Category Archives: Stem Cell Medicine

Sabathia could actually miss 8-12 weeks: Doc

The Yankees would be lucky to get CC Sabathia on the mound in two months, let alone six weeks, according to one doctor familiar with the stem-cell procedure Sabathia underwent last week.

He may be able to practice by then, but I dont think hell be back in the majors before eight-to-12 weeks, said Dr. Selene Parekh, associate professor of surgery in the Division of Orthopaedic Surgery at Duke Orthopaedics.

Perhaps more importantly, there is so little history regarding the stem-cell injection done by Dr. James Andrews, its difficult to know what to expect.

Since stem cells are naturally occurring, the idea is that by injecting them into Sabathias knee, his body will be able to create new cells to get the knee healthier.

Its a big leap of faith, Parekh said.

Dr. Alexis Colvin, orthopedic surgeon and sports medicine specialist at the Icahn School of Medicine at Mount Sinai, said there have been promising studies done regarding stem cells ability to reduce cartilage damage, as opposed to cortisone, which only provides pain relief.

Sabathia underwent a stem-cell procedure for his knee that could keep him off the mound longer than the Yankees want.Photo: Getty Images

Parekh said it was similar to the procedures Alex Rodriguez and Kobe Bryant had done in Germany, and Dr. Andrews was bringing the technology to the United States.

Unfortunately, the only way to know if its working is by symptoms, Parekh said.

And if not?

More here:
Sabathia could actually miss 8-12 weeks: Doc

Beverly Hills Orthopedic Institute Now Offering Stem Cell Procedures for Cartilage Damage in Joints

Beverly Hills, CA (PRWEB) May 19, 2014

The top Beverly Hills orthopedic surgeon is now offering stem cell procedures for cartilage damage in joints. The procedures have been showing excellent potential for helping repair arthritis damage in joints along with focal defects due to trauma or sporting injuries. Call (310) 438-5343 for more information and scheduling.

As stem cell procedures for joint arthritis and cartilage damage become mainstream, Beverly Hills Orthopedic Institute is leading the way in helping patients achieve pain relief and avoid major surgery. Dr. Raj is the Double Board Certified Medical Director at the practice, and has been named one of the top LA orthopedic surgeons on several occasions.

Dr. Raj treats patients ranging from professional athletes to weekend warriors, to grandparents and celebrities. With exceptional experience in treating extremity joints with stem cell procedures, Dr. Raj is the "go to" regenerative medicine doctor in LA and Beverly Hills.

Multiple types of procedures are performed. The first option involves the patient's own bone marrow derived stem cells, which is a low risk, outpatient procedure. The bone marrow is immediately processed to concentrate the stem cells and injected into the problem joint.

The second type of procedure involves amniotic derived stem cells. These are harvested from consenting donors after scheduled c-sections and then processed at an FDA regulated lab. The amniotic derived fluid has been used over 20,000 times worldwide and is very rich in stem cells and growth factors.

Dr. Raj is an ABC News Medical Correspondent along with a WebMD medical expert. For those in need of pain relief and surgery avoidance with arthritis and cartilage defects, Dr. Raj at Beverly Hills Orthopedic Institute is the top choice in Los Angeles.

Call (310) 438-5343 for more information and scheduling.

Originally posted here:
Beverly Hills Orthopedic Institute Now Offering Stem Cell Procedures for Cartilage Damage in Joints

Scientists Get Closer to the Stem Cells That May Drive Cancers

THURSDAY, May 15, 2014 (HealthDay News) -- Although the very concept of cancer stem cells has been controversial, new research provides proof that these distinct types of cells exist in humans.

Using genetic tracking, researchers found that a gene mutation tied to cancer's development can be traced back to cancer stem cells. These cells are at the root of cancer and responsible for supporting the growth and progression of the disease, the scientists report.

Cancer stem cells are able to replenish themselves and produce other types of cancer cells, just as healthy cells produce other normal cells, the study's British and European authors explained.

"It's like having dandelions in your lawn. You can pull out as many as you want, but if you don't get the roots they'll come back," study first author Dr. Petter Woll, of the MRC Weatherall Institute for Molecular Medicine at the University of Oxford, said in a university news release.

The researchers, led by a team of scientists at Oxford and the Karolinska Institute in Sweden, said their findings could have significant implications for cancer treatment. They explained that by targeting cancer stem cells, doctors could not only get rid of a patient's cancer but also prevent any remaining cancer cells from sustaining the disease.

The study, published May 15 in Cancer Cell, involved 15 patients diagnosed with myelodysplastic syndromes (MDS), a type of cancer that often develops into acute myeloid leukemia, a form of blood cancer.

The researchers examined the cancer cells in the patients' bone marrow. Four of the patients were also monitored over time. One patient was followed for two years. Two patients were followed for 30 months and another patient was monitored for 10 years.

According to the researchers, in prior studies citing the existence of cancer stem cells, the lab tests that were used to identify these cells were considered by many to be unreliable.

However, "In our studies we avoided the problem of unreliable lab tests by tracking the origin and development of cancer-driving mutations in MDS patients," explained study leader Sten Eirik Jacobsen, of Oxford's MRC Molecular Haematology Unit and the Weatherall Institute for Molecular Medicine.

According to the research, a distinct group of MDS cells had all the characteristics of cancer stem cells, and only these particular cancer cells appeared able to cause tumor spread.

Read the rest here:
Scientists Get Closer to the Stem Cells That May Drive Cancers

A Fetal Enzyme Helps Stem Cells Recover From Limb Injuries

April Flowers for redOrbit.com Your Universe Online

Nearly two million Americans a year suffer from ischemia reperfusion injuries. A wide variety of scenarios can be caused by these injuries that result in restricted blood flowfrom traumatic limb injuries, to heart attacks, to donor organs. Restoring the blood flow to an injured leg, for example, seems like it would be a good idea. A new study from Georgia Regents University, however, suggests that restoring the flow could cause additional damage that actually hinders recovery.

Rather than promoting recovery, restoring blood flow actually heightens inflammation and cell death for many of these patients.

Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down, said Dr. Jack Yu, Chief of MCGs Section of Plastic and Reconstructive Surgery. All kinds of bad things start happening.

Yu collaborated with Dr. Babak Baban, immunologist at the Medical College of Georgia and College of Dental Medicine at Georgia Regents University. Their study, published in PLOS ONE, reveals that one way stem cell therapy appears to intervene is with the help of an enzyme also used by a fetus to escape rejection by the mothers immune system.

Baban notes that previous studies have found a correlation between stem cells and recovery. The stem cells both enable new blood vessel growth and by turning down the now-severe inflammation. The new findings reveal that ndoleomine 2,3 dioxygenase, or IDO, widely known to dampen the immune response and create tolerance, plays an important role in regulating inflammation in that scenario. IDO is expressed by stem cells and numerous other cell types.

Stem cell efficiency was boosted by approximately one-third when tested on animal models comparing the therapy in normal mice versus mice missing IDO.Decreased expression of inflammatory markers, swelling and cell death were all observed. These are all associated with shorter, improved recoveries.

We dont want to turn off the immune system, we want to turn it back to normal, Baban said.

Even a brief period of inadequate blood flow, and the resulting lack of nutrients, can start problems that result in the rapid accumulation of destructive acidic metabolites, free radicals, and damage to cell structures. Mitochondria, which are the cells power plants, should be producing the energy source ATP. Instead, they quickly become fat, leaky and dysfunctional in this situation.

The mitochondria are sick; they are very, very sick, Yu said. Enormous additional stress is added to these sick powerhouses when blood flow is restored.

Follow this link:
A Fetal Enzyme Helps Stem Cells Recover From Limb Injuries

Enzyme helps stem cells improve recovery from limb injuries

While it seems like restoring blood flow to an injured leg would be a good thing, it can actually cause additional damage that hinders recovery, researchers say.

Ischemia reperfusion injury affects nearly two million Americans annually with a wide variety of scenarios that temporarily impede blood flow -- from traumatic limb injuries, to heart attacks, to donor organs, said Dr. Babak Baban, immunologist at the Medical College of Georgia and College of Dental Medicine at Georgia Regents University.

Restoring blood flow actually heightens inflammation and cell death rather than recovery for many of these patients.

"Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down," said Dr. Jack Yu, Chief of MCG's Section of Plastic and Reconstructive Surgery. "All kinds of bad things start happening."

Baban and Yu are collaborators on a study published in the journal PLOS ONE that shows one way stem cell therapy appears to intervene is with the help of an enzyme also used by a fetus to escape rejection by the mother's immune system.

Earlier studies indicate stem cells may improve recovery both by enabling new blood vessel growth and by turning down the now-severe inflammation, Baban said. The new study shows that indoleomine 2,3 dioxygenase, or IDO, widely known to dampen the immune response and create tolerance, plays an important role in regulating inflammation in that scenario. Stems cells and numerous other cell types are known to express IDO.

In fact, IDO boosted stem cell efficacy by about a third in their studies in animal models comparing the therapy in normal mice versus mice missing IDO. The researchers documented decreased expression of inflammatory markers, swelling and cell death, which correlate with a shorter, improved recovery.

That could be just what the doctor ordered for these patients, said Baban, the study's corresponding author. "We don't want to turn off the immune system, we want to turn it back to normal," he said.

Problems start with even a short period of inadequate blood and nutrients resulting in the rapid accumulation of destructive acidic metabolites, free radicals, and damage to cell structures, Yu said. Cell power plants, called mitochondria, which should be producing the energy source ATP, are among the early casualties, quickly becoming fat, leaky, and dysfunctional.

"The mitochondria are sick; they are very, very sick," Yu said. When blood flow is restored, it can put huge additional stress on sick powerhouses.

See the rest here:
Enzyme helps stem cells improve recovery from limb injuries

Stem Cells Make Heart Disease-on-a-Chip

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine because it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

The work, published in May 2014 in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

A release from Harvard explains that using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients. The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease. The release quotes Parker as saying, "You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract. "The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species or ROSa normal byproduct of cellular metabolism released by mitochondriawhich had not been recognized as an important part of this disease," said Pu, who cares for patients with the disorder. "We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function," Pu added. "Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle." His team is now trying to translate this finding by doing ROS therapy and gene replacement therapy in animal models of Barth syndrome to see if anything could potentially help human patients. At the same time, the scientists are using their human 'heart disease-on-a-chip' as a testing platform for drugs that are potentially under trial or already approved that might be useful to treat the disorder.

"We tried to thread multiple needles at once and it certainly paid off," Parker said. "I feel that the technology that we've got arms industry and university-based researchers with the tools they need to go after this disease." Both Parker and Pu, who first talked about collaborating at a 2012 Stockholm conference, credit their partnership and scientific consilience for the success of this research. Parker asserted that the 'organs-on-chips' technology that has been a flagship of his lab only worked so fast and well because of the high quality of Pu's patient-derived cardiac cells. "When we first got those cells down on the chip, Megan, one of the joint first authors, texted me 'this is working,'" he recalled. "We thought we'd have a much harder fight." "When I'm asked what's unique about being at Harvard, I always bring up this story," Pu said. "The diverse set of people and cutting-edge technology available at Harvard certainly made this study possible." The researchers also involved in this work include: Joint first authors Gang Wang, MD, of Boston Children's Hospital, and Megan McCain, PhD, who earned her degree at the Harvard School of Engineering and Applied Sciences and is now an assistant professor at the University of Southern California. Amy Roberts, MD, of Boston Children's Hospital, and Richard Kelley, MD, PhD, at the Kennedy Krieger Institute provided patient data and samples, and Frdric Vaz, PhD, and his team at the Academic Medical Center in the Netherlands conducted additional analyses. Technical protocols were shared by Kenneth Chien, MD, PhD, at the Karolinska Institutet.

Kevin Kit Parker, PhD, is the Tarr Family Professor of Bioengineering and Applied Physics in Harvard's School of Engineering and Applied Sciences, a Core Faculty member of the Wyss Institute for Biologically Inspired Engineering, and a Principal Faculty member of the Harvard Stem Cell Institute. William Pu, MD, is an Associate Professor at Harvard Medical School, a member of the Department of Cardiology at Boston Children's Hospital, and an Affiliated Faculty member of the Harvard Stem Cell Institute. George Church, PhD, is a Professor of Genetics at Harvard Medical School and a Core Faculty member of the Wyss Institute of Biologically Inspired Engineering. The work was supported by the Barth Syndrome Foundation, Boston Children's Hospital, the National Institutes of Health, and charitable donations from Edward Marram, Karen Carpenter, and Gail Federici Smith.

See the rest here:
Stem Cells Make Heart Disease-on-a-Chip

Patient stem cells used to make 'heart disease-on-a-chip'

Harvard scientists have merged stem cell and 'organ-on-a-chip' technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the 'organs-on-chips' expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editing -- a technique pioneered by Harvard collaborator George Church, PhD -- to mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

"You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function," said Parker, who has spent over a decade working on 'organs-on-chips' technology. "In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract.

"The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species or ROS -- a normal byproduct of cellular metabolism released by mitochondria -- which had not been recognized as an important part of this disease," said Pu, who cares for patients with the disorder.

"We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function," Pu added. "Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle."

His team is now trying to translate this finding by doing ROS therapy and gene replacement therapy in animal models of Barth syndrome to see if anything could potentially help human patients. At the same time, the scientists are using their human 'heart disease-on-a-chip' as a testing platform for drugs that are potentially under trial or already approved that might be useful to treat the disorder.

See the rest here:
Patient stem cells used to make 'heart disease-on-a-chip'

'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Image Caption: Researchers use modified RNA transfection to correct genetic dysfunction in heart stem cells derived from Barth syndrome patients. The series of images show how inserting modified RNA into diseased cells causes the cells to produce functioning versions of the TAZ protein (first image: in green) that correctly localize in the mitochondria (second image: in red). When the images are merged to demonstrate this localization, green overlaps with red, giving the third image a yellow color. Credit: Gang Wang and William Pu/Boston Children's Hospital

[ Watch The Video: Cardiac Tissue Contractile Strength Differences Shown Using Heart-On-A-Chip ]

Harvard University

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patients specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Childrens Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

You dont really understand the meaning of a single cells genetic mutation until you build a huge chunk of organ and see how it functions or doesnt function, said Parker, who has spent over a decade working on organs-on-chips technology. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think thats a big advance.

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didnt seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cells ability to build itself in a way that allows it to contract.

Read the rest here:
'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Epigenetic mechanisms distinguishing stem cell function, blood cancer decoded

Researchers at Dartmouth's Norris Cotton Cancer Center have published results from a study in Cell Reports that discovers a new mechanism that distinguishes normal blood stem cells from blood cancers.

"These findings constitute a significant advance toward the goal of killing leukemia cells without harming the body's normal blood stem cells which are often damaged by chemotherapy," said Patricia Ernst, PhD, co-director of the Cancer Mechanisms Program of the Norris Cotton Cancer Center and an associate professor in Genetics at the Geisel School of Medicine.

The study focused on a pathway regulated by a gene called MLL1 (for Mixed Lineage Leukemia). Ernst served as principal investigator; Bibhu Mishra, PhD, as lead author.

When the MLL1 gene is damaged, it can cause leukemia, which is a cancer of the blood, often occurring in very young patients. Researchers found that the normal version of the gene controls many other genes in a manner that maintains the production of blood cells.

"This control becomes chaotic when the gene is damaged or 'broken' and that causes the normal blood cells to turn into leukemia," said Ernst.

The researchers showed that the normal gene acts with a partner gene called MOF that adds small "acetyl" chemical modification around the genes that it controls. The acetyl modification acts as a switch to turn genes on. When this function is disrupted, MLL1 cannot maintain normal blood stem cells.

The researchers also found that a gene called Sirtuin1 (more commonly known for controlling longevity) works against MLL1 to keep the proper amount of "acetyl" modifications on important stem cell genes. Blood cancers involving MLL1, in contrast, do not have this MOF-Sirtuin balance and place a different chemical modification on genes that result in leukemia.

Blood stem cells also represent an important therapy for patients whose own stem cells are destroyed by chemotherapy. This study also reveals a new way to treat blood stem cells from donors that would expand their numbers.

"These finding suggest that drugs that block Sirtuin1 may be combined with MLL1 blocking drugs in certain leukemia to both preserve stem cells that make normal blood at the same time as killing leukemia cells," said Ernst.

Story Source:

Read the rest here:
Epigenetic mechanisms distinguishing stem cell function, blood cancer decoded

New Vet-Stem Patent for Stem Cells Covers Sports Medicine Applications

Poway, California (PRWEB) May 08, 2014

Vet-Stem, Inc., announced that a major patent has been issued directly to Vet-Stem for New Zealand. This patent covers methods for extracting/preparing and using adipose tissue-derived stem cells for preventing or treating diseases in any mammal, including humans. This patent will provide coverage for the ongoing commercial and development programs at Vet-Stem and for its licensees in Australasia. This patent may be available for licensing for human applications to other companies interested in working in this field.

Of particular interest is the application to the rapidly evolving field of Regenerative Sports Medicine. This patent covers the preparation methods and use of adipose-derived stem cells in treating any type of disease, but specifically covers the use in injuries or diseases of the musculoskeletal system such as tendon tears, ligament injury and osteoarthritis.

This new patent issued to Vet-Stem adds to the many other patents in the Vet-Stem portfolio that cover methods of preparing and using regenerative cells from adipose. Vet-Stem has already had a similar patent issue in the EU and applications are pending in the US and other countries. In addition to these owned patents, Vet-Stem has exclusive worldwide rights to a portfolio of patents (over 50 issued and 70 pending patents) from Artecel, Inc. (including University of Pittsburgh patents) and the University of California, which further strengthens the companys intellectual property position in this rapidly developing field.

As the first company in the world to offer fat derived stem cell services for veterinary use, Vet-Stem has rapidly developed the market, providing treatments to over 10,000 horses, dogs, cat and exotic species. Intellectual property rights can be confusing in a rapidly developing market with evolving technology, said Bob Harman, DVM, MPVM, CEO of Vet-Stem. We needed to do everything possible to protect the market that we are creating in regenerative veterinary medicine and to ensure that the value of the company is optimized. The value of this technology has increased greatly since the founding of the company in 2002 as the business model, therapeutic activity of the cells, and ease of tissue collection have all been demonstrated.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read the rest here:
New Vet-Stem Patent for Stem Cells Covers Sports Medicine Applications