overall market.

Key Questions Answered in This Report:

Purchase this Report (Price 4250 USD for single user license) https://www.industryresearch.co/purchase/14244620

Detailed TOC of Regenerative Medicine Market 2019-2024:

1 INTRODUCTION 1.1 Study Deliverables 1.2 Study Assumptions 1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS 4.1 Market Overview 4.2 Market Drivers 4.2.1 Increasing Adoption of Stem Cell Technology 4.2.2 Technological Advancements in Regenerative Medicine 4.3 Market Restraints 4.3.1 Regulatory and Ethical Issues 4.3.2 High Cost of Treatments 4.4 Porters Five Forces Analysis 4.4.1 Threat of New Entrants 4.4.2 Bargaining Power of Buyers/Consumers 4.4.3 Bargaining Power of Suppliers 4.4.4 Threat of Substitute Products 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION 5.1 By Type of Technology 5.1.1 Stem Cell Therapy 5.1.2 Biomaterial 5.1.3 Tissue Engineering 5.1.4 Other Types of Technologies 5.2 By Application 5.2.1 Bone Graft Substitutes 5.2.2 Osteoarticular Diseases 5.2.3 Dermatology 5.2.4 Cardiovascular 5.2.5 Central Nervous System 5.2.6 Other Applications 5.3 Geography 5.3.1 North America 5.3.1.1 United States 5.3.1.2 Canada 5.3.1.3 Mexico 5.3.2 Europe 5.3.2.1 Germany 5.3.2.2 United Kingdom 5.3.2.3 France 5.3.2.4 Italy 5.3.2.5 Spain 5.3.2.6 Rest of Europe 5.3.3 Asia-Pacific 5.3.3.1 China 5.3.3.2 Japan 5.3.3.3 India 5.3.3.4 Australia 5.3.3.5 South Korea 5.3.3.6 Rest of Asia-Pacific 5.3.4 Middle East & Africa 5.3.4.1 GCC 5.3.4.2 South Africa 5.3.4.3 Rest of Middle East & Africa 5.3.5 South America 5.3.5.1 Brazil 5.3.5.2 Argentina 5.3.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE 6.1 Company Profiles 6.1.1 Allergan 6.1.2 Osiris Therapeutics 6.1.3 Integra Lifesciences 6.1.4 Cook Biotech Incorporated 6.1.5 Organogenesis Inc. 6.1.6 Baxter 6.1.7 Medtronic 6.1.8 Thermo Fisher Scientific 6.1.9 Sigma-Aldrich Co. 6.1.10 Becton Dickinson and Company

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

Contact Us:

Name: Ajay More

Phone: US +14242530807/ UK +44 20 3239 8187

Email: [emailprotected]

Our Other Reports:

Cable Conduits Market Size by Top Key Players 2020 Global Growth Rate by Share, Industry Segment, Future Prospect, Key Finding and Market Dynamics Forecast to 2026

Insulated Concrete Form Market Size Report Forecast 2020 2024 Business Revenue, Opportunities, Future Growth, Trends Plans, Top Key Players, Global Analysis by Share

Microwavable Food Market Growth Size, Share 2020 | Industry Analysis with COVID-19 Impact, Company Overview, Key Countries with Future Prospect to 2026

Aircraft Wire and Cable Market Size, Trends 2020 Global Industry by Manufacturers Growth Rate | COVID-19 Impact on Future Scope, Demand Status, Business Strategy Forecast to 2026

Aspheric Lens Market Size, Trends 2020 Global Industry by Manufacturers Growth Rate | COVID-19 Impact on Future Scope, Demand Status, Business Strategy Forecast to 2026

Read more:
Comprehensive Study on Regenerative Medicine Market 2020 | Trends, Drivers, Strategies, Applications and Competitive Landscape Forecast to 2024 - Cole...

Biobanks Market Research Report 2020-2024 | Analysis by Key Regions, Manufacturing Technology and Development Forecast Industry Research.co – 3rd…

VWR International LLC

Biobanks Market Report Highlights:

Scope of the Report:

As per the , biobank is a biorepository, where various biomaterials (usually human specimens) are stored for research purpose. This study targets gaining a detailed overview of the market dynamics of the contemporary biobank market during the forecast period. It focuses on the need to develop strategic insights into the global and country-level markets, taking into consideration the demand for services and equipment in biobanks. The growth of this market is largely fueled by the increasing applications, increasing investments in R&D, technological advancements, and growing demand in the developing countries (China and India) of Asia-Pacific.

For More Information or Query or Customization Before Buying, Visit at https://www.industryresearch.co/enquiry/pre-order-enquiry/13999520

Key Market Trends:

Cryogenic Storage Segment by Equipment is Expected to Account for the Largest Market Share During the Forecast Period

In biobanks, the cryogenic storage systems are basically used to store different life sciences materials at a very low temperature. The low temperature storage increases the longevity of the cells, while at the same time reducing the intensity of freezing damage. Various cryogenic storage devices are available that have been designed to allow storage of both liquid and vapor phase materials. The temperature in the cryogenic storage system is required to be maintained continuously. Currently, all demand is for automated cryogenic storage devices. This segment is further divided into refrigerators, ice machines, and freezers. With advanced storage and automated devices propelling the growth of the market, steady growth in the North American and European markets is expected.

North America Accounted for the Largest Share in the Global Market

North America is holds a major share in the global biobanks market, and it is expected to show a similar trend over the forecast period, without significant fluctuations. The United States has the largest expenditure for R&D and better healthcare infrastructure in the world. Different pharmaceutical/ biotech companies, academia, and research institutes are utilizing biobanks for the storage of DNA, RNA, tissue, serum, blood, plasma, cells, etc. According to the Hastings Center, a non-profit organization, 300 million biospecimens have been stored in the United States in various public and private biobanks. The market is in demand for the most advanced automated systems, and there is also a high adoption rate for new technology.

The Report Covers:

Purchase this Report (Price 4250 USD for single user license) https://www.industryresearch.co/purchase/13999520

Detailed TOC of Biobanks Market Report 2019-2024:

1 INTRODUCTION 1.1 Study Deliverables 1.2 Study Assumptions 1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS 4.1 Market Overview 4.2 Market Drivers 4.2.1 Innovations in Regenerative Medicine 4.2.2 Growing Incidences of Chronic Diseases 4.2.3 Advances in Drug Discovery and Development 4.2.4 R&D Funding and Investments by Government and Non-governmental Organizations 4.3 Market Restraints 4.3.1 Regulatory Issues 4.3.2 Cost Constraints 4.4 Porters Five Forces Analysis 4.4.1 Threat of New Entrants 4.4.2 Bargaining Power of Buyers/Consumers 4.4.3 Bargaining Power of Suppliers 4.4.4 Threat of Substitute Products 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION 5.1 Equipment 5.1.1 Cryogenic Storage Systems 5.1.1.1 Refrigerators 5.1.1.2 Ice Machines 5.1.1.3 Freezers 5.1.2 Alarm Monitoring Systems 5.1.3 Other Equipment 5.2 Media 5.2.1 Optimized Media 5.2.2 Non-optimized Media 5.3 Services 5.3.1 Human Tissue Biobanking 5.3.2 Stem Cell Biobanking 5.3.3 Cord Banking 5.3.4 DNA/RNA Biobanking 5.3.5 Other Services 5.4 Application 5.4.1 Regenerative Medicine 5.4.2 Drug Discovery 5.4.3 Disease Research 5.5 Geography 5.5.1 North America 5.5.1.1 United States 5.5.1.2 Canada 5.5.1.3 Mexico 5.5.2 Europe 5.5.2.1 Germany 5.5.2.2 United Kingdom 5.5.2.3 France 5.5.2.4 Italy 5.5.2.5 Spain 5.5.2.6 Rest of Europe 5.5.3 Asia-Pacific 5.5.3.1 China 5.5.3.2 Japan 5.5.3.3 India 5.5.3.4 Australia 5.5.3.5 South Korea 5.5.3.6 Rest of Asia-Pacific 5.5.4 Middle East & Africa 5.5.4.1 GCC 5.5.4.2 South Africa 5.5.4.3 Rest of Middle East & Africa 5.5.5 South America 5.5.5.1 Brazil 5.5.5.2 Argentina 5.5.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE 6.1 Company Profiles 6.1.1 Atlanta Biologicals Inc. 6.1.2 Becton, Dickinson and Company 6.1.3 BioLifeSolutions Inc. 6.1.4 Chart Industries Inc. 6.1.5 Hamilton Company 6.1.6 Qiagen NV 6.1.7 Sigma-Aldrich Inc. (Merck KGaA) 6.1.8 STEMCELL Technologies Inc. 6.1.9 Thermo Fisher Scientific Inc. 6.1.10 VWR International LLC

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

Contact Us:

Name: Ajay More

Phone: US +14242530807/ UK +44 20 3239 8187

Email: [emailprotected]

Our Other Reports:

Condiments Sauces Market Size by Top Key Players 2020 Global Growth Rate by Share, Industry Segment, Future Prospect, Key Finding and Market Dynamics Forecast to 2026

Sachet Packaging Market Share and Size Analysis 2020 by Regional Demand Status, Future Growth Rate, Manufacturers, Trends by Market Dynamics and Development Scope till 2026

Animal Feed Phytases Market Share and Size Analysis 2020 by Regional Demand Status, Future Growth Rate, Manufacturers, Trends by Market Dynamics and Development Scope till 2026

Nanowires Market Size and Share by Top Players 2020 | COVID-19 Impact on Global Industry, Business Opportunities, Growth Trends and Demand till 2026

Sexually Transmitted Disease (STD) Testing Market 2020 Trends, Manufacturing Size, Growth Analysis by Share, Top Regions, Driving Factors of Manufacturers, Types and Applications Forecast to 2023

More here:
Biobanks Market Research Report 2020-2024 | Analysis by Key Regions, Manufacturing Technology and Development Forecast Industry Research.co - 3rd...

Capitol digest: Pollution was high for the Fourth of July – Waterloo Cedar Falls Courier

Someone who bought a Powerball ticket in Clinton won a $500,000 prize in Wednesdays drawing the second prize of that size to hit in Iowa this month.

The latest winning ticket for $500,000 was purchased at the Kwik Star store at 911 S. 14th St. in Clinton. The ticket came within one number of having at least a share of Wednesdays $87.3 million jackpot.

On July 8, Tu Kha Maung, 29, of Waterloo, won a $500,000 prize by purchasing the same type of play in the Powerball drawing.

Wednesdays winning numbers were: 27-47-61-62-69 and Powerball 4. No one matched all six numbers to win the jackpot, so the big prize will be an estimated $97 million annuity ($78.3 million cash option) for Saturdays drawing.

AG SUES OMAHA CENTER: Iowa Attorney General Tom Miller said Thursday he is suing a Nebraska-based stem cell therapy center for allegedly targeting older Iowans with claims to reverse aging and treat, cure or prevent a variety of medical conditions, including chronic obstructive pulmonary disease, neuropathy and Alzheimers disease.

The lawsuit filed Thursday in Polk County District Court alleges Regenerative Medicine and Anti-Aging Institutes of Omaha made deceptive and misleading claims in advertisements and more than 90 live events that were held throughout Iowa from April 2018 to September 2019.

Read more:
Capitol digest: Pollution was high for the Fourth of July - Waterloo Cedar Falls Courier

US Stem Cell Therapy Market 2020 Research on Import-Export Details, Business Standards and Forecast to 2025 – Owned

Stem Cell Therapy Market Research Report Cover Covid-19 Outbreak:

Brand Essence Market Research has developed a concise study on the Stem Cell Therapy market to depict valuable insights related to significant market trends driving the industry. The report features analysis based on key opportunities and challenges confronted by market leaders while highlighting their competitive setting and corporate strategies for the estimated timeline.

Download Premium Sample of the Report: https://brandessenceresearch.biz/Request/Sample?ResearchPostId=72717&RequestType=Sample

TheMajorPlayersCovered in this Report:Gilead,Novartis,Organogenesis,Vericel & More.

Product Type: Adult Stem Cells,Human Embryonic Stem Cells (hESC),Induced Pluripotent Stem Cells,Very Small Embryonic Like Stem Cells

Application: Regenerative Medicine,Drug Discovery and Development

Results of the recent scientific undertakings towards the development of new Stem Cell Therapy products have been studied. Nevertheless, the factors affecting the leading industry players to adopt synthetic sourcing of the market products have also been studied in this statistical surveying report. The conclusions provided in this report are of great value for the leading industry players. Every organization partaking in the global production of the Stem Cell Therapy market products have been mentioned in this report, in order to study the insights on cost-effective manufacturing methods, competitive landscape, and new avenues for applications.

Global Stem Cell TherapyMarket: Regional Segmentation For further clarification, analysts have also segmented the market on the basis of geography. This type of segmentation allows the readers to understand the volatile political scenario in varying geographies and their impact on the global Stem Cell Therapymarket. On the basis of geography, the global market for Stem Cell Therapyhas been segmented into:

North America(United States, Canada, and Mexico) Europe(Germany, France, UK, Russia, and Italy) Asia-Pacific(China, Japan, Korea, India, and Southeast Asia) South America(Brazil, Argentina, Colombia, etc.) Middle East and Africa(Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)

Request Cutomization @https://brandessenceresearch.biz/Request/Sample?ResearchPostId=72717&RequestType=Methodology

Report Methodology:

The information enclosed in this report is based upon both primary and secondary research methodologies.

Primary research methodology includes the interaction with service providers, suppliers, and industry professionals. Secondary research methodology includes a meticulous search of pertinent publications like company annual reports, financial reports, and exclusive databases.

Table of Content:

Market Overview: The report begins with this section where product overview and highlights of product and application segments of the Global Stem Cell Therapy Market are provided. Highlights of the segmentation study include price, revenue, sales, sales growth rate, and market share by product.

Competition by Company: Here, the competition in the Worldwide Global Stem Cell Therapy Market is analyzed, By price, revenue, sales, and market share by company, market rate, competitive situations Landscape, and latest trends, merger, expansion, acquisition, and market shares of top companies.

Company Profiles and Sales Data: As the name suggests, this section gives the sales data of key players of the Global Stem Cell Therapy Market as well as some useful information on their business. It talks about the gross margin, price, revenue, products, and their specifications, type, applications, competitors, manufacturing base, and the main business of key players operating in the Global Stem Cell Therapy Market.

Market Status and Outlook by Region: In this section, the report discusses about gross margin, sales, revenue, production, market share, CAGR, and market size by region. Here, the Global Stem Cell Therapy Market is deeply analyzed on the basis of regions and countries such as North America, Europe, China, India, Japan, and the MEA.

Application or End User: This section of the research study shows how different end-user/application segments contribute to the Global Stem Cell Therapy Market.

Market Forecast: Here, the report offers a complete forecast of the Global Stem Cell Therapy Market by product, application, and region. It also offers global sales and revenue forecast for all years of the forecast period.

Research Findings and Conclusion: This is one of the last sections of the report where the findings of the analysts and the conclusion of the research study are provided.

About Us:

We publish market research reports & business insights produced by highly qualified and experienced industry analysts. Our research reports are available in a wide range of industry verticals including aviation, food & beverage, healthcare, ICT, Construction, Chemicals and lot more. Brand Essence Market Research report will be best fit for senior executives, business development managers, marketing managers, consultants, CEOs, CIOs, COOs, and Directors, governments, agencies, organizations and Ph.D. Students.

Top Trending Reports:

https://teletype.in/@supriyakoshti1997/YmlOpc9bP

https://teletype.in/@pranoti/PUPYv8bid

https://elink.io/91f105a

https://adalidda.com/posts/2tW6xipaLSyCdza3h/online-gambling-market-2020-industry-scenario-strategies

https://teletype.in/@ellinahussey/hz3434OI5

https://brandessenceresearch.biz/Automotive-and-Transport/Identity-and-Access-Management-IAM-Market-Size/Summary

More here:
US Stem Cell Therapy Market 2020 Research on Import-Export Details, Business Standards and Forecast to 2025 - Owned

Citius Pharmaceuticals Brings on Myron S. Czuczman, M.D. as Chief Medical Officer (CMO) and Executive Vice President – Stockhouse

CRANFORD, N.J., July 14, 2020 /PRNewswire/ -- Citius Pharmaceuticals, Inc. ("Citius" or the "Company") (Nasdaq: CTXR), a specialty pharmaceutical company focused on developing and commercializing critical care drug products, announced today that Myron S. Czuczman, M.D., has joined the company as Chief Medical Officer (CMO) and Executive Vice President. Dr. Czuczman was most recently Therapeutic Area Head, Vice President, Clinical Research and Development Global Lymphoma/CLL Program at Celgene Corporation. At Celgene, he was responsible for worldwide clinical development in Lymphoma/CLL and for the development of all compounds from Proof-of-Principle through registration globally.

Myron Holubiak, Citius CEO stated, "We are honored to have a colleague as qualified as Dr. Czuczman join the Citius team. He will be enormously helpful in furthering our development program for our planned iPSC-derived mesenchymal stem cell (iMSC) for the treatment of ARDS associated with CoVid-19. This, coupled with the advanced Phase 3 trials underway for Mino-Lok® and preparing an IND for Mino-Wrap, add to the importance of bringing in an executive of Dr. Czuczman's expertise, experience, and caliber to the team."

Prior to his tenure at Celgene, Dr. Czuczman served as Chief, Lymphoma/Myeloma Service in the Department of Medicine and Head of the Lymphoma Translational Research Laboratory in the Immunology Department at Roswell Park Comprehensive Cancer Center in Buffalo, NY where he attained the title of tenured Professor of Medicine and Oncology prior to joining Celgene.

Dr. Czuczman received his M.D. from Pennsylvania State University of Medicine after graduating magna cum laude in Biochemistry from the University of Pittsburgh. He completed his Internal Medicine residency training at Weill Cornell North Shore University/MSKCC Program, followed by Medical Oncology/Hematology fellowship training at Memorial Sloan-Kettering Cancer Center in New York, NY.

Dr. Czuczman was a Founding Member and reviewer for the National Comprehensive Cancer Network (NCCN) Lymphoma Guidelines compendium panel for nearly twenty years and he has greater than 180 peer-reviewed publications. He is a Diplomate in Internal Medicine, and is Board Certified in Medical Oncology and received numerous awards and accolades during his academic career.

About Citius Pharmaceuticals, Inc. Citius is a late-stage specialty pharmaceutical company dedicated to the development and commercialization of critical care products, with a focus on anti-infectives and cancer care. For more information, please visit http://www.citiuspharma.com.

About Mino-Lok® Mino-Lok® is an antibiotic lock solution being developed as an adjunctive therapy in patients with central line-associated bloodstream infections (CLABSIs) or catheter-related bloodstream infections (CRBSIs). CLABSIs/CRBSIs are very serious, especially in cancer patients receiving therapy through central venous catheters (CVCs) and in hemodialysis patients, for whom venous access presents a challenge. There are currently no approved therapies for salvaging infected CVCs.

About Citius iMSC Citius's planned mesenchymal stem cell therapy product is derived from a human induced pluripotent stem cell (iPSC) line generated using a proprietary mRNA-based (non-viral) reprogramming process. The iMSCs produced from this clonal technique are differentiated from adult donor-derived MSCs (bone marrow, placenta, umbilical cord, adipose tissue, or dental pulp) by providing genetic homogeneity. In in-vitro studies, iMSCs exhibit superior potency and high cell viability. The iMSCs secrete immunomodulatory proteins that may reduce or prevent pulmonary symptoms associated with acute respiratory distress syndrome (ARDS) in patients with COVID-19. The Citius iMSC is an allogeneic (unrelated donor) mesenchymal stem-cell product manufactured by expanding material from a master cell bank.

About Acute Respiratory Distress Syndrome (ARDS) ARDS is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. ARDS is a rapidly progressive disease that occurs in critically ill patients most notably now in those diagnosed with COVID-19. ARDS affects approximately 200,000 patients per year in the U.S., exclusive of the current COVID-19 pandemic, and has a 30% to 50% mortality rate. ARDS is sometimes initially diagnosed as pneumonia or pulmonary edema (fluid in the lungs from heart disease). Symptoms of ARDS include shortness of breath, rapid breathing and heart rate, chest pain (particularly while inhaling), and bluish skin coloration. Among those who survive ARDS, a decreased quality of life is relatively common.

Safe Harbor This press release may contain "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Such statements are made based on our expectations and beliefs concerning future events impacting Citius. You can identify these statements by the fact that they use words such as "will," "anticipate," "estimate," "expect," "should," and "may" and other words and terms of similar meaning or use of future dates. Forward-looking statements are based on management's current expectations and are subject to risks and uncertainties that could negatively affect our business, operating results, financial condition and stock price.

Factors that could cause actual results to differ materially from those currently anticipated are: our ability to attract, integrate, and retain key personnel; our need for substantial additional funds; the risk of successfully negotiating within the option period a license agreement with Novellus, Inc. for our planned Novecite therapy for ARDS; risks associated with conducting clinical trials and drug development; the estimated markets for our product candidates and the acceptance thereof by any market; risks related to our growth strategy; risks relating to the results of research and development activities; uncertainties relating to preclinical and clinical testing; the early stage of products under development; our ability to obtain, perform under and maintain financing and strategic agreements and relationships; our ability to identify, acquire, close and integrate product candidates and companies successfully and on a timely basis; our dependence on third-party suppliers; government regulation; patent and intellectual property matters; competition; as well as other risks described in our SEC filings. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations or any changes in events, conditions or circumstances on which any such statement is based, except as required by law.

Contact:

Andrew Scott Vice President, Corporate Development (O) 908-967-6677 x105 ascott@citiuspharma.com

View original content:http://www.prnewswire.com/news-releases/citius-pharmaceuticals-brings-on-myron-s-czuczman-md-as-chief-medical-officer-cmo-and-executive-vice-president-301092921.html

SOURCE Citius Pharmaceuticals, Inc.

The rest is here:
Citius Pharmaceuticals Brings on Myron S. Czuczman, M.D. as Chief Medical Officer (CMO) and Executive Vice President - Stockhouse

Cellular Reprogramming Tools Market- By Type, Component, Industry, Region Market Size, Demand Forecasts, Company Profiles, Industry Trends and…

The Global Cellular Reprogramming Tools Market report offers users the detailed study of the market and its main aspects. The study on Global Cellular Reprogramming Tools Market, offers profound understandings about the Cellular Reprogramming Tools Market covering all the essential aspects of the market. The report provides competitive pipeline landscape of the Global Factors like production, market share, revenue rate, regions and key players define a market study start to end. This report gives an overview of market valued in the year 2019 and its growth in the coming years till 2025.

This study covers following key players: The report also presents the market competition landscape and a corresponding detailed analysis of the major vendor/manufacturers in the market. The key manufacturers covered in this report: Breakdown data in in Chapter 3. Celgene FUJIFILM Holdings BIOTIME Advanced Cell Technology Mesoblast Human Longevity Cynata STEMCELL Technologies Astellas Pharma Osiris Therapeutics EVOTEC Japan Tissue Engineering

Request a sample of this report @ https://www.orbisresearch.com/contacts/request-sample/4721627?utm_source=Yogi

The study is done with the help of analysis such as SWOT analysis and PESTEL analysis. It consists of the detailed study of current market trends along with the past statistics. The past years are considered as reference to get the predicted data for the forecast period. The report covers complete analysis of the Cellular Reprogramming Tools Market on the basis of regional and Global level. Various important factors such as market trends, revenue growth patterns market shares and demand and supply are included in almost all the market research report for every industry.

There are different marketing strategies that every marketer looks up to in order to ace the competition in the Global market. Some of the primary marketing strategies that is needed for every business to be successful are Passion, Focus, Watching the Data, Communicating the value To Your Customers, Your Understanding of Your Target Market. There is a target set in market that every marketing strategy has to reach. In addition, it also covers political and social factors which is likely to affect the growth of the market. It also covers and analysis several segments which are present in the market. A significant development has been recorded by the market of Cellular Reprogramming Tools, in past few years. It is also for it to grow further. Various important factors such as market trends, revenue growth patterns market shares and demand and supply are included in almost all the market research report for every industry.

Access Complete Report @ https://www.orbisresearch.com/reports/index/global-cellular-reprogramming-tools-market-growth-status-and-outlook-2020-2025?utm_source=Yogi

Market segment by Type, the product can be split into Segmentation by type: breakdown data from 2015 to 2020 in Section 2.3; and forecast to 2025 in section 10.7. Adult Stem Cells Human Embryonic Stem Cells Induced Pluripotent Stem Cells Other

Market segment by Application, split into Segmentation by application: breakdown data from 2015 to 2020, in Section 2.4; and forecast to 2025 in section 10.8. Drug Development Regenerative Medicine Toxicity Test Academic Research Other

One of the ways for the estimation for the growth of the market is estimation of the market share by the regions which is likely to contribute to the growth of the market in the estimated forecast period. In this, the growth and fall of each region is covered which is likely to boost the growth of the Cellular Reprogramming Tools Market. In addition, to determine and use precise methods, research methodology such as the qualitative and quantitative data is used for the estimation and determination of the Global Cellular Reprogramming Tools Market.

For Enquiry before buying report @ https://www.orbisresearch.com/contacts/enquiry-before-buying/4721627?utm_source=Yogi

About Us: Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.

Contact Us: Hector Costello Senior Manager Client Engagements 4144N Central Expressway, Suite 600, Dallas, Texas 75204, U.S.A. Phone No.: USA: +1 (972)-362-8199 | IND: +91 895 659 5155

Visit link:
Cellular Reprogramming Tools Market- By Type, Component, Industry, Region Market Size, Demand Forecasts, Company Profiles, Industry Trends and...

Investing in Life Sciences Stocks and Companies – Nanalyze

Nowhere will you find more exciting ideas to invest in than life sciences, a broad topic that encompasses around 30 different branches of study, each of which could take a lifetime to fully comprehend. As investors, we dont want to rely on subject matter experts to understand what a company does. If we cant understand a companys business, we dont want to invest in it. We also want to avoid businesses with no traction. Drug development companies with no revenues that are burning through cash trying to bring a drug to market have volatile share prices for a reason. That volatility represents uncertainty. We prefer to stick with businesses that are already selling a product or service which is generating strong revenue growth consistently. These are businesses that are leveraging life sciences technologies to achieve above-average growth.

In writing about life sciences over the past seven years, weve come across dozens of interesting life sciences companies innovating across the globe such as:

Oftentimes well find groups of startups trying to solve similar problems like creating treatments using the human microbiome or trying to cure hearing loss. Technologies like mobile health, telemedicine, and medical chatbots are democratizing access to healthcare services. Big data is helping us better treat mental health conditions while telepsychiatry now democratizes access to mental health professionals. Were now able to create bionic limbs, bionic eyes, bionic ears, bionic pancreases, and artificial hearts. Soon, we might be harvesting organs from pigs to help solve the kidney transplant problem. Robots are now performing surgeries, and it wont be long until robots are doing dental work as well. Were building labs in the cloud and organs on chips. Optogenetics lets us control cells in living tissues with light. Deep learning algorithms now discover drugs which are then administered using smart pills, smart inhalers, or even wireless drug delivery chips. Patient data is now stored using electronic medical records, data which can then be analyzed by artificial intelligence algorithms to provide things like personalized cancer treatments. When a baby is born, were able to store stem cells from cord blood and then use them for stem cell transplants later on in life. These are only the startups we know about, because many life sciences startups choose to operate in stealth mode.

Some of the problems were trying to solve are themselves emerging, such as trying to kill super bugs that stem from antibiotic resistance, or developing vaccines for new viruses like the rona. (Johnson & Johnson is pouring millions into developing a coronavirus vaccine.) Many of the problems being worked on involve cures that havent been developed yet, something we looked at in our when will there be a cure series.

Examples of innovation in life sciences abound, so weve tried to narrow it all down to six areas of focus weve been researching for investment opportunities.

Lets start with genomics.

Perhaps no field in life sciences shows more promise than that of genomics. Using genetic sequencing machines, scientists are not only able to read the recipes of life, theyre also able to edit them using technologies like gene editing. Full genome sequencing has now fallen below the $1,000 mark, and some companies now have their sites set on a $50 genome sequencing price point.

Huge databases of DNA data are now being mined for insights, and scientists are even able to reconstruct composite images of criminals form crime scenes using DNA, something referred to as DNA phenotyping.

The field of genomics is exploding as prices plummet, speeds increase, and companies continue to find new use cases. Venture capitalists are pouring money into genomics startups across the globe with China and America being seen as the current leaders in genomics. In the future, well have a world where everyone is given personalized medicine tailored to their unique genetic makeup. This is why genetic testing is becoming so popular, something well cover extensively later in this piece.

You cant talk about genomics without mentioning Illumina, a company that all but dominates the market for machines that perform gene sequencing. Weve been longtime shareholders in Illumina and added to our position back in 2016 when shares dipped to around $135 a share. As the cost of gene sequencing plummets, even more use cases are opening up for Illuminas machines leaving them plenty of room for growth. One company trying to disrupt this plan is Chinas BGI Genomics which hopes to provide an alternative for Chinese companies that dont want to use Illumina or Oxford Nanopore sequencing machines. (Oxford Nanopore is a private company that builds smaller gene sequencing devices that are less accurate.) Another publicly traded company to watch in the sequencing space is 10X Genomics which is working on single cell sequencing.

Not all genomics stocks are leaders. There are plenty of laggards, like Bionano Genomics (BNGO) which had an IPO back in 2018. The company sells instruments meant to complement next-generation sequencing machines like those sold by Illumina. Unfortunately, they couldnt grow revenues in 2019 while losses continued to increase. You cannot be in a high-growth market and not have the revenue growth to show for it.

Human longevity also referred to as life extension science involves extending the human lifespan by rolling back the effects of aging. Technologies like machine learning and genetic sequencing now mean were better able to understand the aging process. Companies like Googles Calico are analyzing millions of anonymous DNA samples in an attempt to better understand the effects of genetics on aging.Were now able to develop cellular medicines that uses live cells to repair the body.

Other companies are trying to increase the human lifespan by lengthening ones telomeres or by minimizing oxidization which causes aging. Venture capitalists are pouring money into dozens of startups tackling the aging problem in areas like regenerative medicine or young blood transfusions.

From an investors perspective, human longevity presents both risks and potential rewards as living another 20 years can have some dire effects on some peoples retirement plans. Of the top longevity companies out there, some are publicly traded. Just be aware that some companies out there are selling snake oil. Theyre preying on older people who have money and the desire to live longer. Just because someone says theyre selling anti-aging pills doesnt mean they actually work.

Weve talked before about how The Internet of Things promises to connect everything to the cloud with the byproduct being loads of big data. The same holds true in the medical industry where connected medical devices allow doctors to monitor patients vital signs from afar. Breath diagnostics devices allow us to more quickly diagnose medical conditions. Ultrasounds can now be performed with smartphones, and ultrasound technology itself is finding many other uses cases like breaking up blood clots that cause strokes. Newly developed medical devices are used to administer electroceutical therapies and wearables are helping to treat mental health.

Perhaps some of the biggest advancements are being made in medical imaging where deep learning algorithms are used to interpret medical imagery. Dozens of startups are now developing medical imaging AI algorithms to do everything from measuring breast density to preparing surgeons for surgery.

The increasing sophistication of medical devices and medical imaging algorithms mean that doctors are more easily able to treat patients from afar. Companies like Teladoc (TDOC) make it possible for anyone with $40 to speak with a doctor. For retail investors looking to invest in the telemedicine trend, Teladoc is probably the only telehealth stock to own. There are also many startups working on telehealth using technologies like machine learning to improve upon their offerings.

As we continue to develop more connected medical devices and generate more medical images, the amount of big data to analyze in healthcare is growing exponentially. Many data analytics businesses are emerging which use this data for predictive analytics or to identify inefficiencies in processes. The ability to remotely monitor patients means were able to treat more people, more effectively.

A good example of remote patient care can be found in iRhythm Technologies (IRTC). Theyve built their entire business around a medical device for remote cardiac monitoring. It comes in the form of a wearable that can capture up to two weeks of ECG data while allowing the patient to conduct their life in a perfectly normal fashion. All that data is then fed to a deep learning model capable of arrhythmia detection at a level comparable to a panel of expert cardiologists for a total of 12 output classes.

Most patient data is now stored electronically instead of being stuffed in some filing cabinet. This means a patients data can be shared across healthcare providers allowing for better care. For retail investors, there are a number of publicly traded companies working on electronic health records (EHRs) which are rapidly becoming the norm. Practice Fusion even offers EHRs for free because they know the value is in the data. Companies like Health Catalyst (HCAT) then apply healthcare data analytics to all this big data to create large-scale efficiencies.

A brain-computer interface might be the Holy Grail for human advancement. Just imagine being able to increase your brain storage capacity exponentially. And its not just about augmenting the human brain. Being able to interface with the human brain means we no longer need to use keyboards or mice. Dozens of startups are working on neurotech applications like neuroprosthetics which can rectify brain damage or neuromodulation which can be used for pain management.

Our brains contain about 2.5 petabytes (2,500,000 gigabytes) of storage, enough to store the entire contents of all US academic research libraries.Stentrodes and neural dust are just some of the methods being used to access this incredible biological data storage mechanism. Biohackers can even do this at home using technologies like OpenBCI.

If youre not familiar with the drug discovery process, its largely inefficient with billions of dollars being spent developing drugs that never actually get approved following clinical testing.

Plenty of companies are working on removing all the inefficiencies from the process. For example, a handful of startups are working on helping patients find clinical trials worldwide which they can then participate in from home. Some of the biggest advancements being made in drug discovery are the many computational drug discovery startups popping up which use machine learning to optimize the discovery process.

When drugs do get approved, some create more problems than they solve. Look no further than Americas addiction to opiates which helps explain the proliferation of startups developing substance abuse apps. Many mental health problems stem from drug abuse, so sometimes cognitive behavioral therapies are a better option than hard drugs. Some of the more severe mental health conditions like schizophrenia still arent being treated effectively which means theres still lots more work to be done.

There is no cure for cancer, theres only early detection which could make most cancers benign. Thats just one example where advancements in medical testing could prove to save lives and money, something that everyone working in medicine wants to do. Unfortunately there have been some setbacks for investors, the most notable being the implosion of Theranos. Elizabeth Crazy Eyes Holmes was behind the blood testing company which was fawned over by just about everyone. Now, shes facing criminal charges while other companies try to fill the Theranos void with their own platforms for blood testing. Some of these come in the form of mobile diagnostics platforms that can be used at the point of care.

Advances in medical testing run the gamut, from AI algorithms that detect Alzheimers to blood tests that detect cancer. Were now able to use next-generation sequencing technologies to identify genomic sequences of pathogens that are present in a patients blood or even circulating tumor cells that indicate cancer. Were even working on building the tricorder from Star Trek.

Many companies are now able to detect the presence of cancer in biofluids like blood or urine. It isnt just about early detection, its also about monitoring the progress of cancer treatments. Traditionally, a doctor would take a piece of a tumor a biopsy in order to determine if it is cancerous or benign. Now, many startups are developing liquid biopsies or blood tests that are capable of detecting cancer. One publicly traded in this space is Guardant Health (GH), an $8 billion precision oncology company that primarily sells cancer blood tests.

Once a type of cancer has been identified, we can then use next-generation sequencing to identify cancer-associated alterations thatcan be attacked usingtargeted therapies.Foundation Medicine is a leader in this space with one of the worlds largest cancer genomic databases, holding more than 400,000 genomic profiles. The company had an IPO back in 2013 and got into bed with Roche a few years later. They were finally acquired by Roche in 2018.

Across the pond we have a few publicly traded companies in this space as well. Angle (AGL:LN), a $95 million company which continues to bleed cash while generating minuscule revenues, offers liquid biopsies. Oxford Immunotec (OXFD) is having a bit better luck on the revenue side of things with their blood test for tuberculosis.

Apocell used to be publicly traded but has since been taken private. Theres also a Japanese firm called Sysmex (6869:JP) which is the global market leader inhematology,occupying the number-oneshare of theworldwide market. They have a subsidiary called Sysmex Inostics which has developed an ultra-sensitivedigital PCR technologythat is capable of detecting cancer cell DNA directly from blood.

Blood isnt the only bodily byproduct used to detect cancer. A $13 billion company called Exact Sciences (EXAS) sells a stool DNA test for colorectal cancer. Exosome Diagnostics acquired by Bio-Techne is developing a urine test for prostate cancer. All these samples flying around mean that entire businesses are now being built around the storage and transportation of biological samples.

There are also companies developing cancer therapies that are fine-tuned to certain genomic profiles like personalized chemotherapy. This is where some genetics testing comes in handy.

To say that genetic testing has exploded is an understatement. There are now genetic tests for nearly everything, including genetics tests for pets. In looking at some of these testing use cases, they seem to be borderline gimmicks like DNA dating or genetic fitness tests. Others provoke a great deal of controversy, like genetic tests for intelligence. There are now DNA apps for nearly everything, but where it all started was with ancestry genetic tests.

Large ancestry testing companies like 23andMe and Ancestry.com quickly realized that the real value to be had was not in selling genetic tests, but collecting genetic data and monetizing it. This quickly led to privacy concerns around genetic data. As more and more companies started offering genetic testing services, the big providers started to pivot into genetic healthcare tests for hereditary diseases like cancer or heart disease. Soon, this started to attract the attention of regulatory authorities. Telling someone their dad isnt their dad isnt nearly as painful as mistakenly getting a double mastectomy because a genetic test said you were at risk for breast cancer. Youd be surprised to see how many ancestral differences you get when you run the same DNA sample through multiple test providers. (This is why Family Tree DNA offers a central DNA results database where you can upload all your test results.) When it comes to health related genetics testing, accuracy is paramount.

The evolution of genetics testing is now leading to new business models that try to adapt to the environment. Nebula now offers anonymous DNA testing. Centogene is building the worlds largest repository for genetic information on rare hereditary diseases in the world. Were learning more about how polygenic risk scores can help predict disease. Being able to interpret genetic data is becoming much easier thanks to technologies like machine learning. Even with all these new technologies, theres still an important human element to the whole thing. Finding out that youre at risk for hereditary cancer isnt all that useful unless someone tells you exactly what that means and what steps you should take if any.

For retail investors, theres one pure-play genetic testing stock you ought to consider which just expanded into personalized oncology with their acquisition of ArcherDX Invitae (NVTA). Since we first came across the company seven years ago, theyve come a long way.

Some other themes weve looked at manifest themselves over time as we notice their prevalence. For example, who knew that diabetes would be such a big industry.

All these people who talk about how big is beautiful need to realize that its just not. Sure, there are some cultures that glorify obesity because it represents wealth and security. In America, fat asses abound because people drive up to windows to consume two days of calories in one seating which they then wash down with a diet soda.

The hard truth is that obesity is unhealthy and a contributing factor to a huge global problem diabetes. Weve talked before about why there isnt a cure for diabetes yet. Until there is, we need to treat the more than 100 million U.S. adults who are now living with diabetes or prediabetes.

All kinds of companies are working on diabetes treatments. Dance Biopharm (now Aerami Therapeutics) is working on an inhaled insulin product. Intarcia Therapeutics is working on a potential once-a-year diabetes treatment. But no matter how compelling these products sound, there will be failures, like Cellnovos attempt at developing insulin pumps. Kind of hard to compete with Medtronic (MDT), one of the worlds biggest medical device makers, which already has that sorted with a digital form of an artificial pancreas. (Full disclosure: were long-time shareholders in MDT for dividend growth reasons.)

Another theme we looked at for a bit was non invasive prenatal testing (NIPT) which is pretty much what it says on the tin. Its a test that makes sure your little bundle of joy doesnt pop out with two heads, or be afflicted by any malady that would interfere with the perfect life youve planned for it. Plenty of companies are dabbling in this space, like Ariosa Diagnostics which was acquired by Roche since we last looked at them. Other publicly traded stocks in this space include Natera (NTRA) and Premaitha Health (YGEN:LN) which now goes under the name Yourgene.

We stopped looking at NIPT because we believed the NIPT growth story might be ending. We also didnt find the topic to be that interesting frankly unless of course they come out with a NIPT for intelligence which wed probably invest in.

Stem cells are kind of like a foundation cell that various types of other cells get built on like muscle cells or brain cells. These are useful for applications like regenerating body parts or figuring out what makes cancer cells replicate. One company we looked at, Cellular Dynamics, was in the business of producing stem cells. Theyve since been acquired by Fujifilm Holdings. Another company we looked at was Fate Therapeutics (FATE) which uses renewable master induced pluripotent stem cell (iPSC) lines to produce cellular immunotherapies. We have no idea what that actually means, which is why were not investors in the company. We only like to invest in businesses we can easily understand.

Over the years of developing our life sciences topics, we encountered quite a few companies that we just didnt fully understand. Roivant Sciences was one of them. So were the nant companies coming from the brain of Dr. Soon Shiong, one of the worlds most successful biotech investors. Its very difficult to understand some of these businesses without having a medical background, and if you need eight years of training to understand what a company does, its probably too complex for retail investors. Weve given up on trying to figure out how Nanthealth will revolutionize the U.S. healthcare system, or what Nantkwest does, and instead stick to companies with business models anyone can understand. Another area of life sciences weve looked into before but decided not to follow is RNAi therapeutics.

Another area we looked at briefly was RNAi therapeutics and publicly-traded RNAi companies like Benitec, Dicerna Pharmaceuticals, or Moderna which has soared after going public due to their work on a coronavirus vaccine. To this day, we still dont feel like we sufficiently understand what many of these companies do which means were not able to properly explain them to our readers. Instead of spending hours trying to understand how microRNA relates to RNAi, were staying away from drug development companies entirely. Even if a company has the greatest drug development platform in the world, theres always a risk theyll fail given all the pitfalls of drug development we discussed earlier. The exception to that rule might be the drug development arm of Johnson & Johnson, a company we hold as part of our dividend growth investing strategy.

Fields like cancer immunotherapy, cancer stem cell research, or epigenetics may have loads of promise, but most of these investments are just too complex for your average Joe investor to understand without having an interpreter. Lets talk about some stocks that you dont need an interpreter to understand.

Given the breadth of technologies to be found under life sciences we often take fleeting looks at companies that are doing cool things without necessarily doing any deep-dives or follow ups. These one-offs are oftentimes stocks or planned IPOs we come across that we think our readers might find interesting.

One thing all these stocks have in common is that theyre traded on major exchanges unlike penny stocks which you should avoid like the plague.

We never skip a chance to warn investors about the dangers to be found when dabbling in penny stocks (also called over-the-counter (OTC) stocks). Here are just some of the OTC companies weve written about.

Investing in any these companies would have proved to be a total disaster. Of course there are always some exceptions, but why try to walk through landmines to find them? Do not speculate on penny stocks, no matter how compelling their story is.

Oftentimes well come across micro-cap stocks on foreign exchanges which well write about. More often than not, these companies will end up going nowhere fast. Kiwi company Adherium (ADR:AU) was supposed to bring us intelligent inhalers. While investors continue to wait, their share price continues to plummet. We warned investors that Canadian firm BioMark Diagnostics (BUX:CN) might not have what it takes to bring cancer blood tests to market, and the company still appears to be going nowhere fast. Londons Tissue Regenix (TRX:LN) was working on some exciting new skin scaffolds, but you would have lost -90% of your investment waiting for them to finally start achieving some traction. Even though revenues are picking up and losses are trending in the right direction, shares continue their long downward slide. Its best not to try and catch a falling knife.

Some readers may wonder why we havent touched on one of the most exciting technology there is synthetic biology. Thats because weve dedicated an entire page to synthetic biology, our Guide to Investing in Synthetic Biology. The same holds true for gene editing, something we covered in our Guide to Investing in Gene Editing Stocks. We happen to classify gene editing and synthetic biology under our nanotechnology category, so you may want to go read our Guide to Investing in Nanotechnology Stocks and Companies next. Because life sciences is such a broad category, youll find it peppered throughout all the twelve categories of disruptive technologies we cover here at Nanalyze. For example, machine learning algorithms are now helping us understand extremely complex things such as the human microbiome.

Sure, you can cure your STDs without going to a doctor, but developing something as simple as a universal flu vaccine is still out of reach. While plenty of progress is being made in life sciences, there are still plenty of diseases we cant cure and problems we cant solve. Its safe to say that investors will continue to reap rewards by investing in life sciences companies for decades to come.

Interested in hearing more about investing in life sciences companies and stocks?Sign up for our weekly newsletter. Well keep you up-to-date on life sciences investments and all the disruptive technologies out there that ought to be on investors radar. No politics, no B.S., no corporate buzzword bingo.Click here to sign up for Nanalyze Weekly.

Follow this link:
Investing in Life Sciences Stocks and Companies - Nanalyze

U of T spin-off Empirica Therapeutics acquired by US firm – News@UofT

Empirica Therapeutics, a startup co-founded by Donnelly Centre investigatorJason Moffathas beenacquired by Century Therapeutics, a U.S. based company developing off-the-shelf cell therapy products for cancer.

Century will develop Empiricas proof-of-principle treatment for glioblastoma, an aggressive form of brain cancer, into therapy that can be tested on patients.

Moffat co-founded Empirica in 2018 with Dr. Sheila Singh, professor in the department of surgery at McMaster University, to leverage their combined expertise in cell engineering, functional genomics and brain tumour modelling. The teams recently demonstrated the potential of CAR-T cell therapy, in which immune cells are instructed to kill tumour cells, for the treatment of glioblastoma in preclinical models, as published in a May 2020Cell Stem Cellpaper.

Recent advances in immunotherapy have offered hope to patients with previously untreatable cancers, says Moffat, a professor of molecular genetics at U of T and the Canada Research Chair in Functional Genomics of Cancer who served as Empiricas chief scientific officer. We hope that our approach of specifically targeting glioblastoma cells with CAR-T therapy will give the patients a better quality of life and increase their chances of survival.

Philadelphia-based Century Therapeutics will further develop this type of treatment for patients. Backed by Bayer, Fujifilm, and Versant Ventures, the company specializes in developing cell therapies from induced pluripotent stem cells (iPSCs) that have been genetically engineered to avoid immune rejection. Century is working to harness the power of stem cells to develop curative cell therapy products for cancer that overcome the limitations of first-generation cell therapies. The companys CEO, Lalo Flores, acknowledged Empiricas deep expertise and unique capabilities that will accelerate their efforts to develop iPSC derived immune effector cell products designed to treat brain cancer.

Chimeric antigen receptor T cell (CAR-T) therapy involves genetically engineering a patients immune T cells to target and bind to a specific protein present on cancer cells directly and eliminate them. Centurys technology skirts the need to collect patients own immune cells thanks to its ability to manufacture off-the-shelf T cells that can be implanted without rejection.

Our team is excited to become part of Century Therapeutics, whose iPSC-derived allogeneic cell therapy platform is creating promising treatments for patients who need them most, says Dr. Singh, who is also a Canada Research Chair in Human Cancer Stem Cell Biology and served as Empiricas chief executive officer.

Now known as Century Therapeutics Canada, the new subsidiary will be based at McMaster Innovation Park.

Empiricas first CAR-T program was focused on a protein called CD133, which was the first brain tumor initiating cell marker discovered by Singh while a PhD student at the University of Toronto. Subsequent work by both the Singh and Moffat groups led to a deeper functional understanding of CD133 and an antibody that proved useful for marking cells for therapy.

When used in mice with human glioblastoma, CD133-targetting CAR-T therapy was considered a success due to reduced tumor burden and improved survival. These pre-clinical results were partly supported by a Terry Fox Research Institute New Frontiers Program Project Grant awarded to a multidisciplinary team of scientists including Singh and Moffat.

Glioblastoma is the most common and aggressive form of brain cancer owing to tumour heterogeneity at the molecular level and its ability to evolve into new forms that resist therapy. Standard treatment involves surgery, radiation and chemotherapy but most patients relapse within seven to nine months, while median survival between diagnosis and death has not extended beyond 16-20 months over the past decade.

CAR-T will be delivered in recurrent glioblastoma patients after Moffat and Singhs teams found that a population of CD133 positive glioblastoma cells remain following initial treatment.

If we can hit those cells at minimal disease, we should buy the patient more time, says Moffat. And hopefully well find a way to figure out how to combine multiple CAR-Ts; for example, by combining CD133 and other targets to potentially even cure the disease.

Empirica Therapeutics was supported by investments from U of Ts strategic partners, the Centre for Commercialization of Antibodies and Biologics and the Centre for Commercialization of Regenerative Medicine.

We are proud to have been involved with the launch and growth of Empirica, stated Rob Verhagen, former CEO of CCAB. The outcome with Century marks another stride in building a productive life science industry at U of T and McMaster and we look forward to seeing this valuable research benefiting patients in the future. The startup was also supported by the McMaster Industry Liaison Office and the Ontario Bioscience Innovation Organization through important connections to relevant business networks and partners.

Read the original:
U of T spin-off Empirica Therapeutics acquired by US firm - News@UofT

Blood Test Could Reveal When Rheumatoid Arthritis Will Strike – Howard Hughes Medical Institute

Scientists have identified a new type of cell that appears in the bloodstream of rheumatoid arthritis patients shortly before joint inflammation flares.

A never-before-seen cell type could forewarn of rheumatoid arthritis symptoms.

The cells, dubbed PRIME cells, accumulate in the blood during the week prior to disease flare-ups, Howard Hughes Medical Institute Investigator Robert Darnell's team reports July 15, 2020, in the New England Journal of Medicine. The findings could lead to better prediction of when severe pain and swelling, called flares will occur, as well as provide new avenues for treatment.

PRIME cells are one thing you might want to target to arrest the flare before it happens, Darnell says. Thats the ideal of medical science to know enough about a disease that you can put your finger on whats about to make someone sick.

Rheumatoid arthritis is a disease of the immune system that causes inflammation in the joints, especially around the hands and feet. It can be debilitating and frequently strikes people in their 30s or 40s. The symptoms come in waves, with stretches of relative quiet interspersed with painful flares. Current therapeutics, chiefly steroids, can treat these symptoms, but theres no cure.

To study this sort of disease, where symptoms vary dramatically from week to week, its critical to track changes in the body over an extended time. But its hard for patients to trek to a clinic for frequent testing. So Darnell, a neuro-oncologist at the Rockefeller University, and his colleagues developed an at-home blood collection system. Patients with rheumatoid arthritis did simple finger sticks and sent their blood to his lab. Each participant also kept a record of symptoms to identify when flares occurred.

PRIME cells are one thing you might want to target to arrest the flare before it happens.

Robert Darnell, HHMI Investigator at The Rockefeller University

Armed with these records, the researchers tested the blood samples, looking for molecular changes preceding the onset of symptoms. By analyzing the RNA of cells in the bloodstream, Darnells team could identify which types of cells were present during symptom-free times and in the weeks preceding a flare.

In samples collected two weeks prior to a flare, researchers saw an increase in immune cells called B cells. Thats not surprising, Darnell says researchers already knew these cells attacked patients joints in rheumatoid arthritis.

But in samples collected one week before a flare, his team noticed something odd. They saw an increase in RNA that didnt match the genetic signature of any known type of blood or immune cell. That got us thinking there was something fishy going on, says study coauthor Dana Orange, a rheumatologist at Rockefeller. The RNA signature instead resembled that of bone, cartilage, or muscle cells cells not typically found in the blood.

Darnells team called the newfound cell type a PRIME cell, for pre-inflammation mesenchymal cell. (Mesenchymal cells are a type of stem cell that can develop into bone or cartilage.) In the patients, PRIME cells accumulated in the bloodstream a week before the flare but disappeared during the flare. This observation, combined with previous work from another lab in mice, suggests a possible role for PRIME cells in rheumatoid arthritis flares, Darnell says.

One of the teams next steps is to test in more patients whether the presence of these cells can predict a flare, Darnell says. The researchers are still recruiting patients for this study; currently the teams blood collection system is only available for use in research. Darnell also wants to study PRIME cells molecular characteristics. If the cells do indeed take part in causing flares, he says, understanding the unique aspects of PRIME cells might enable us to target them with a drug and get rid of them.

###

Citation

Dana E. Orange et al. RNA Identification of PRIME Cells Predicting Rheumatoid Arthritis Flares, New England Journal of Medicine. Published online July 15, 2020. doi: 10.1056/NEJMoa2004114

More:
Blood Test Could Reveal When Rheumatoid Arthritis Will Strike - Howard Hughes Medical Institute

Video: The Science Of Cannabis And CBD With Four Leading Experts – Benzinga

While there is mounting anecdotal evidence on the therapeutic benefits of cannabis and CBD, including their anti-inflammatory and anxiolytic effects, we still dont fully understand the underlying biological mechanisms leading to their efficacy, or why they can be effective for some people, but not for others.

Groundbreaking new human studies from UC San Diego, University of Utah, and the Wholistic Research and Education Foundationare about to change all that:

Watch the expert panel put together by Trailblazers, moderated by Benzinga Cannabis Managing Director and El Planteo CEO Javier Hasse, to learn about the cutting edge, multidisciplinary studies underway to explore just how cannabis and CBD deliver their diverse health benefits.

Photo: Pelin Thorogood announcing the Trailblazers Partnership with Wholistic Foundation August 18, 2019 with , Dr. Jeff Chen , Dr. Jeff Anderson, and Tyler Wakstein.

2020 Benzinga.com. Benzinga does not provide investment advice. All rights reserved.

The rest is here:
Video: The Science Of Cannabis And CBD With Four Leading Experts - Benzinga