Category Archives: Stell Cell Research

Potential Impact of COVID-19 on Cancer Stem Cells Market: What to Expect from Industry in 2020? – Scientect

The COVID-19 pandemic is expected to impact the global cancer stem cells market in a positive way. Bladder cancer segment will flourish with healthier rate of revenue in the global market. Targeted cancer stem cells application segment is foreseen to gather a considerable amount of the global market share. Considering regions, Asia-Pacific region has dominated the global market share in the forecast period.

The world is facing an unexpected change and many of the industries are experiencing thought provoking situation due to the COVID-19 pandemic. The COVID-19 outbreak has positively impacted the cancer stem cells market. Many government bodies are investing money for research & development activities to enhance the utilization of cancer stem cells for the treatment of cancer cells.In addition, development of stem cells for stem line banking and developing induced pluri-potent stem cell (PSC) lines can be done for treatment of broad range of diseases from diabetes to arthritis. During this coronavirus crisis situation, we are helping our clients in understanding the impact of COVID-19 on the cancer stem cells market.

Download Exclusive Free Sample Copy of the Report at: https://www.researchdive.com/download-sample/203

Our report includes: Technological Impact Social Impact Investment Opportunity Analysis Pre- & Post-COVID Market Scenario Infrastructure Analysis Supply Side & Demand Side Impact

According to a new report published by Research Dive, the global cancer stem cells market is projected to generate a revenue of $1,898.3 million by 2026, at a CAGR of 11.8% in the forecast time from 2019 to 2026.

The global market segmentation has been done on the basis of cancer forms, application, and region. The report provides detailed information about drivers, opportunities, restraints, segmental analysis and competitive players of the market. As per our analysts, increased risk of cancer around the world and increased trend among youth for smoking is increasing the risk of cancer, which is significantly driving the market growth.

Based on cancer forms, the overall market is segmented intobreast, blood, lung, brain, colorectal, pancreatic, bladder, liver, and other. Among these, bladder cancer segment dominated the market in the year 2018 and is expected to register for $303.9 million in 2026. Deaths around the world due to bladder cancer account for nearly 150,000 per year. Many other treatments such as systemic immunotherapy, radiotherapy, and chemotherapy are used to treat but treating bladder cancer by utilization of cancer stem calls has resulted in positive outcome. According to the U.S. government, bladder cancer is the fifth most occurring cancer amongall other cancer types and thus positive impact of CSCs in the treatment will accelerate the growth of the market in the projected time.

Connect with Our Analyst to Contextualize Our Insights for Your Business: https://www.researchdive.com/connect-to-analyst/203

On the basis ofapplication, the cancer stem cells market is classified into stem cells cancer therapy and targeted cancerous stem cells. The market for targeted cancerous stem cells application segment will witness to rise at a rate of 13.0% CAGR and is predicted to register for $910.0 million till the end of 2026. Targeted cancerous stem cells have the potential to attract normal cells and can be utilized positively to target cancer cells owing to the interaction between normal cells and CSCs, resulting in reduced inflammation, angiogenesis, and tumor proliferation. These factors will fuel the market size in the forecast time.

Asia-Pacific market has dominated the global market share, and is estimated to reach up to $405.1 million till 2026. This dominance is attributed due to thepresence of significant number of associations actively engaged in the R&D of stem cell therapy. Asia-Pacific cancer stem cells market will experience a remarkable growth and projected to generate revenue of $405.17 million by the end of 2026, at a CAGR of 12.8%. This expected rise in the Asia-Pacific market is majorly due to funding agencies are providing permission to research associations to accelerate their R&D on cancer stem cells in other Asian countries and this aspect is predicted to boost the market growth in the projected time.

The most prominent players in the global cancer stem cells market include Thermo Fisher Scientific Inc., Merck KGaA, AbbVie Inc., Stem Cell Technologies Inc., Irvine Scientific, OncoMed Pharmaceuticals, Sino Biological Inc., BioTime Inc., MiltenyiBiotec and others.

Look for more statistical information at: https://www.prnewswire.com/news-releases/cancer-stem-cells-market-expected-to-generate-revenue-of1-722-7-million-growing-at-a-cagr-of-10-3-by-2026300996071.html

Contact Us:

Mr. Abhishek Paliwal Research Dive 30 Wall St. 8th Floor, New York NY 10005 (P) + 91 (788) 802-9103 (India) +1 (917) 444-1262 (US) Toll Free : +1 -888-961-4454 Email:[emailprotected] LinkedIn:https://www.linkedin.com/company/research-dive Twitter:https://twitter.com/ResearchDive Facebook:https://www.facebook.com/Research-Dive Blog:https://www.researchdive.com/blog Follow us on:https://covid-19-market-insights.blogspot.com

Read more from the original source:
Potential Impact of COVID-19 on Cancer Stem Cells Market: What to Expect from Industry in 2020? - Scientect

Stem Cell Banking Market is Booming Worldwide 2020-2027 By Product Analysis, By Application, By End-Users, By Regional Outlook, By Top Companies and…

China Cord Blood Corporation

Stem Cell Banking Market Segmentation:

Global Stem Cell Banking Market, by Service:

Analysis Storage Collection & Transportation Processing

Global Stem Cell Banking Market, by Application:

Leukemia Diabetes Autism Cerebral Palsy Thalassemia Others

Geographically, the Stem Cell Banking market report is segmented as North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa. This analysis report similarly reduces the present, past, and future market business strategies, company extent, development, share, and estimate analysis having a place with the predicted circumstances. Moreover, the possible results and the exposure to the enhancement of the Stem Cell Banking market widely covered in this report.

Stem Cell Banking Market: Regional Analysis Includes:

Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Europe(Turkey, Germany, Russia UK, Italy, France)

North America (The United States, Mexico, and Canada)

South America(Brazil etc)

The Middle East and Africa(GCC Countries and Egypt)

This report also describes the key challenges and threats possible. The report presents a full description of the strengths, weaknesses, opportunities, and threats to the Stem Cell Banking market. The market report provides the analytical tools that help identify the key external and internal factors that should be considered for the growth of the market. The report also helps companies in marketing for tasks like identifying their prospective customers, building relationships with them, and retention.

Key Highlights of the Stem Cell Banking Market Report:

Thank you for reading our report. The report is available for customization based on chapters or regions. Please get in touch with us to know more about customization options, and our team will ensure you get the report tailored according to your requirements.

About us:

Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080 UK: +44 (203)-411-9686 APAC: +91 (902)-863-5784 US Toll-Free: +1 (800)-7821768

Email: [emailprotected]

Read more here:
Stem Cell Banking Market is Booming Worldwide 2020-2027 By Product Analysis, By Application, By End-Users, By Regional Outlook, By Top Companies and...

Salk Institute: First immune-evading cells created to treat type 1 diabetes – Salk Institute scientists have made a major advance in the pursuit of a…

San Diego Community News Group

Salk Institute scientists have made a major advance in the pursuit of a safe and effective treatment for type 1 diabetes, an illness that impacts an estimated 1.6 million Americans with a cost of $14.4 billion annually.

Using stemcell technology, Salk researchers generated the first human insulin-producing pancreatic cell clusters able to evade the immune system, as detailed in the journalNatureonAugust 19, 2020. These immune shielded cell clusters controlled blood glucosewithout immunosuppressive drugsin mice,once transplanted in the body.

Most type 1 diabetics are children and teenagers, says Salk ProfessorRonald Evans, senior author and holder of the March of Dimes Chair in Molecular and Developmental Biology. This is a disease that is historically hard to manage with drugs. We hope that regenerative medicine in combination with immune shielding can make a real difference in the field by replacing damaged cells with lab-generated human islet-like cell clusters that produce normal amounts of insulin on demand.

Type 1 diabetes is a lifelong condition that is challenging to manage, even with automated devices that deliver insulin to regulate blood sugar. Transplants of pancreaticbetaisletsclusters of cells that make insulin and other hormonesfrom donor tissue can provide acure, butrequire patients to take life-long immunosuppressing drugs, which carry serious risks. For decades, researchers have sought a better way to replenish lost pancreatic cells. Now, device-free transplantation of insulin-producing cells like these bring us a step closer to curing the disease, according to the lab.

In aprevious study, the Evans lab overcame an impediment in the field,in which stem-cell-derived beta-like cells produced insulin, but were not functional. The cells did not release insulin in response to glucose,as they were simply under powered, according to Evans. His team discovered a genetic switch called ERR-gamma that when flipped, turbo-charges the cells.

When we add ERR-gamma, the cells have the energy they need to do their job, says Michael Downes, a Salk senior staff scientist and co-author of both studies. These cells are healthy and robust and can deliver insulin when they sense high glucose levels.

A critical part of the new study was to develop a way to grow beta-like cells in a three-dimensional environment that approximates the human pancreas. This gave the cells an islet-like property. Importantly, they discovered that a protein called WNT4 was able to turn on the ERR-gamma-driven maturation switch. This combination of steps generated functional cell clusters that mimic human islets: so-called human islet-like organoids (HILOs).

Next the team tackled the complex issue of immune rejection. Normal tissue transplants require lifelong immune suppressive therapies to protect the tissue from being attacked by the immune system;howeverthese therapies also increase the risk for infections. Inspired by the successes of immunotherapy drugs for cancer, the team initially showed that the checkpoint protein PD-L1 protected the transplanted cells. By expressing PD-L1, which acts as an immune blocker, the transplanted organoids are able to hide from the immune system, says first authorEijiYoshihara, a former staff scientist in the lab.

Yoshihara then developed a method to induce PD-L1 in HILOs with short pulses of the protein interferon gamma. When transplanted into diabetic mice, these immune-evasive HILOs provided sustained blood glucose control in diabetic mice with healthy immune systems.

This is the first study to show that you can protect HILOs from the immune system without genetic manipulation, Downes explains. If we are able to develop this as a therapy, patients will not need to take immune suppressing drugs.

More research needs to be done before this system can be advanced to clinical trials. The transplanted organoids need to be tested in mice for longer periods of time to confirm that their effects are long-lasting. More work needs to be done to ensuretheywould be safe to use in humans as well. We now have a product that could potentially be used in patients without requiring any kind of device,Evans concludes.

Other researchers on the paper wereCarolyn OConnor, Emanuel Gasser,ZongWei, TaeGyuOh, Tiffany W. Tseng, Dan Wang,Fritz Cayabyab,Yang Dai, Ruth T. Yu, and Annette R. Atkins of Salk and Christopher Liddle of theWestmeadInstitute for Medical Research and Sydney Medical School in Australia.

This work was supported by grants from California Institute of Regenerative Medicine grant DISC2-11175, National Institutes of Health grant 1RO1DK120480-01, the Leona M. and Harry B. Helmsley Charitable Trust,to Evans. Liddle and Downeswerefunded by grants from the National Health and Medical Research Council of Australia Project. Yoshiharawas supported by a DRC P&F grant.Thank you alsotoSteven and Lisa Altmanfor supporting the lab.

Excerpt from:
Salk Institute: First immune-evading cells created to treat type 1 diabetes - Salk Institute scientists have made a major advance in the pursuit of a...

Survey: Impact Of Covid-19 On Land Mobile Radio System Market 2020 Industry Outlook, Opportunities in Market and Expansion By 2027 – Scientect

New research in theLand Mobile Radio System Market2020 with the real-time effects of COVID-19 on a global scale. The growth, analysis, opportunities, and CAGR of the Land Mobile Radio System market are been discussed thoroughly.

Immortalized Cell Line Market 2019-2027 global research report gives accurate information about market share, growth, trends, revenue, technology innovation, demand factors, regional scope as well as import-export statistics. Immortalized Cell Line Industry segmented view based on key players, regions, type and an application will help the Immortalized Cell Line market aspirants in planning their business.

Get Sample PDF Copy (includingCOVID19 Impact Analysis,full TOC, Tables, and Figures) of Land Mobile Radio System Market Report @https://www.esherpamarketreports.com/request-sample/?reportId=407485

Overview Of Land Mobile Radio System Market Report :

Introduction, Immortalized cell lines are either tumorous cells that do not stop dividing or cells that have been artificially manipulated to proliferate indefinitely and can, thus, be cultured over several generations. HepaRG and Hep G2 cell lines are most frequently used for toxicity studies among the currently available human hepatic cell lines., The immortalized cell line plays a vital role in cell biology while studying multicellular organisms and their biochemistry. The demand for immortalized cell lines is increasing and so as the applications. The increasing adoption of immortalized cell lines in stem cell therapy drives the growth of the market., Besides, the increasing awareness regarding the use of cell lines in healthcare, rising vaccines production, increasing application of cell lines in cancer therapy, and use of innovative technology for cell lines have fueled the growth of the market. On the other hand, the high cost of equipment and difficulties in developing a stable and authentic strain have restrained the growth of the immortalized cell line market. , Moreover, continuous cell lines are widely used by numerous pharmaceutical and biotech-based companies as a specimen for testing the drug efficacy. Due to this, there is a reduction in the use of gnotobiotic animals such as mice, rabbits, and monkeys, among others. Moreover, as these cell lines have a long shelf life and can be easily preserved via cryopreservation and lyophilization techniques, several biotech and pharmaceutical companies are preferring them over other media cultures for performing their R&D activities. For instance, as per a report published by the Department of Pharmaceutical Sciences and Bio Manufacturing Research Institute and Technology Enterprises (BRITE), in 2014, around 1.3 USD billion capital was invested in new pharmaceuticals for drug discovery through cell line culture., The global immortalized cell line market is segmented based on method, application, and end-user., Based on method, the market is further segmented into virus induction, HTERT expression, inactivation of tumor, suppression genes, and others. , Based on application, the market is segmented into diagnostics, drug discovery, vaccine production, tissue engineering and regenerative medicine, and others., Based on end-user, the market is segmented into pharmaceutical and biopharmaceutical companies, contract research organizations, and research laboratories., The global immortalized cell line market was valued at USD 2,421.34 million in 2017 and is expected to register a CAGR of 9.30% during the forecast period from 2018 to 2023

List ofTop Key Playersof Land Mobile Radio System Market:

Thermo Fisher Scientific, ATCC (American Type Culture Collection Inc.), Valneva, Sartorius AG, Lonza Group, AG, Merck KGaA, Selexis SA, Wuxi App Tec, European Collection of Authenticated Cell Cultures (ECACC), Corning Incorporated

Click Here For Best Discount @https://www.esherpamarketreports.com/request-discount/?reportId=407485

The Land Mobile Radio System Market Report has answers to all your questions such as:

Enquire before purchasing this report@https://www.esherpamarketreports.com/pre-order-enquiry/?reportId=407485

What Report Exactly Offers to the Buyers?

Purchase this Report (Price 4450 USD for a Single-User License) https://www.esherpamarketreports.com/purchase/?reportId=407485

Land Mobile Radio System Market Table Of Content Covers the Following Points: 1 Report Overview

1.1 Study Scope

1.2 Key Market Segments

1.3 Regulatory Scenario by Region/Country

1.4 Market Investment Scenario Strategic

1.5 Market Analysis by Type

1.5.1 Global Land Mobile Radio System Market Share by Type (2020-2027)

1.6 Market by Application

1.6.1 Global Land Mobile Radio System Market Share by Application (2020-2027)

1.7 Land Mobile Radio System Industry Development Trends under COVID-19 Outbreak

1.7.1 Global COVID-19 Status Overview

1.7.2 Influence of COVID-19 Outbreak on Land Mobile Radio System Industry Development

2.1 Industry Trends

2.1.1 SWOT Analysis

2.1.2 Porters Five Forces Analysis

2.2 Potential Market and Growth Potential Analysis

2.3 Industry News and Policies by Regions

2.3.1 Industry News

2.3.2 Industry Policies

2.4 Industry Trends Under COVID-19

3 Value Chain of Land Mobile Radio System Market

3.1 Value Chain Status

3.2 Land Mobile Radio System Manufacturing Cost Structure Analysis

3.2.1 Production Process Analysis

3.2.2 Manufacturing Cost Structure of Land Mobile Radio System

3.2.3 Labor Cost of Land Mobile Radio System

3.2.3.1 Labor Cost of Land Mobile Radio System Under COVID-19

3.3 Sales and Marketing Model Analysis

3.4 Downstream Major Customer Analysis (by Region)

3.5 Value Chain Status Under COVID-19

4 Players Profiles

5 Global Land Mobile Radio System Market Analysis by Regions

5.1 Global Land Mobile Radio System Sales, Revenue and Market Share by Regions

5.1.1 Global Land Mobile Radio System Sales by Regions (2015-2020)

5.1.2 Global Land Mobile Radio System Revenue by Regions (2015-2020)

5.2 North America Land Mobile Radio System Sales and Growth Rate (2015-2020)

5.3 Europe Land Mobile Radio System Sales and Growth Rate (2015-2020)

5.4 Asia-Pacific Land Mobile Radio System Sales and Growth Rate (2015-2020)

5.5 Middle East and Africa Land Mobile Radio System Sales and Growth Rate (2015-2020)

5.6 South America Land Mobile Radio System Sales and Growth Rate (2015-2020)

6 North America Land Mobile Radio System Market Analysis by Countries

6.1 North America Land Mobile Radio System Sales, Revenue and Market Share by Countries

6.1.1 North America Land Mobile Radio System Sales by Countries (2015-2020)

Click Here For Detailed Table Of Contents @https://www.esherpamarketreports.com/report-toc/?reportId=407485

Contact Us:

Name: Jason George

Email:[emailprotected]

Call :USA:+1 408 757 0510

Organization:eSherpa Market Reports

About Us:

eSherpa Market Reports is the credible source for gaining the market research reports that will exponentially accelerate your business. We are among the leading report resellers in the business world committed towards optimizing your business. The reports we provide are based on a research that covers a magnitude of factors such as technological evolution, economic shifts and a detailed study of market segment.

Continued here:
Survey: Impact Of Covid-19 On Land Mobile Radio System Market 2020 Industry Outlook, Opportunities in Market and Expansion By 2027 - Scientect

Expression Therapeutics Announces Success in Developing a Stem Cell Lentiviral Gene Therapy for Hemophagocytic Lymphohistiocytosis (HLH) – PRNewswire

ATLANTA, Aug. 24, 2020 /PRNewswire/ -- Primary HLH is a family of devastating primary immune deficiencies with limited treatment options and no gene therapies under clinical testing. Expression Therapeutics has developed a promising and potentially curative gene therapy candidate for familial hemophagocytic lymphohistiocytosis (HLH) type 3 (FHL3). Untreated, FHL3 presents as a hyper-inflammatory state with multi-organ damage leading to premature death. Expression Therapeutics expects to rapidly progress candidates for other common forms of primary HLH as well.

"We are excited to announce this expansion of our gene and cell therapy pipeline beyond our lead stem cell lentiviral gene therapy candidate for hemophilia A that is entering Phase 1 clinical testing. Through ongoing research and development incorporating our core technology platforms, Expression Therapeutics has been able to rapidly generate promising therapeutic candidates for our HLH portfolio and several other critical disease areas with significant unmet clinical need," said Christopher Doering, Ph.D., Chief Scientific Officer of Expression Therapeutics.

Proof of concept for stem cell lentiviral gene therapy of FHL3 was demonstrated using primary patient cells and a genetic mouse model of FHL3. A key component in this success was the integration of one of Expression Therapeutics' core technology platforms that facilitates the rapid generation of transgenes with superior potency. Our lead candidate successfully restored exocytosis and cytolytic function to primary patient cells as well as a murine disease model strongly supporting the advancement of this pipeline product candidate.

"We believe there are three key aspects to FHL3 that make it a strong candidate for hematopoietic stem and progenitor cell (HSPC) lentiviral vector (LV) gene therapy. First, preclinical and clinical studies suggest that less than 20% genetically corrected cells are required to reverse most FHL3 disease symptoms. Second, because of the autologous nature of stem cell-based lentiviral gene therapy, the grave risk of graft vs host disease is eliminated. Third, with stem cell-based lentiviral gene therapy there will be no wait time to find a sufficiently human leukocyte antigen-matched donor," said Trent Spencer, Ph.D., President of Expression Therapeutics.

According to Deanna Fournier, Executive Director of the Histiocytosis Association, "We are very excited about the possibilities this work offers. Our HLH community, and the entire histiocytosis community, is very hopeful and excited about the future!"

Expression Therapeutics is a biotechnology company based in Atlanta and Cincinnati. The current therapeutic pipeline includes advanced gene therapies for hemophilia, neuroblastoma, T-cell leukemia/lymphoma, acute myeloid leukemia (AML), and primary immunodeficiencies such as hemophagocytic lymphohistiocytosis (HLH).

For inquiries, please contact:

Ashley Walsh Director of Corporate Development Expression Therapeutics 1860 Montreal Road Tucker, Georgia 30084 [emailprotected] +1 312.637.2975 http://www.expressiontherapeutics.com

SOURCE Expression Therapeutics

http://www.expressiontherapeutics.com

Originally posted here:
Expression Therapeutics Announces Success in Developing a Stem Cell Lentiviral Gene Therapy for Hemophagocytic Lymphohistiocytosis (HLH) - PRNewswire

Nearly 40 Maryland companies, universities working on vaccines, therapeutics, diagnostic tests and clinical research – WV News

ANNAPOLIS Governor Larry Hogan has commended the nearly 40 Maryland life sciences companies that are working on developing and manufacturing COVID-19 vaccines and therapeutics, improving diagnostic tests and providing clinical research and technological support to ensure safe and effective health care delivery.

The University System of Maryland and Johns Hopkins University have also dedicated millions of dollars toward research, testing and clinical trials.

The University of Maryland School of Medicine recently began phase 3 trials of a COVID-19 vaccine.

On the day of our first coronavirus cases, I said that Maryland was home to some of the top health research facilities in the world, and vowed that we would be a part of developing treatments and perhaps even a vaccine for this deadly virus, said Hogan. I want to commend our world-class life sciences community, our universities, and federal research labs for working together to fight this unprecedented global pandemic. Our state will continue to lead on the road to recovery.

To date, Marylands life sciences companies have secured more than $3 billion for the development of a vaccine for SARS-CoV-2, the virus that causes COVID-19.

Gaithersburg-based Novavax was awarded $1.6 billion through Operation Warp Speed to complete late-stage clinical development, establish large-scale manufacturing, and deliver 100 million vaccine doses as early as late 2020, as well as $388 million from the international Coalition for Epidemic Preparedness Innovations and $60 million through a U.S. Department of Defense contract to support vaccine production.

Emergent BioSolutions, with its headquarters and product development facility also based in Gaithersburg and three manufacturing facilities in Baltimore and Rockville, announced it signed contracts with AstraZeneca, Johnson & Johnson, Novavax, and Vaxart as well as with Operation Warp Speed for a total of $1.5 billion to support COVID-19 vaccine candidate development and manufacturing.

Bethesda-based Longhorn Vaccines and Diagnostics won a $225 million U.S. Department of Homeland Security contract to transport clinical samples to testing labs.

Altimmune, headquartered in Gaithersburg, was awarded a $4.7 million contract from the U.S. Army Medical Research and Development Command and is working with Rockville-based Vigene Biosciences on the development of a single-dose intranasal COVID-19 vaccine.

Emergent is proud to be a part of Marylands efforts to fight the COVID-19 pandemic, said Robert G. Kramer, president and CEO of Emergent BioSolutions. Marylands life sciences cluster enhances our ability to partner with pharmaceutical and biotechnology innovators. Along with our longstanding partnership with the federal government in support of its efforts to combat public health threats, we are uniquely positioned to work quickly to help advance vaccine and hyperimmune therapeutic candidates.

We are grateful to be part of Marylands collaborative life sciences cluster that, together with the states superb academic institutions, is making rapid progress in the fight against COVID-19, said Stanley C. Erck, president and chief executive officer of Novavax. Novavaxs swift response in developing one of the worlds most promising vaccines for this pandemic is a testament to the value of these close relationships, rich local resources, and government support in effectively addressing pressing public health needs.

The University System of Maryland and Johns Hopkins University both mobilized quickly to develop a comprehensive response to the pandemic. Johns Hopkins dedicated $6 million in funding to support about 260 scientists and researchers working on more than two dozen projects related to COVID-19.

In addition, Hopkins School of Medicine is conducting more than 100 clinical studies to develop COVID-19 diagnostics and, with $35 million from the U.S. Department of Defense, is working with the Bloomberg School of Public Health to test the efficacy of blood plasma from COVID-19 survivors as a treatment option.

The University System of Maryland faculty are working to develop a rapid COVID-19 test and are conducting a clinical trial of experimental stem cell therapy to reduce death in the sickest patients. The University of Maryland School of Medicine will receive up to $3.6 million over the next year from the Defense Advanced Research Projects Agency to rapidly test hundreds of drugs, approved and marketed for other conditions, to see if any can be repurposed to prevent and treat COVID-19.

Its in crises like these that you see why Maryland is one of the countrys top biosciences hubs, said University System of Maryland Chancellor Jay A. Perman. Our USM institutions are on the front lines developing COVID-19 diagnostics and therapeutics, testing multiple vaccines, leading dozens of other R&D projects. But theyre also reaching out to our close industry partners, joining our assets and expertise to theirs so we can quickly commercialize COVID-19 solutions. There are few states that have the breadth and depth of our life sciences talent, and fewer still that have an ecosystem like ours that thrives on collaboration.

As we confront a global pandemic on a scale not experienced since the 1918 flu, it is remarkable to see the extraordinary depth and breadth of expertise being galvanized against COVID from right here in Maryland, said Ron Daniels, president of Johns Hopkins University. Johns Hopkins researchers quickly mobilized to launch an emergency, cross-divisional COVID-19 research program to stem the tide of the virus and save lives. From investigating the underlying biology and developing treatments for the disease to addressing its devastating impact on our local communities, and reporting rigorous data about its spread, Hopkins researchers are at the forefront of the fight to stop COVID-19.

See the original post here:
Nearly 40 Maryland companies, universities working on vaccines, therapeutics, diagnostic tests and clinical research - WV News

Global Cancer Stem Cell Market 2020 Top Industry Players Thermo Fisher Scientific, Inc., AbbVie, Inc., Merck KGaA, Bionomics, Lonza, Stemline…

The most recent report entitled Global Cancer Stem Cell Market 2020 by Manufacturers, Countries, Type and Application, Forecast to 2026 by MarketsandResearch.biz shows a comprehensive and detailed picture of the present market condition by comprehending the global industry outlook in light of the current market situation. The report contains the top to bottom information and data on the market definition, arrangements, and applications. The report analyzes market trends, prominent players in the industry, and how these factors are expected to boost the market during the forecast period from 2020 to 2025. The research also identifies factors that are dynamic and will affect the global Cancer Stem Cell market in the near future. The goal of this report is to incorporate market size, competition, value chain, and future trends.

Market Scope and Features:

The report provides market scope, market size, estimation, and region-wise value and growth rate history from 2015-2025. Important market dynamics are shown that include drivers, limitations, challenges that are faced, and risks. The report presents a region-wise analysis like growth aspects, and revenue, past, present and forecast trends, analysis of emerging market sectors and development opportunities in the global Cancer Stem Cell market will forecast the market growth. Market forecasts will provide deep insight into industry parameters by accessing growth, consumption, upcoming market trends, and various price fluctuations.

NOTE: Our report highlights the major issues and hazards that companies might come across due to the unprecedented outbreak of COVID-19.

DOWNLOAD FREE SAMPLE REPORT: https://www.marketsandresearch.biz/sample-request/13766

In the report, the competitive landscape and the parallel detailed analysis of all the key market players are mentioned. Some of the major market players that are included in the report include: Thermo Fisher Scientific, Inc., AbbVie, Inc., Merck KGaA, Bionomics, Lonza, Stemline Therapeutics, Inc., Miltenyi Biotec, PromoCell GmbH, MacroGenics, Inc., OncoMed Pharmaceuticals, Inc., Irvine Scientific, STEMCELL Technologies Inc., Sino Biological Inc., BIOTIME, Inc.

On the basis of types, the market is primarily split into: Cell Culturing, Cell Separation, Cell Analysis, Molecular Analysis, Others

On the basis of applications, the market covers: Stem Cell Based Cancer Therapy, Targeted CSCs,

Regional Analysis:

This segment of the report covers the analysis of Cancer Stem Cell production, consumption, import, export, market value, revenue, market share and growth rate, market status and SWOT analysis, price and gross margin analysis by regions. It includes data about several parameters related to the regional contribution. From the available data, we will identify which area has the largest share of the market. At the same time, we will compare this data to other regions, to understand the demand in other countries. Market analysis by regions: North America (United States, Canada and Mexico), Europe (Germany, France, UK, Russia and Italy), Asia-Pacific (China, Japan, Korea, India and Southeast Asia), South America (Brazil, Argentina, Colombia etc.), Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)

ACCESS FULL REPORT: https://www.marketsandresearch.biz/report/13766/global-cancer-stem-cell-market-2020-by-manufacturers-countries-type-and-application-forecast-to-2026

After Reading The Market Report, Readers Will Get Insight Into:

Customization of the Report:

This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

About Us

Marketsandresearch.biz is a leading global Market Research agency providing expert research solutions, trusted by the best. We understand the importance of knowing what global consumers watch and buy, further using the same to document our distinguished research reports. Marketsandresearch.biz has worldwide presence to facilitate real market intelligence using latest methodology, best-in-class research techniques and cost-effective measures for worlds leading research professionals and agencies. We study consumers in more than 100 countries to give you the most complete view of trends and habits worldwide. Marketsandresearch.biz is a leading provider of Full-Service Research, Global Project Management, Market Research Operations and Online Panel Services.

Contact Us Mark Stone Head of Business Development Phone: +1-201-465-4211 Email: [emailprotected] Web: http://www.marketsandresearch.biz

More:
Global Cancer Stem Cell Market 2020 Top Industry Players Thermo Fisher Scientific, Inc., AbbVie, Inc., Merck KGaA, Bionomics, Lonza, Stemline...

Researchers Find Method to Regrow Cartilage in the Joints, Proof of Principle Study Shows – Technology Networks

Read Time:

Researchers at the Stanford University School of Medicine have discovered a way to regenerate, in mice and human tissue, the cushion of cartilage found in joints.

Loss of this slippery and shock-absorbing tissue layer, called articular cartilage, is responsible for many cases of joint pain and arthritis, which afflicts more than 55 million Americans. Nearly 1 in 4 adult Americans suffer from arthritis, and far more are burdened by joint pain and inflammation generally.

The Stanford researchers figured out how to regrow articular cartilage by first causing slight injury to the joint tissue, then using chemical signals to steer the growth of skeletal stem cells as the injuries heal. The work was published Aug. 17 in the journal Nature Medicine.

Cartilage has practically zero regenerative potential in adulthood, so once its injured or gone, what we can do for patients has been very limited, said assistant professor of surgery Charles K.F. Chan, PhD. Its extremely gratifying to find a way to help the body regrow this important tissue.

The work builds on previous research at Stanford that resulted in isolation of the skeletal stem cell, a self-renewing cell that is also responsible for the production of bone, cartilage and a special type of cell that helps blood cells develop in bone marrow. The new research, like previous discoveries of mouse and human skeletal stem cells, were mostly carried out in the laboratories of Chan and professor of surgery Michael Longaker, MD.

Articular cartilage is a complex and specialized tissue that provides a slick and bouncy cushion between bones at the joints. When this cartilage is damaged by trauma, disease or simply thins with age, bones can rub directly against each other, causing pain and inflammation, which can eventually result in arthritis.

Damaged cartilage can be treated through a technique called microfracture, in which tiny holes are drilled in the surface of a joint. The microfracture technique prompts the body to create new tissue in the joint, but the new tissue is not much like cartilage.

Microfracture results in what is called fibrocartilage, which is really more like scar tissue than natural cartilage, said Chan. It covers the bone and is better than nothing, but it doesnt have the bounce and elasticity of natural cartilage, and it tends to degrade relatively quickly.

The most recent research arose, in part, through the work of surgeon Matthew Murphy, PhD, a visiting researcher at Stanford who is now at the University of Manchester. I never felt anyone really understood how microfracture really worked, Murphy said. I realized the only way to understand the process was to look at what stem cells are doing after microfracture. Murphy is the lead author on the paper. Chan and Longaker are co-senior authors.

For a long time, Chan said, people assumed that adult cartilage did not regenerate after injury because the tissue did not have many skeletal stem cells that could be activated. Working in a mouse model, the team documented that microfracture did activate skeletal stem cells. Left to their own devices, however, those activated skeletal stem cells regenerated fibrocartilage in the joint.

But what if the healing process after microfracture could be steered toward development of cartilage and away from fibrocartilage? The researchers knew that as bone develops, cells must first go through a cartilage stage before turning into bone. They had the idea that they might encourage the skeletal stem cells in the joint to start along a path toward becoming bone, but stop the process at the cartilage stage.

The researchers used a powerful molecule called bone morphogenetic protein 2 (BMP2) to initiate bone formation after microfracture, but then stopped the process midway with a molecule that blocked another signaling molecule important in bone formation, called vascular endothelial growth factor (VEGF).

What we ended up with was cartilage that is made of the same sort of cells as natural cartilage with comparable mechanical properties, unlike the fibrocartilage that we usually get, Chan said. It also restored mobility to osteoarthritic mice and significantly reduced their pain.

As a proof of principle that this might also work in humans, the researchers transferred human tissue into mice that were bred to not reject the tissue, and were able to show that human skeletal stem cells could be steered toward bone development but stopped at the cartilage stage.

The next stage of research is to conduct similar experiments in larger animals before starting human clinical trials. Murphy points out that because of the difficulty in working with very small mouse joints, there might be some improvements to the system they could make as they move into relatively larger joints.

The first human clinical trials might be for people who have arthritis in their fingers and toes. We might start with small joints, and if that works we would move up to larger joints like knees, Murphy says. Right now, one of the most common surgeries for arthritis in the fingers is to have the bone at the base of the thumb taken out. In such cases we might try this to save the joint, and if it doesnt work we just take out the bone as we would have anyway. Theres a big potential for improvement, and the downside is that we would be back to where we were before.

Longaker points out that one advantage of their discovery is that the main components of a potential therapy are approved as safe and effective by the FDA. BMP2 has already been approved for helping bone heal, and VEGF inhibitors are already used as anti-cancer therapies, Longaker said. This would help speed the approval of any therapy we develop.

Joint replacement surgery has revolutionized how doctors treat arthritis and is very common: By age 80, 1 in 10 people will have a hip replacement and 1 in 20 will have a knee replaced. But such joint replacement is extremely invasive, has a limited lifespan and is performed only after arthritis hits and patients endure lasting pain. The researchers say they can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage in their joints before it is badly degraded.

One idea is to follow a Jiffy Lube model of cartilage replenishment, Longaker said. You dont wait for damage to accumulate you go in periodically and use this technique to boost your articular cartilage before you have a problem.

Reference:

Murphy et al. Articular cartilage regeneration by activated skeletal stem cells, Nature Medicine (2020). DOI: 10.1038/s41591-020-1013-2

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more:
Researchers Find Method to Regrow Cartilage in the Joints, Proof of Principle Study Shows - Technology Networks

Incysus Therapeutics Announces Name Change to IN8bio, Inc. – GlobeNewswire

August 24, 2020 07:00 ET | Source: IN8bio, Inc.

NEW YORK, Aug. 24, 2020 (GLOBE NEWSWIRE) -- Incysus Therapeutics, Inc., a clinical-stage biopharmaceutical company focused on delivering innovative gamma-delta () T cell immunotherapies for the treatment of cancer, today announced that it has changed its name to IN8bio, Inc. (IN8bio or the Company). The Companys new name reflects its novel approach to cell therapy, focused on the development of gamma-delta T cells for anti-cancer therapies. These powerful immune cells possess properties of both innate and adaptive immune cells and can serve as a functional bridge between the two systems to impact tumor killing.

IN8bio was founded to develop novel immunotherapies to treat cancer. Our new name, IN8bio, reflects that focus, commented William Ho, President, Chief Executive Officer and co-founder of IN8bio. As we continue to treat patients in our ongoing clinical programs, we are focused on delivering the next generation of innovative cancer therapies.

IN8bio is using autologous, allogeneic and genetically modified gamma-delta T cells to address the high unmet need in both solid and liquid tumors. IN8bio entered the clinic in 2020 with two Phase 1 clinical trials which are currently enrolling patients. In February 2020, IN8bio initiated enrollment in a Phase 1 clinical trial of gamma-delta T cell immunotherapy in leukemia patients undergoing allogeneic stem cell transplantation. That trial, the first clinical trial of an expanded and activated allogeneic gamma-delta T cell immunotherapy, is being conducted with its partners at the University of Kansas Cancer Center. Additionally, in February 2020, IN8bio initiated enrollment in a Phase 1 clinical trial of patients with newly diagnosed glioblastoma, which is a difficult to treat brain tumor that progresses rapidly. This trial is being conducted at the ONeal Comprehensive Cancer Center at the University of Alabama at Birmingham. IN8bios proprietary Drug Resistant Immunotherapy (DRI), which is being used in the glioblastoma trial, is the first genetically engineered gamma-delta T cell therapy to be administered to patients.

About IN8bio IN8bio is focused on delivering novel immunotherapies for the treatment of cancer. By using allogeneic and genetically modified gamma-delta () T cells, IN8bios technology addresses certain challenges that immunotherapies face targeting cold, low mutation cancers. IN8bios immuno-oncology programs include activated and gene-modified adoptive cellular therapies that are designed to protect cells from chemotherapy and may allow novel combinations of drugs to disrupt the tumor microenvironment and increase immunogenicity. IN8bios first clinical program is targeted to address leukemia in patients who are undergoing hematopoietic stem cell transplant (HSCT) and its second program is targeted to the treatment of newly diagnosed glioblastoma in combination with chemotherapy. For more information about the Company and its programs, visit http://www.IN8bio.com.

Forward Looking Statements Certain statements herein concerning the Companys future expectations, plans and prospects, including without limitation, the Companys current expectations regarding its business strategy, product candidates, and clinical development process and timing, constitute forward-looking statements. The use of words such as may, might, will, should, expect, plan, anticipate, believe, estimate, project, intend, future, potential, or continue, the negative of these and other similar expressions are intended to identify such forward looking statements. Such statements, based as they are on the current expectations of management, inherently involve numerous risks and uncertainties, known and unknown, many of which are beyond the Companys control. Consequently, actual future results may differ materially from the anticipated results expressed in such statements. In the case of forward-looking statements regarding investigational product candidates and continuing further development efforts, specific risks which could cause actual results to differ materially from the Companys current expectations include: scientific, regulatory and technical developments; failure to demonstrate safety, tolerability and efficacy; final and quality controlled verification of data and the related analyses; expense and uncertainty of obtaining regulatory approval, including from the U.S. Food and Drug Administration; and the Companys reliance on third parties, including licensors and clinical research organizations. Do not place undue reliance on any forward-looking statements included herein, which speak only as of the date hereof and which the Company is under no obligation to update or revise as a result of any event, circumstances or otherwise, unless required by applicable law.

Contact: IN8bio, Inc. William Ho, President & CEO who@IN8bio.com +1 646.600.6GDT info@IN8bio.com http://www.IN8bio.com

Follow this link:
Incysus Therapeutics Announces Name Change to IN8bio, Inc. - GlobeNewswire

North America ultra-low temperature freezer market is anticipated to reach US$ 313.19 million in 2027 from US$ 220.25 million in 2019 – GlobeNewswire

August 24, 2020 13:05 ET | Source: ReportLinker

New York, Aug. 24, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "North America Ultra-Low Temperature Freezer Market to 2027 Regional Analysis and Forecasts by Type ; End User ; and, Country" - https://www.reportlinker.com/p05953821/?utm_source=GNW High costs associated with ultra-low temperature freezers, is likely to restrain the growth of the market in the coming years.

However, developments in the healthcare market are expected to have a positive impact on the growth of the North American ultra-low temperature freezer market in the coming years. Ultra-low temperature freezers are designed for storage of biological materials such as virus, bacteria, eukaryotic cells, blood, and semen. These freezers are used in blood banks, hospitals, epidemic prevention services, research institutes, and biomedical engineering facilities, among others. Blood and blood components perform numerous vital functions in the human body.Consequently, severe blood loss could result in life-threatening conditions such as hypovolemic/hemorrhagic shock, which require immediate blood transfusion to prevent organ failure and death.

Blood transfusion is also used as supportive therapy for surgery, chemotherapy, and stem cell and organ transplantation, as well as in the treatment of acute and chronic diseases caused by deficiencies or defects in plasma proteins or cellular blood components, to avoid complications such as life-threatening hemorrhage or improve quality of life by reducing anemia-related symptoms. As per the data provided by the WHO, anemia affects ~25% of the population, which accounts for 1.6 billion people worldwide; toddlers and children of preschool age have the highest prevalence of anemia at 47.4% of their population group. Moreover, the number of people with hemophilia in the US is estimated to be ~20,000 individuals. The worldwide incidence of hemophilia is not well known but estimated among more than 400,000 people as per the National Hemophilia Foundation. According to the American National Red Cross 2018 data findings, about 7,000 units of platelets and 10,000 units of plasma are required daily in the US, and about 21 million blood components are transfused each year in the US. The Singapore Red Cross Society needs ~120,000 units of blood every year to meet the transfusion needs of patients, which is equivalent to ~400 units of blood per day. The increasing demand for access to safe blood and blood components for transfusion has led to the manufacturing or development of various types of blood bank freezers, which has increased the adoption of ULT freezers for secure storage along with strict guidelines of the WHO for the storage of blood samples. Moreover, the country is witnessing the increasing number of COVID-19 cases.For instance, in the US, the number of cases has been increased to 614,246 with 26,064 reported deaths.

Additionally, Mexico and Canada cases are also growing.The US and Canada have witnessed a sudden rise in the number of cases in just few days, which has compelled the governments to shut down all the business in order to prevent the spread of the COVID-19.

However, Mexico is likely to be least affected due to less research and development activities in the biomedical industry. In terms of type, the upright ULT freezers segment accounted for the largest share of the North American ultra-low temperature freezer market in 2019 and is estimated to mark the highest CAGR in the market during the forecast period, owing to the factors such as easier to organize because of having shelves. Also, the convenience of use of upright freezers has led to its dominance during 2019 and is expected to witness similar trend over the coming years. Centers For Disease Control And Prevention (CDC), Food and Drug Administration (FDA), Biomedical Research Centers (BRCs), Society of Infectious and Tropical Diseases (SIMIT), and International Stem Cell Corporation (ISCO) are among the significant primary and secondary sources for ultra-low temperature freezer included in the report. Read the full report: https://www.reportlinker.com/p05953821/?utm_source=GNW

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Lyon, FRANCE

Formats available:

See the original post:
North America ultra-low temperature freezer market is anticipated to reach US$ 313.19 million in 2027 from US$ 220.25 million in 2019 - GlobeNewswire