Category Archives: Stell Cell Research

Drug targets leukemia stem cells – Stem Cell Cafe

SAN DIEGO Researchers at the University of California, San Diego School of Medicine have discovered that hard-to-reach, drug-resistant leukemia stem cells (LSCs) that overexpress multiple pro-survival protein forms are sensitive and thus vulnerable to a novel cancer stem cell-targeting drug currently under development.

The findings, published in todays (Jan. 17) online issue of Cell Stem Cell, open the possibility that diseases like chronic myeloid leukemia (CML) and some solid tumor cancers might in combination with other therapies be more effectively treated with this drug, and with a lower chance of relapse.

Led by principal investigator Catriona H. M. Jamieson, M.D., Ph.D., associate professor of medicine and director of stem cell research at UC San Diego Moores Cancer Center, the researchers found that a compound called sabutoclax appears to selectively target LSCs that express particular protein isoforms through alternatively splicing, a fundamental process in which a gene is able to code for multiple proteins.

Jamieson and colleagues found that alternative splicing of BCL2 genes, which code for proteins involved in apoptosis or programmed cell death, specifically promoted malignant transformation of dormant white blood cell precursors into blast crisis LSCs. The blast crisis is the final phase of CML when overabundant, abnormal white blood cells crowd out healthy cells, causing serious dysfunction.

Of clinical importance, they noted that sabutoclax, which suppresses all BCL2 anti-apoptotic proteins, renders these marrow-dwelling blast crisis LSCs sensitive and more susceptible to TKI-based therapeutics at doses that do not harm normal progenitor cells.

Our findings show that pan-BCL2 inhibition will be critical for the eradication of cancer stem cells in CML and that there is an essential link between cancer stem cell dormancy, pro-survival BCL2 isoform expression and therapeutic resistance, Jamieson said. By using a novel pan-BCL2 inhibitor, we may be able to prevent therapeutic resistance by sensitizing malignant stem cell clones to TKIs.

The findings may have implications for treating solid tumor cancers, such as colon, prostate, breast, and brain cancers, noted Daniel J. Goff, the studys first author. With many of these tumor types being shown to harbor cancer stem cells, it raises the question of whether BCL2 family expression as well as isoform-switching may be crucial for the maintenance of cancer stem cells in these diseases as well, he said. If so, they may also be candidates for treatment with a BCL2 inhibitor like sabutoclax.

Co-authors are Angela Court Recart, Anil Sadarangani, Heather Leu, Janine Low-Marchelli, Wenxue Ma, Alice Y. Shih, Ifat Geron, Minya Pu, Lei Bao, Ryan Chuang, Larisa Balaian, Peggy Wentworth, Kristen M. Smith, Christina A.M. Jamieson, Sheldon R. Rorris and Karen Messer, UC San Diego Department of Medicine and UC San Diego Moores Cancer Center; Hye-Jung Chun and Marco Marra, Michael Smith Genome Sciences Center, Vancouver, B.C., Canada; Christian L. Barrett and Kelly A. Frazer, UC San Diego Department of Pediatrics; Maryla Krajewska, Jun Wei, Dayong Zhai, Maurizio Pellecchia and John C. Reed, Sanford-Burnham Medical Research Institute; Jason Gotlib, Stanford Medical Center; Mark Minden, Princess Margaret Hospital, Toronto, Canada; Giovanni Martinelli, Institute of Hematology and Medical Oncology, University of Bologna, Italy; Jessica Rusert and Lawrence S.B. Goldstein, UC San Diego Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute; Kim-Hien Dao, Oregon Health and Science University, Portland; Kamran Shazand and Thomas J. Hudson, Ontario Institute for Cancer Research, Toronto, Canada.

Funding for this research was provided by a California Institute for Regenerative Medicine (CIRM) early Translational II grant (TR2-1789), a CIRM HALT leukemia disease team grant (DR1-01430), the UCSD CIRM Training Grant (TG2-01154), the Ratner Family Foundation, the National Cancer Institute (CA-55164), the National Institutes of Health (CA-149668), the Ontario Institute for Cancer Research, Genome Canada, Ontario Genomics Institute and the Canadian Institute of Health Research.

See the rest here: Drug targets leukemia stem cells

The rest is here:
Drug targets leukemia stem cells – Stem Cell Cafe

Court lifts cloud over embryonic stem cells – Stem Cell Cafe

Researchers are keen to compare induced pluripotent stem cells (pictured) with their embryonic cousins.

SILVIA RICCARDI/SPL

The US Supreme Courts decision last week to throw out a lawsuit that would have blocked federal funding of all research on human embryonic stem cells cleared the gloom that has hung over the field for more than three years. Yet the biggest boost from the decision might go not to work on embryonic stem (ES) cells, but to studies of their upstart cousins, induced pluripotent stem (iPS) cells, which are created by reprogramming adult cells into a stem-cell-like state.

At first glance, iPS-cell research needs no help. Researchers flocked to the field soon after a recipe for deriving the cells from adult mouse cells was announced in 2006, partly because this offered a way to skirt the thorny ethical issues raised by extracting cells from human embryos. But the real allure of iPS cells was the promise of genetically matched tissues. Adult cells taken from a patient could be used to create stem cells that would, in turn, generate perfectly matched specialized tissues replacement neurons, say for cell therapy. Although the number of published papers from iPS-cell research has not yet caught up with that of ES-cell work (see Inducing a juggernaut), US funding for each approach is now roughly matched at about US$120 million a year.

C. T. Scott et al. Cell 145, 820826 (2011)

But, as iPS cells crop up in ever more labs, ES cells generally cheaper, better behaved and backed by an extra decades worth of data promise to have an important supporting role. Ever since iPS cells were described, researchers have been trying to understand just how similar they are to ES cells. iPS cells begin with different patterns of gene expression, and they can also acquire mutations during the reprogramming process, which means that every iPS cell must be thoroughly evaluated before it can be used in any study. Human ES cells will always be the standard to which other cells will be compared, says Roger Pedersen, who studies how stem cells retain embryo-like states at the University of Cambridge, UK.

Federally supported ES-cell research was shut down in the United States on 23August 2010, a year after a lawsuit was filed by two opponents of human ES-cell research, and remained frozen for more than two weeks (see Fifteen years of controversy). Many investigators shied away from the field for fear of having to shut down again. The Supreme Courts move has reassured investigators such as Candace Kerr, who studies early development of the brain at the University of Maryland School of Medicine in Baltimore. As a young scientist working towards tenure, she felt particularly vulnerable to the threat of ES-cell funding being stopped. So she switched to iPS cells in 2010, while the lawsuit was working its way through the US court system. With the litigation over, she says she need not hesitate or fear adding to her work with experiments using ES cells, which she finds much easier to prompt into neurons than iPS cells. I am excited and relieved by this decision, she says.

The tussles over whether or not US federal funds can be used for research involving human embryonic stem cells have a long history.

November 1998 Paper announces the isolation of embryonic stem (ES) cells from human embryos.

August 2001 US President George W. Bush restricts federal funding for work on human ES cells to a few extant lines.

Originally posted here:
Court lifts cloud over embryonic stem cells – Stem Cell Cafe

Genea Stem Cells (GSC): 25 new disease specific pluripotent stem …

SYDNEY, Australia(BUSINESS WIRE)

Genea Stem Cells Pty Ltd (GSC), a supplier and developer of disease-specific human stem cells, today announced that 25 of its disease specific embryonic pluripotent stem cell lines have been placed on the USA National Institutes of Health (NIH) human stem cell registry. These embryonic stem cell lines are now all available commercially for use in medical research.

These cell lines include one disease free pluripotent cell line and 24 others with individual mutations that give rise to several severe diseases such as cancer (breast cancer, Wilms tumor and Von HippelLindau syndrome), Huntingtons disease, muscular dystrophy (including CMT, FSHD and Myotonic) and cystic fibrosis as well as some rarer genetic diseases such as Trisomy 5, macular dystrophy, incontinentia pigmenti, juvenile retinoschisis, alpha thalassemia and autosomal dominant torsion dystonia. All these cell lines are genetically unmodified and have been derived in compliance with international regulatory and ethical guidelines.

GSC has the worlds largest private bank of pluripotent human embryonic stem cells with more than 100 individual lines expressing almost 30 different genetic diseases. The Company is also developing multiple differentiated cell lines from these pluripotent lines and currently offer GABAergic neurons and vascular smooth muscle cells. These are the only commercially available differentiated disease affected cell lines in the world and GSC is willing to work with drug developers globally to custom-make disease-specific differentiated cell lines for use in in vitro research.

Dr Uli Schmidt, General Manager of GSC, commented: It is a tribute to all the hard work and diligence of our scientists in Sydney that so many of our lines have been accepted by the NIH. We believe that this year will see substantial commercial take up of these perfect in vitro research tools.

GSC will be exhibiting (booth 1536) this week at the Society for Lab Automation and Screening (SLAS) 2013 conference and exhibition in Orlando, Florida. [12-16 January 2013].

ends

About Genea Stem Cells

Genea Stem Cells (GSC) supplies and develops disease-specific pluripotent and differentiated human embryonic stem cells for use in drug development and research. All of our cellular products are genetically unmodified human cells the most accurate in vitro reflection of clinical conditions, promising more predictive disease models and thereby reducing the need for animal studies. GSC provides the following products for use in drug development and medical research:

As well as providing the above products, GSC also works collaboratively with industry for custom-developed cell-based assay solutions in drug development.

See the rest here:
Genea Stem Cells (GSC): 25 new disease specific pluripotent stem ...

Research and Markets: Stem Cell Therapy Market in Asia-Pacific to …

DUBLIN(BUSINESS WIRE)

Research and Markets (http://www.researchandmarkets.com/research/dd7jnv/stem_cell_therapy) has announced the addition of the Stem Cell Therapy Market in Asia-Pacific to 2018 Commercialization Supported by Favorable Government Policies, Strong Pipeline and Increased Licensing Activity report to their offering.

Commercialization Supported by Favorable Government Policies, Strong Pipeline and Increased Licensing Activity

Stem Cell Research in Asia-Pacific a Growth Engine for Regions Scientific Ambitions

The stem cell therapy market in Asia-Pacific is poised to offer significant contributions in the future, thanks to renewed interest by the respective governments of India, China, Japan, South Korea and Singapore to provide cures for a range of diseases, states a new report by healthcare experts GBI Research.

Stem cells are unique body cells that possess the ability to divide and differentiate into diverse cell types, and can be used to produce more stem cells. The use of adult stem cells has been successfully employed to treat bone and blood related disorders such as leukemia, through bone marrow transplants. Stem cell therapy is used to repair and regenerate the damaged tissue, though the actual mechanism of action is largely unknown.

The growth in the stem cell therapy market will not only provide treatment options but will also contribute significantly to the countries Gross Domestic Product (GDP), with the President of South Korea only last year referring to stem cell research as a new growth engine for the nations economy. In order to support the stem cell industry, regulatory guidelines in Asia-Pacific countries allow stem cell research, and this has led to its commercialization. India and South Korea are the leaders in the commercialization of stem cell therapy, with approved products for Acute Myocardial Infarction (AMI), osteoarthritis and anal fistula in Crohns disease, amongst others. The countries allow the use of human embryonic stem cells and provide adequate funding support for the research.

Stem cell therapy is an emerging field, and a large amount of research is currently being carried out by institutions such as hospitals, universities and medical colleges. According to GBI Researchs analysis of the stem cell therapy research in Asia-Pacific, 63% of pipeline molecules were being researched by academia. The emergence of institutional research has boosted stem cell discoveries, as companies can be put off conducting research due to uncertain therapeutic outcomes. China and Japan witness only a negligible industry presence in stem cell research, as academic institutions dominate however in contrast, India has the presence of both industry and academia. The major institutions engaged in stem cell research in India are LV Prasad Eye Institute (LYPEI) for Limbal Stem Cell Technology (LSCT), and the Post Graduate Institute of Medical Education and Research (PGIMER) for stem cell therapy for type 2 diabetes mellitus.

The market is poised for significant growth in the future, due to the anticipated launch of JCR Pharmaceuticals JR-031 in Japan in 2014, and FCB Pharmicells Cerecellgram (CCG) in South Korea in 2015. GBI Research therefore predicts that the stem cell therapy market will grow in value from $545m in 2012 to $972m in 2018, at a Compound Annual Growth Rate (CAGR) of 10%.

Companies Mentioned

Read the original post:
Research and Markets: Stem Cell Therapy Market in Asia-Pacific to ...

Cancer Stem Cells – Video – Stem Cell Cafe

Jan 06

Cancer Stem Cells http://www.tradebit.com Cancer Stem Cells A remarkable paradigm shift has occurred in recent years regarding the biological origins of cancer. The cancer stem cell hypothesis challenged the foundational notions of cancer, and the therapeutic implications have been profound. Compelling evidence indicates that errors in the development of a small subset of adult stem cells can lead to cancer. Only this small sub-population of cells has the inherent ability to form tumours and metastasize. This book discusses the emerging field of cancer stem cell research, with contributions from leading experts on the basic biology, genetic pathways, and potentials for therapeutic targeting of cancer stem cells. It also covers clinical challenges for these new discoveries, namely, that cancer stem cells might be resistant to conventional chemotherapeutic and radiological treatments and may be at the biological core of relapse and therapeutic resistance. This book is an essential concise guide to the latest discoveries and therapies in cancer research. Publisher: Cambridge University Press Illustration: N Language: ENG Title: Cancer Stem Cells Pages: 00192 (Encrypted PDF) On Sale: 2009-09-30 SKU-13/ISBN: 9780521896283 Category: Science : Life Sciences Developmental Biology A remarkable paradigm shift has occurred in recent years regarding the biological origins of cancer. The cancer stem cell hypothesis challenged the foundational notions of cancer, and the therapeutic science, life sciences

By: KaylnGentryPhillips

See the original post: Cancer Stem Cells Video

Read the rest here:
Cancer Stem Cells – Video – Stem Cell Cafe

Stem Cells Restore Man’s Vision | The art of cord blood banking

Tweet

Ontario mans eyesight restored with a limbal stem cell transplant. On the Bonus Show: Court OKs firing for attractiveness, 22000 applicants for 300 Delta jobs, FDA leans to approving GMO salmon, more How do you get the Bonus Show? Become a member: http://www.davidpakman.com If you liked this clip of The David Pakman Show, please do us a big favor and share it with your friends and hit that like button! http://www.davidpakman.com Become a Member http://www.davidpakman.com Like Us on Facebook: http://www.facebook.com Follow Us on Twitter: http://www.twitter.com Get TDPS Gear: http://www.davidpakman.com 24/7 Voicemail Line: (219)-2DAVIDP Subscribe to The David Pakman Show for more: http://www.youtube.com Broadcast on December 24, 2012 Video Rating: 4 / 5

Get the latest Penn EVERYDAY: crackle.com Is federal funding for stem cell research needed? When Penn Jillette has an opinion its a safe bet he wont hold back. Upload your own reaction and get the rants rolling! Tune in each week for new insight and agitation. Follow PennSays on Twitter: twitter.com tags: Penn Says Stem Cell Research Is federal funding needed? penn jillette teller bullshit showtime crackle vlog commentary honest libretarian atheist Video Rating: 4 / 5

Tags: cells, Man's, Restore, Stem, Vision

Continued here:
Stem Cells Restore Man's Vision | The art of cord blood banking

U-M Would Have To Report Data On Stell Cell Research In New House Bill

LANSING - The University of Michigan would have to report data on its stem cell research and Michigan State University would have to end its policy of requiring students to have health insurance if they want a piece of the $36 million in performance funding in changes made Friday by the Michigan House Appropriations Higher Education Subcommittee.

The committee, which reported the bill (HB 5377) along party lines, fundamentally changed the performance funding metrics proposed by Governor Rick Snyder.

To qualify for the money, universities would have a limit on tuition increase looking at a two-year basis, report embryonic stem cell research, participate in reverse transfer agreements with at least three community colleges in the state, ensure their dual enrollment policy doesn't consider use of credits toward high school graduation requirements and that the universities don't compel undergraduate students to carry health insurance.

U-M is the only university that conducts stem cell research and MSU is the only university that compels students to have health insurance. The Republican members of the subcommittee were clearly upset with the universities during testimony on those issues earlier this year.

Rep. Bob Genetski II (R-Saugatuck), the subcommittee chair, said the budget does not target anyone.

Rep. Joan Bauer (D-Lansing), the subcommittee's minority vice chair, vehemently disagreed and said such obvious punitive language has no place in the higher education budget.

"It really verges on social engineering," said Mike Boulus, executive director of the Presidents Council, State Universities of Michigan.

This story was provided by Gongwer News Service. To subscribe, click on Gongwer.Com

See original here:
U-M Would Have To Report Data On Stell Cell Research In New House Bill

A new hair loss treatment using stem cells ethically, safely and effectively. – Video

08-10-2010 10:48 Recoverup offers a new ethical, safe and effective long-lasting stem cell hair regeneration treatment that is the revolutionary solution to hair loss; taking stem cells from your own body and transforming them into enduring new hair. The treatment is available today. The treatment uses Autologous Adipose Adult (AAA) stem cells

Here is the original post:
A new hair loss treatment using stem cells ethically, safely and effectively. - Video