Category Archives: Stem Cell Medical Center

Kansas stem cell center success inspires lawmaker change of heart – National Right to Life News

By Kathy Ostrowski, Legislative Director, Kansans for Life

Kansas Democrat State Rep. John Wilson expressed regret to MSCTC conferees Dr. David Prentice and Dr. Buddhadeb Dawn for not voting with the majority in 2013 to create the successful stem cell center

Once in a blue moon, a lawmaker publicly admits he regrets how he voted. Those of us present at Tuesdays hearing in the Kansas House Health & Human Services committee witnessed such a concession.

The focus of the hearing was the status report on the Midwest Stem Cell Therapy Center (MSCTC), given primarily by Board advisor, Dr. David Prentice and the Director, Dr. Buddhadeb Dawn. The room was packed and the presentation was positively uplifting.

Gov. Sam Brownback, along with the Kansas Legislature, had approved the formation of the MSCTC in 2013 to be housed at the University of Kansas Medical Center in Kansas City. The Center is designed to serve as a regional hub of stem cell therapy, research, and education as well as an engine for increased processing of ethically-derived, adult stem cells (ASCs) for patient use.

There are numerous kinds of ASCs derived from different human tissues (see graphic). The point is that no ASCs require the destruction of human embryos.

In 2013, those paying careful attention to the stem cell issue realized the overblown expectations about the usefulness of stem cells derived from human embryos. Yet state Rep. John Wilson (D-Lawrence) was still unconvinced of the need to fund a patient-centered medical center using only non-embryonic stem cells. He voted against the measure, although the MSCTC passed.

On Tuesday, during the Q&A period, Wilson congratulated the Center for its success and acknowledged that he regretted voting against its creation. KFL later thanked Wilson for his remarks and joined him in his enthusiasm for the Center.

ADULT STEM CELL PROJECTS

Dr. David Prentice

Dr. Prentice, a native Kansan and frequent expert testifying on bioethical issues at the Kansas Statehouse, described ASC therapies as the gold standard in regenerative medicine, with over 1.5 million people having been treated to date, world-wide. His presentation examined the real patients who are benefitting from the current therapies offered at the MSCTC, such as 300 patients annually receiving stem cells in collaboration with the KU Cancer Center.

Prentice detailed some specific projects already underway, some in pre-clinical research phase, and others in planning stages. They include numerous new and innovative uses for ASCs targeting the brain, heart, spinal cord, liver, and joints.

Of particular interest is the groundbreaking direction MSCTC is taking on graft-versus-host disease, which can be a serious complication for some bone marrow adult stem cell transplants. Graft-versus-host is a problem in which stem cells not derived from the patient are introduced into the patient to replace those lost through chemo/radiation, but the cells begin to attack the new host as foreign.

Dr. Buddhadeb Dawn

MSCTCs director, cardiologist Dr. Dawn, is described by Prentice as one of the world leaders in cardiac repair technologies. With Dr. Dawn and other specialists at the Center, patients with severe heart ailments formerly without hope are given hope with adult stem cells.

Director Dawn pointed proudly to the Centers accomplishments in a mere 3 years, and described continuing efforts to collaborate with other scientists and private companies as well as develop methods and products that can be patented.

The fifth MSCTC annual conference is scheduled for September 15-16. Details about it and the Center can be found at http://www.kumc.edu/msctc.html.

The Midwest Stem Cell Therapy Center, committed to advancing the use of ethical science, is proving itself to be everything we hoped for.

See the rest here:
Kansas stem cell center success inspires lawmaker change of heart - National Right to Life News

Toulon teen with POTS just ‘wants to be a normal kid’ – Peoria Journal Star

Gary L. Smith of the Journal Star

TOULON A Stark County teenager who has endured a lengthy ordeal from a debilitating autoimmune disorder now faces extensive and expensive further treatment.

BrookeLynn Montgomery, 15, has been an athlete and 2016 Junior Miss Stark County Queen, and a person looking at her would never imagine that she suffers from such symptoms as severe chest pain, headaches, heart palpitations, and fatigue, noted an aunt who has started a fundraising drive for medical and family expenses on gofundme.com.

They call it an invisible illness, because when you look at her, she looks fine, said Patricia Edwards, who lives in Florida. But inside, its like shes running a marathon.

The Wethersfield High School freshman has been diagnosed with Postural Orthostatic Tachycardia Syndrome involving a malfunction of the autonomic nervous symptom. The imposing term reflects a major diagnostic criterion of a heart rate increase of 40 beats per minute or more upon standing.

Brookes resting heart rate is 62, and it would go up over 100, and that didnt even require standing, said her mother, Shelly Montgomery. That would be just turning over in bed.

POTS is not a disease in itself but rather a cluster of symptoms that are frequently seen together, according to Dysautonomia International. It can have many underlying disorders, and symptoms can include low blood volume, fiber neuropathy, dizziness, exercise intolerance, nausea, diminished concentration, fainting, and shortness of breath.

While POTS predominantly impacts young women who look healthy on the outside, researchers compare the disability seen in POTS to the disability seen in conditions like COPD (chronic obstructive pulmonary disease) and congestive heart failure, the organization says on its website.

After symptoms that appeared in 2015 led to discovery of enlarged lymph nodes, it appeared possible that there might be a recurrence from an abdominal tumor that led to removal of Brookes appendix and part of her colon during an earlier health crisis in 2012. But the biopsy was negative, and the POTS diagnosis was eventually confirmed in May 2016 by Dr. Mark J. Holterman, a professor of surgery and pediatrics at the University of Illinois College of Medicine at Peoria.

I have a lot of faith in him. Hes been our saving grace, said Shelly Montgomery. If it had not been for him, I dont think wed be sane today.

Brooke has been in and out of Childrens Hospital of Illinois at OSF Saint Francis Medical Center in Peoria several times for treatments that have included medications, biological response therapy, chemotherapy, and plasmapheresis, a plasma-exchange process. But her case was made complex by allergic reactions to some medications, and the plasma process has become increasingly less effective in reducing her pain, family members said.

In the last four months, she has declined rapidly, and is no longer able to attend school, noted Edward Smith of Toulon, a grandfather. Theyre looking at getting her home tutoring.

The next medical step will be going to Chicago later this month for experimental stem cell-based treatment arranged by Holterman. Shelly Montgomery said Saturday that the doctor was out of the country and the family was still waiting to learn the details of time and place.

Hell be putting things in motion when he gets back, she said. Hes very optimistic. He feels that the (stem cell treatment) is going to do a lot for her.

Because the treatment is experimental, the cost will not be covered by the insurance that has helped with some prior expenses. Even with some fees waived, its expected to cost $5,000 to $6,000, Edwards said on the gofundme page for BrookeLynns Medical Expenses.

In addition, It is unclear at this point how long Brooke will stay in Chicago or how many trips to Chicago will need to be made, she added. Funds are needed immediately to help the family with medical costs as well as travel expenses.

Donations can also be made to the Brooke Montgomery Medical Expenses account at State Bank of Toulon, 102 W. Main St., Toulon IL 61483.

It was very difficult to accept the idea of requesting financial help, said Shelly Montgomery, who is a dental technician in Peoria. Brookes father, Donald Montgomery, is assistant manager at a farm supply store in Kewanee, and the family lives north of Toulon. An older daughter, Alyssa Watt, 23, lives in Kewanee.

But even with some insurance coverage, co-pays and other non-covered costs have been substantial, she said. And the financial impact has been increased by extra trips to Peoria and missed days of work, she added.

Its time to let family and friends help out, she said.

The family is in uncharted territory, she acknowledged, dealing with a condition that has no cure but has been reported to improve greatly in cases when the best treatment is found. The family is determined to find it.

Brooke has a new normal, and its not an acceptable normal. She shouldnt have to go through what she goes through every day, her mother said. Shes such a tough kid. She doesnt just sit and sulk about it. She just wants to go back to school and be a normal kid.

Gary L. Smith can be reached at (800) 516-0389 or glsmith@mtco.com. Follow him on Twitter @Glsmithx.

View original post here:
Toulon teen with POTS just 'wants to be a normal kid' - Peoria Journal Star

Creative Medical Technology Holdings Appoints Internationally Renowned Stem Cell Pioneer as Chief Scientific Officer – Yahoo Finance

SAN DIEGO and PHOENIX, March 8, 2017 /PRNewswire/ --Creative Medical Technology Holdings, Inc. (CELZ) announced today the appointment of Dr. Thomas Ichim to the position of Chief Scientific Officer. Dr. Ichim will lead development of the Company's clinical stage CaverStemTM personalized stem cell therapy for erectile dysfunction, as well as advance preclinical and eventually clinical studies on the Company's universal donor AmnioStemTM stem cell therapy for post-stroke recovery.

"It is my honor to welcome Dr. Ichim to the position of Chief Scientific Officer," said Timothy Warbington, President and CEO of CELZ. "I have known Dr. Ichim for more than 10 years and have witnessed him grow his previous company, Medistem Inc., from concept to FDA Investigational New Drug (IND) clearance, to eventual acquisition by the NYSE traded company Intrexon. I am confident that Dr. Ichim will put CELZ on the same trajectory of success."

"Having published 20 peer-reviewed papers with Dr. Ichim over the last nine years, I greatly respect his unique ability to rapidly accelerate progress from concept, to patent, product. I look forward to continuing our collaborations in his new position," said Dr. Amit Patel, Cofounder and Board Member of CELZ, and Head of Cardiac Surgery at University of Miami.

"Dr. Ichim represents a true visionary in the area of cellular therapy, being one of the few people that effectively combines deep knowledge of basic science, regulatory affairs, and clinical translation. I plan to leverage our existing strengths at the Pacific Neurosciences Institute and at St John Providence to accelerate neurological uses of the Company's AmnioStemTM stem cell, particularly in the indication of post-stroke recovery," said Dr. Santosh Kesari, MD, PhD, FANA, FAAN, Scientific Advisory Board Member of CELZ. Dr. Kesari is Chair and Professor, Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, as well as Director of Neuro-oncology, Providence Saint John's Health Center and leads the Pacific Neuroscience Research Center at Pacific Neuroscience Institute.

"I am enthusiastic about working with the distinguished team that Mr. Warbington assembled to accelerate clinical development of the Company's products," said Dr. Thomas Ichim, Ph.D. "This is one of those few occasions when one finds themselves in a position to work with people that one respects both as individuals and as leaders in their fields."

Dr. Ichim has extensive experience with stem cell therapy and cellular product development through FDA regulatory pathways. Dr. Ichim spent over seven years as the Chief Executive Officer, and subsequently, President and Chief Scientific Officer of Medistem, developing and commercializing a novel stem cell, the Endometrial Regenerative Cell, through drug discovery, optimization, preclinical testing, IND filing, and up through Phase II clinical trials with the FDA. Subsequent to the acquisition of Medistem by Intrexon, in a deal worth $26 million, Dr. Ichim was brought on to the parent company in its cell engineering unit as Vice President of Cellular Therapy. Dr. Ichim has over 100 patents and patent applications, as well as 103 peer reviewed publication.

About Creative Medical Technology Holdings

Creative Medical Technology Holdings, Inc. is a clinical stage biotechnology company currently trading on the OTCQB under the ticker symbol CELZ. For further information about the company go to http://www.creativemedicaltechnology.com.

Forward-Looking Statements

OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website at http://www.sec.gov.

Read More

Read this article:
Creative Medical Technology Holdings Appoints Internationally Renowned Stem Cell Pioneer as Chief Scientific Officer - Yahoo Finance

Radiation study points to leukemia risk for Mars explorers – New Atlas

2 pictures

The Martian environment is not too damaging to NASA's Curiosity Mars rover, but that won't be the case for one-day settlers on the Red Planet(Credit: NASA/JPL-Caltech/MSSS)

The prospect of a manned mission to Mars raises all kinds of uncertainties, including how the explorers will feed themselves and find shelter, assuming that they make it there in the first place. But one of the real reservations scientists currently hold about travel to the Red Planet is what kind of impact deep-space radiation might have on the human body. In a new NASA-funded study, researchers have found that it may heighten the risk of leukemia in humans, brought on by changes to the health and function of vital stem cells.

The question of how radiation affects humans in space is being addressed from a number of angles, with NASA conducting studies into its impacts on spacewalking astronauts, how it might affect cognition and behavior and how it might switch genes on and off. One source of radiation is galactic cosmic rays (GCRs), which predominantly travel from outside our solar system, while a closer source is our own Sun, which shoots off solar flares and energy in the form of electromagnetic waves and particles.

Here on Earth we are guarded from these dangers by our planet's magnetic field, but in space and on Mars whose magnetic field disappeared billions of years ago we'll receive no such protections. This week, NASA even floated the idea of one day creating an artificial magnetic field around Mars to protect crewed missions there in the future.

Research into the effects of deep-space radiation will help scientists determine how necessary such extreme measures might be. In the latest example of this, a team from Wake Forest Baptist Medical Center carried out a study looking to assess its impacts specifically on human hematopoietic stem cells (HSCs). These immature cells can develop into all types of blood cells, including those that fight infections and malignant cells, and have shown promise as tools in the fight against HIV and leukemia.

The team did this by taking HSCs from healthy donors aged between 30 and 55 (to represent typical astronauts) and exposed them to simulated solar energetic particles and GCRs at the same levels one is expected to experience during a Mars mission. Analysis of the cells in the lab afterwards revealed that the radiation affected the cells at the stem cell level, causing mutations in genes that affected their ability to develop into mature blood cells.

"Radiation exposure at these levels was highly deleterious to HSC function, reducing their ability to produce almost all types of blood cells, often by 60 to 80 percent," says Christopher Porada, senior researcher on the project. "This could translate into a severely weakened immune system and anemia during prolonged missions in deep space."

Studying the radiation-treated cells in the lab is one thing, studying them in the body is another. To get an insight into what that might look like, the team then transplanted the GCR-irradiated HSCs into mice in effect, "humanizing" them. The mice went on to develop T-cell acute lymphoblastic leukemia. The team describe this as the first demonstration that deep space radiation may increase the leukemia risk in humans.

"Our results show radiation exposure could potentially increase the risk of leukemia in two ways," says Porada. "We found that genetic damage to HSCs directly led to leukemia. Secondly, radiation also altered the ability of HSCs to generate T and B cells, types of white blood cells involved in fighting foreign 'invaders' like infections or tumor cells. This may reduce the ability of the astronaut's immune system to eliminate malignant cells that arise as a result of radiation-induced mutations."

The research was published in the journal Leukemia.

See the original post:
Radiation study points to leukemia risk for Mars explorers - New Atlas

Center for Stem Cell & Regenerative Medicine – Institute for …

Phone 713.500.3429; Fax 713.500.2424

About the Center

A major focus of contemporary medicine is the development of effective therapies for the restoration of human tissues and organs lost to diseases and trauma. Regenerative Medicine is a rapidly emerging field that stands at the intersection of a variety of rapidly developing scientific disciplines: stem cell biology, tissue engineering, biomaterials, molecular biology, immunology and transplantation biology and clinical research. Implicit in the successful design, implementation and application of regenerative medicine/tissue engineering approaches to the repair of a damaged tissue or organ is the reliance on the unique biological properties of stem cells.

The mission statement of the Center for Stem Cell and Regenerative Medicine at the IMM is: To study the fundamental properties of stem cells and to translate their unique biological properties into novel cellular therapies for graft engineering and tissue regeneration for currently intractable disorders. While it is therefore implicit that any such program would span basic-translational-clinical research, it is essential that such an endeavour is ultimately underpinned by excellence in fundamental stem cell research. The Director of the Center, Dr. Brian R. Davis is currently in the process of recruiting a multidisciplinary faculty with the appropriate breadth of expertise, innovation and scientific rigor in the discipline of stem cell biology with the dual intention to promote the excellence and innovation of research within the Center and secondly to ensure the quality and appropriateness of stem cell based translational research initiatives emanating from the Center. In addition, the Center is also envisioned as an educational resource, which in the medium to long-term will be the basis for the development of an academic program in stem cell biology on campus. Moreover, by interfacing effectively with other programs and institutions within the UTHSC, the Center will also act as a focus to stimulate the development and implementation of novel cellular therapies for a range of diseases and disorders.

Some of the current areas of research in the Center are highlighted below:

Brian R. Davis, Ph.D. Associate Professor of Molecular Medicine & Director, Center for Stem Cell and Regenerative Medicine Annie and Bob Graham Distinguished Chair in Stem Cell Biology Ph.D. ~ California Institute of Technology / Pasadena, California

Qi Lin Cao,M.D. Associate Professor, The Vivian L. Smith Department of Neurosurgery & Center for Stem Cell and Regenerative Medicine M.D.~ Hunan Medical University / Hunan, China

Charles S. Cox, Jr.,M.D. Professor, Department of Pediatric Surgery& Center for Stem Cell and Regenerative Medicine M.D.~ The University of Texas Medical Branch / Galveston, Texas

Radbod Darabi, M.D., Ph.D. Assistant Professor of Stem Cell Biology, Center for Stem Cell and Regenerative Medicine M.D.- Zahedan University of Medical Sciences/ Zahedan, Iran Ph.D.- Tehran (Iran) University of Medical Sciences/ Tehran, Iran

Dong H. Kim,M.D. Professor,Chair, The Vivian L. Smith Department of Neurosurgery&Center for Stem Cell and Regenerative Medicine M.D.~ The Univeristy of California, San Francisco / San Francisco, California

Mikhail G. Kolonin,Ph.D. Associate Professor of Molecular Medicine,Center for Stem Cell and Regenerative Medicine Jerold B. Katz Distinguished Professorship in Stem Cell Research Ph.D.~ Wayne State University / Detroit, Michigan

Yong Li, M.D.,PhD Associate Professor, Department of Pediatric Surgery & Center for Stem Cell and Regenerative Medicine M.D.- Second Military Medical University / People's Republic ofChina Ph.D.- Third Miliary Medical University / People's Republic of China

Ying Liu, M.D.,Ph.D. Assistant Professor, The Vivian L. Smith Department of Neurosurgery & Center for Stem Cell and Regenerative Medicine M.D.- Peking University Health Science Center / Beijing, China Ph.D.- University of Utah / Salt Lake City, Utah

Nami McCarty,Ph.D. Associate Professor,Center for Stem Cell and Regenerative Medicine Ph.D.- Purdue University / West Lafayette, Indiana

Naoki Nakayama,Ph.D. Associate Professor of Molecular Medicine,Center for Stem Cell and Regenerative Medicine Ph.D.- University of Tokyo / Tokyo, Japan

Laura A. Smith Callahan,Ph.D. Associate Professor of Molecular Medicine,Center for Stem Cell and Regenerative Medicine Ph.D.- University of Michigan / Ann Arbor, Michigan

Pamela L. Wenzel, PhD Assistant Professor, Department of Pediatric Surgery & Center for Stem Cell and Regenerative Medicine PhD- The Ohio State University / Columbus, Ohio

Jiaqian Wu, PhD Assistant Professor, The Vivian L. Smith Department of Neurosurgery & Center for Stem Cell and Regenerative Medicine PhD- Baylor College of Medicine / Houston, Texas

Wa Xian, PhD Assistant Professor of Molecular Medicine, Center for Stem Cell and Regenerative Medicine PhD- The University of Texas, M. D. Anderson/ Houston, Texas

View original post here:
Center for Stem Cell & Regenerative Medicine - Institute for ...

Regenerative therapy is new frontier in injury recovery – TCPalm

Fran Foster, The Newsweekly 1:01 a.m. ET March 8, 2017

Regenerative Biologics Institute (RBI) Managing Director Jason Griffeth in the procedure room where he performs advanced regenerative medicine treatments. He has been studying the science of stem cells for nearly 20 years.(Photo: Fran Foster)

Whenever their bodies are ailing, people usually look for a magical solution or an easy-to-swallow pill to make things better. Turns out, in some situations, that sought-for remedy may be in your own fat cells.

Beth Darraugh, 50, lives here in Vero Beach as well as in New York City. She has been active all of her life from volleyball in her youth to walking along the beach in Mexico. Shes experienced plenty of aches and pains but, as she has gotten older, she realized she wasnt recovering as quickly.

I had already had some orthopedic problems with my knee and was told I was probably going to have to succumb to surgery, she says. I wasnt ready for that and started researching about other techniques. While in Mexico, walking with my mom, something didnt feel right and I knew I had to do something. (Living) part time in New York City requires a lot of walking and it was getting harder and harder.

This is where Regenerative Biologics Institute, located here in Vero Beach, entered Darraughs life. RBI provides an option for treating orthopedic conditions and pain besides pills, cortisone shots, arthroscopic surgery or total joint replacements, which can all have significant drawbacks.

Many people are not aware that they can harness and concentrate their own bodys natural healing ability in the form of stem cells and platelets, said RBI Managing Director Jason Griffeth. There are safe and effective options that are treating these conditions through regenerative medicine.

Basically stem cells are the bodys natural repair cells, from which all other cells are derived. According to multiple research sources, stem cells can regenerate and heal injured tissue, as well as decrease inflammation. As we age, the amount of stem cells in our body declines as does our bodys ability to repair an injury.

RBIs Managing Director Jason Griffeth with Medical Director Dr. Brett Haake at their office across from Indian River Medical Center in Vero Beach(Photo: Fran Foster)

We found out that fat tissue is one of the richest sources of stem cell in the body and it works really well to unlock our bodies as a natural way of healing itself, Griffeth said, joking that Its not that bad to carry around a little extra fat.

The science behind it has been around since 1981 but has received more attention since money started pouring into the research. Professional athletes such as Mets pitcher Bartolo Colon and tennis star Rafael Nadal have reportedly used regenerative therapy to speed up injury recovery time.

In 2013, Harvard Medical School received a 10-year, multimillion grant from the National Football League Players Association for an initiative to prevent, treat and study football-related injuries.

The Mayo Clinic calls the therapy a "game-changing area of medicine," offering effective therapy for people whose conditions seem beyond repair.

Griffeth, a University of Florida masters graduate, studied biotechnology and cell science. He became fascinated with the human anatomy and its ability to help itself when he was working in Fort Lauderdale, in 2009, doing clinical studies with patients with damaged heart tissue.

RBI, located in Vero Beach, is committed to using stem cells for regenerative healing therapies once available only to professional athletes.(Photo: Fran Foster)

We would take a muscle biopsy from the thigh muscle, isolate the stem cells from that, then culture and expand them for about three weeks in our laboratory, he explained. Then we would use those cells to inject directly into the heart wall to help the damaged heart tissue. Of those studies, about a third of patients were significantly better, another third somewhat and the last third stayed the same but thats not necessarily a bad thing considering they didnt decline.

Currently, RBI is working on orthopedic conditions: arthritis, knee and other sport injuries.

Regenerative medicine is also not without its detractors. The FDA has approved just a handful of procedures (mainly for blood diseases such as leukemia) and insurance doesnt cover the treatment which can run into the thousands of dollars.

However, there are very few known side effects and very little recovery time. Plus, it's a treatment that addresses the underlying cause degenerating tissue as opposed to just treating symptoms.

Darragh said the only discomfort she had was when the cells were discharged into her knee there really wasnt a lot of room in there.

The guys (at RBI) laughed at me and said, You are only the second person that has complained about that. The other was a CrossFit athlete with little to no body fat especially around her joints.

Nevertheless, she walked out just fine, the same day.

RBI Medical Director Dr. Brett Haake believes there are a lot of misunderstandings about what regenerative medicine can do, as well as the science behind it.

The first way the public came to know about stem cells was through the embryonic stem cell research debate, where you are potentially destroying embryos, and the politics that come around that discussion, he said.

Haake explains, Its a simple process. We make a small incision, which doesnt even require stitches, go in and retract the fatty tissues. In about 45 minutes, we can isolate and concentrate on stem cells, combine them with your own highly concentrated platelets, which have a ton of growth factors, and inject them back to the area needed perhaps an elbow, a knee or an ankle.

Darragh says she researched treatments extensively and recommends others do the same.

Having this regenerative therapy is one of the best three things Ive done for myself. I had no idea it was available, although its very prominent in Europe and a lot of athletes use it, she says. The procedure makes perfect sense to me in that my body is healing itself. Im not introducing foreign objects, putting it through surgical trauma, taking pain medications. Its literally taking cells from one area to help heal another area. Your own body is healing your own body.

In regards to the procedure being ineligible for insurance coverage, she said that her insurance deductible was just as high, if not higher.

And the procedure only took a few hours. She loved the fact that the staff at RBI explained the entire process with enthusiasm and really believe in the work they are doing.

I have to say it lived up to exactly what they said it would do. I was in and out of the office the same day and was moving around right away, she said. Eight weeks later, its better than it has been for the past five years. Im planning on going back this December to have them work on my shoulder next.

Regenerative Biologics Institute (RBI) is located at 3755 Seventh Terrace, Suite 102 in Vero Beach. Visit their website at http://www.rbistemcell.com or call 772-492-6973.

Read or Share this story: http://www.tcpalm.com/story/specialty-publications/vero-beach/2017/03/08/regenerative-therapy-new-frontier-injury-recovery/98631580/

Originally posted here:
Regenerative therapy is new frontier in injury recovery - TCPalm

New Method Rescues Donor Organs to Save Lives – Laboratory Equipment

A multidisciplinary team led by Gordana Vunjak-Novakovic, Mikati Foundation Professor of Biomedical Engineering and Medical Sciences at Columbia Engineering, and Matt Bacchetta, associate professor of surgery at Columbia University Medical Center and NewYork-Presbyterian has--for the first time--maintained a fully functional lung outside the body for several days. In a study published today on Nature Biomedical Engineering's website, the researchers describe the cross-circulation platform that maintained the viability and function of the donor lung and the stability of the recipient over 36 to 56 hours. They used the advanced support system to fully recover the functionality of lungs injured by ischemia (restricted blood supply), and made them suitable for transplant.

The team was inspired by the critical need to expand the pool of donor lungs. Transplantation remains the only definitive treatment for patients with end-stage lung disease, but the number of donor lungs is much smaller than the number of patients in need, and many patients die while on the wait list. In addition, lungs quickly lose their function outside the body and during transport: four out of five lungs evaluated at transplant centers are rejected. If these lungs could be kept viable outside the body long enough, it would be possible to improve their function and use them for transplantation.

Over the past five years, Vunjak-Novakovic has been collaborating with Bacchetta and Hans Snoeck, professor of medicine, to investigate how to improve low-quality donor lungs and possibly bioengineer lungs for transplantation. Rather than attempting to build new lungs, they developed strategies to rescue damaged donor lungs. One approach was to use a stem cell therapy of the lung to replace defective cells with new therapeutic cells derived from the transplant recipient. While this technique was applicable to low-quality lungs that are rejected for transplantation, there was a problem: the support of the lung outside the body was too short for the therapeutic cells to start improving lung function.

As often happens, unmet clinical needs inspire new ideas and drive the development of new technologies. The Columbia team realized that "cross circulation"--an abandoned surgical procedure used in the 1960s to exchange blood flow between two patients--could enable long-term support of living organs outside the body by providing critical systemic and metabolic factors that are missing from all current technologies. The team embraced this idea and devised an entirely new approach to support lungs outside the body long enough to enable therapeutic interventions needed to recover their health and normal function.

"This is the most complex study we have ever done, and the one with the highest potential for clinical translation," Vunjak-Novakovic said. "The lung is a masterpiece of 'engineering by nature,' with its more than 40 cell types, and a gas exchange surface area of 100 square meters - half a tennis court. It is amazing that such an intricate organ can be maintained outside the body and even recovered following injury."

"Our team worked hard to innovate a suite of imaging and targeted delivery technologies and ultimately completed this challenging, paradigm-shifting study in less than a year. This was only possible because of our uniquely talented team of bioengineers and surgeons, and the highly collaborative environment at Columbia that fosters innovation," Vunjak-Novakovic said.

The team's breakthrough was realizing that cross-circulation could be re-configured to help recover damaged donor organs. The study's lead authors, Ph.D. candidate John O'Neill and postdoctoral research fellow Brandon Guenthart, looked at clinical studies from the 1960s that used cross-circulation of blood between a healthy individual and a patient suffering from a critical but potentially reversible illness. Working in Vunjak-Novakovic's Laboratory for Stem Cells and Tissue Engineering, they developed a radically new technology to support fully functional lung outside the body for several days.

"Our cross-circulation platform will likely allow us to extend the duration of support to a week or longer if needed, potentially enabling the recovery of severely damaged organs," observed O'Neill. "Beyond prolonging support time, we also demonstrated several therapeutic interventions that vastly improve and accelerate recovery."

As the team was developing their cross-circulation platform, they overcame many challenges to keep the lungs viable outside the body much longer than any platform had before. To prevent the outer surface of the lung from drying out and to provide normal body temperature, they designed a humidification system with ambient temperature control and a re-circulating warm water organ basin to provide normal body temperature to mimic the chest cavity.

Then they needed to tackle the perfusion circuit. To allow for adequate blood flow into and out of the lungs during cross-circulation, they developed new components and techniques and used a donor vessel as a "bio-bridge." They engineered a dynamic system capable of height and hydrostatic pressure adjustments and feedback-regulated pressure-controlled flow. They also developed image-guided techniques for the controlled delivery of drugs and cells in precisely targeted regions of the lung without the need for repeated lung biopsies.

"As our work progressed, we continued to innovate out of necessity and refine and streamline our cross-circulation setup and procedure," said Guenthart.

The researchers say their new platform could be readily extended to recover other organs that are in high demand for transplant or in need of repair, including livers and kidneys, and they have already begun studies in these directions.

"Cross-circulation has proven to be a valuable tool for investigation and has fostered interdisciplinary collaborations," Bacchetta said. "Our study is giving researchers new opportunities to investigate donor-recipient immunologic interactions, therapeutic cell delivery, stem cell differentiation, acute lung injury, and the development of new pulmonary theranostics."

Vunjak-Novakovic added, "Our goal was to develop a platform that harnesses the full potential of tissue engineering and regenerative medicine toward organ rescue. We hope that our unique technology will benefit the many patients in need and help them live fuller and happier lives."

The rest is here:
New Method Rescues Donor Organs to Save Lives - Laboratory Equipment

Stem Cell Therapy: Modern Solution to Joint Pain Relief – PR Newswire (press release)

PLAINVIEW, N.Y., March 6, 2017 /PRNewswire/ -- Board certified surgeon Dr. Andrew J. Rochman promotes the specialized treatment of Stem Cell Therapy in his private practice in Plainview, NY. The recent wave of positive response from its ability to target a growing number of health conditions has brought increased attention and demand from pain sufferers everywhere- including the Long Island area.

As of the fall of 2016, Dr. Rochman officially opened the Cell Therapy Center of NY (CTCNY) where he focuses on the treatment of osteoarthritis & rheumatoid arthritis, eroded cartilage and joint issues like tennis elbow, jumpers knee and golf elbow. He dedicated his practice to the large population suffering from musculoskeletal damage arising from sports injuries or the wear and tear from aging. "We are always seeking a safer and more effective alternative to surgery to battle physiological symptoms with the hopes of giving patients a pain-free life."

Dr. Rochman underwent extensive training from U.S. Stem Cell, Inc. (Sunrise, FLA) - a center for the development of effective cell technologies recognized for treating a variety of diseases and injuries. U.S. Stem Cell's discoveries include multiple cell therapies in various stages of development that repair damaged tissue due to injury or disease. Chief Science Officer Kristin C. Comella, expert in regenerative medicine with a focus on adipose derived stem cells, pioneered stem cell therapies derived from various sources including cord blood, bone marrow and muscle. "By harnessing the body's own healing potential, we may be able to reverse damaged tissue to normal function.... stem cells have the ability to form many types of tissues like bone, cartilage, muscle and even help to reverse some effects that have been caused by damaged tissue," states Ms. Comella.

Dr. Rochman's treatment center has recently seen an influx of patients from Long Island's large athletic and fitness community. President of the Wildwood Warriors triathlon team, John Graziano is one of the many joint and back pain sufferers from sports injuries seeking this alternative pain treatment. "In the world of triathlon, I train- I race- and I live with pain and lots of it!"

"The potential here is limitless," states Dr. Rochman. "It's actually a simple yet unique form of therapy with the possibilities of doing miraculous things. We found out within the past several years that human beings have stem cells in every tissue of their body and they actually live around the blood vessels." Today's stem cell therapy has been shown to manage and target a wide span of healing possibilities from blood cell diseases to cardiac disorders to autoimmune diseases. "So what we can do now is to extract fat cells from the belly or bone marrow cells and isolate the cells from those damaged tissues... perhaps in the future we can utilize this process to target neurological diseases, heart diseases... and we don't even know where it ends," says Dr. Rochman.

Dr. Andrew J. Rochman is a native New Yorker and a board-certified surgeon. He is a graduate of Colgate University and received his formal medical training from Nordestana University. He is an active member of the American Medical Association, the Medical Society of the State of New York, Nassau County Medical Society and the American College of Phlebology. Dr. Rochman manages several practices in specialized studies such as advanced vein therapy and gallbladder surgery. His current certification is with U.S. Stem Cell, Inc. specializing in cardiovascular treatment through stem cell technology. The Cell Therapy Center of NY is located at 700 Old Country Road, Suite 205 Plainview, NY. For more information, visit: http://www.celltherapycenterny.com or call 516-280-1333.

Media contact: Lennard Gettz 148804@email4pr.com 631-553-8748

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/stem-cell-therapy-modern-solution-to-joint-pain-relief-300417654.html

SOURCE Cell Therapy Center of NY

Home

Excerpt from:
Stem Cell Therapy: Modern Solution to Joint Pain Relief - PR Newswire (press release)

Ingeneron Gets $20M From Sanford Health For Stem Cell Treatment … – Xconomy

Xconomy Texas

HoustonIngeneron, a Houston-based developer of a stem cell-based technology, announced Monday that it has raised $20 million from strategic partner Sanford Health.

Ingeneron is developing a stem cell-based system meant to help patients recover from wounds and orthopedic ailments like a torn shoulder rotator cuff. In total, the company has raised $38 million from unspecified family offices and high net-worth individuals in both the United States and Germany.

Sanford Health, a large hospital chain based in Sioux Falls, SD, is conducting a small, 18-patient safety study of Ingenerons system, known as Transpose RT, being used to heal orthopedic ailments like torn shoulder rotator cuffs.Results are expected around the third quarter of this year, says Ron Stubbers, who was appointed the companys president following an executive shakeup last month. (Stubbers was previously InGenerons vice president of operations.)

Sanford Health has been involved with regenerative medicine for a long time, so this [investment] is continuing in that vein for them, Stubbers says.

Assuming all goes well, Ingeneron will have to run a much larger studylikely in 2018 and run into2019to test the products effectiveness and get it to market in the U.S., Stubbers says. Transpose RTis already sold in Europe for chronic wounds like venous ulcers. Ingeneron has also a second IDE in order to conduct a separate trial this spring to test the systems feasibility in healingchronic wounds.

Patients with torn or damaged rotator cuffs typically get a cortisone injection, but that just reduces inflammation and pain. It doesnt actually heal the tendon, as Ingenerons technology is meant to do.

Stubbers says Ingeneron has created a machine about the size of a table-top centrifuge that isolates and extracts stem cells taken from a patients fat tissue. Those cells are then injected into a patient, where theyre meant to help heal damaged tissue.

Ingeneron was founded in 2006 by Eckhard Alt, the companys chairman and a professor of medicine at the University of Texas MD Anderson Cancer Center, Tulane University in New Orleans, LA, and Technische Universitt in Munich. (Ingeneron also has an office in Munich.)

Although Ingenerons primary focus is orthopedic treatments and wound care, the company does have an animal health division. Its technology was used five years ago, for instance, at the Houston Zoo to treat a Malayan tiger with large bone chips in his right elbow and a female leopard with a bad limp from an elbow injury.According to a story in the Houson Chronicle, Pandu the tiger saw an improved quality of life from the procedure. Ultimately, both the elderly leopard and the 16-year-old tiger had to be euthanized in 2014 and 2015.

Angela Shah is the editor of Xconomy Texas. She can be reached at ashah@xconomy.com or (214) 793-5763.

Read this article:
Ingeneron Gets $20M From Sanford Health For Stem Cell Treatment ... - Xconomy

Scientists wage fight against aging bone marrow stem cell niche – Science Daily


Science Daily
Scientists wage fight against aging bone marrow stem cell niche
Science Daily
In a study published March 2, scientists from the University of Ulm in Germany and Cincinnati Children's Hospital Medical Center in the United States propose rejuvenating the bone marrow niche where HSCs are created. This could mean younger acting ...

and more »

See the original post here:
Scientists wage fight against aging bone marrow stem cell niche - Science Daily