Category Archives: Induced Pluripotent Stem Cells

Stem Cell Therapy Market Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2020 2025 – Owned

A report on Stem Cell Therapy market compiled by Brand Essence Market Research provides a succinct analysis regarding the values and trends existing in the current business scenario. The study also offers a brief summary of market valuation, market size, regional outlook and profit estimations of the industry. Furthermore, the report examines the competitive sphere and growth strategies of leading players in the Stem Cell Therapy market.

In 2018, the GlobalStem Cell Therapy Marketsize was xx million US$ and it is expected to reach xx million US$ by the end of 2025, with a CAGR of xx% during 2019-2025.

Download Premium Sample of the Report:https://industrystatsreport.com/Request/Sample?ResearchPostId=595&RequestType=Sample

Key playersof the Stem Cell Therapy market are Gilead, Novartis, Organogenesis, Vericel, Others

Stem Cell Therapy Market Segmentation:

Reports include the following segmentation: By Product TypeAdult Stem CellsHuman Embryonic Stem Cells (hESC)Induced Pluripotent Stem CellsVery Small Embryonic Like Stem CellsBy Applications TypeRegenerative MedicineDrug Discovery and DevelopmentBy TechnologyCell AcquisitionCell ProductionCryopreservationExpansion and Sub-CultureBy Cell TherapyAutologousAllogeneicBy RegionNorth Americao U.S.o Canadao MexicoEuropeo UKo Franceo Germanyo Russiao Rest of EuropeAsia-Pacifico Chinao South Koreao Indiao Japano Rest of Asia-PacificLAMEAo Latin Americao Middle Easto Africa

Region Coverage (Regional Production, Demand & Forecast by Countries etc.): North America (U.S., Canada, Mexico) Europe (Germany, U.K., France, Italy, Russia, Spain etc.) Asia-Pacific (China, India, Japan, Southeast Asia etc.) South America (Brazil, Argentina etc.) Middle East & Africa (Saudi Arabia, South Africa etc.)

Table of Contents

1 Report Overview 1.1 Study Scope 1.2 Key Market Segments 1.3 Players Covered 1.4 Market Analysis by Type 1.4.1 Global Stem Cell Therapy Market Size Growth Rate by Type (2014-2025) 1.4.2 Topical Products 1.4.3 Botulinum 1.4.4 Dermal Fillers 1.4.5 Chemical Peels 1.4.6 Microabrasion Equipment 1.4.7 Laser Surfacing Treatments 1.5 Market by Application 1.5.1 Global Stem Cell Therapy Market Share by Application (2014-2025) 1.5.2 Hospitals 1.5.3 Dermatology Clinics 1.6 Study Objectives 1.7 Years Considered

2 Global Growth Trends 2.1 Stem Cell Therapy Market Size 2.2 Stem Cell Therapy Growth Trends by Regions 2.2.1 Stem Cell Therapy Market Size by Regions (2014-2025) 2.2.2 Stem Cell Therapy Market Share by Regions (2014-2019) 2.3 Industry Trends 2.3.1 Market Top Trends 2.3.2 Market Drivers 2.3.3 Market Opportunities

3 Market Share by Key Players 3.1 Stem Cell Therapy Market Size by Manufacturers 3.1.1 Global Stem Cell Therapy Revenue by Manufacturers (2014-2019) 3.1.2 Global Stem Cell Therapy Revenue Market Share by Manufacturers (2014-2019) 3.1.3 Global Stem Cell Therapy Market Concentration Ratio (CR5 and HHI) 3.2 Stem Cell Therapy Key Players Head office and Area Served 3.3 Key Players Stem Cell Therapy Product/Solution/Service 3.4 Date of Enter into Stem Cell Therapy Market 3.5 Mergers & Acquisitions, Expansion Plans

Read More:https://industrystatsreport.com/Semiconductor-and-Electronics/Stem-Cell-Therapy-Market-Share/Summary

About us: Brandessence Market Research and Consulting Pvt. ltd.

Brandessence market research publishes market research reports & business insights produced by highly qualified and experienced industry analysts. Our research reports are available in a wide range of industry verticals including aviation, food & beverage, healthcare, ICT, Construction, Chemicals and lot more. Brand Essence Market Research report will be best fit for senior executives, business development managers, marketing managers, consultants, CEOs, CIOs, COOs, and Directors, governments, agencies, organizations and Ph.D. Students. We have a delivery center in Pune, India and our sales office is in London.

Contact us at: +44-2038074155 or mail us at[emailprotected]

Link:
Stem Cell Therapy Market Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2020 2025 - Owned

Citius Receives FDA Response on Pre-Investigational New Drug (PIND) Application for its Induced Mesenchymal Stem Cells (iMSCs) to Treat Acute…

CRANFORD, N.J., June 26, 2020 /PRNewswire/ --Citius Pharmaceuticals, Inc. ("Citius" or the "Company") (Nasdaq: CTXR), a specialty pharmaceutical company focused on developing and commercializing critical care drug products, announced today that the Company has received a written response from the U.S. Food and Drug Administration (FDA) in regards to its pre-investigational new drug (PIND) application for its induced mesenchymal stem cells (iMSCs) to treat and reduce the severity of acute respiratory distress syndrome (ARDS) in patients with COVID-19.

The FDA acknowledged that the Company could apply for fast track designation and also provided Citius with the chemistry, manufacturing, and control (CMC) requirements for the proposed trials. The Company plans to initiate actions on the FDA's recommendations and follow up with the FDA with an Investigational New Drug (IND) application under the Coronavirus Treatment Acceleration Program (CTAP).

Myron Holubiak, Chief Executive Officer of Citius, commented, "We appreciate the FDA's thoughtful guidance on our unique, allogenic mesenchymal stem cells derived from induced pluripotent stem cells (iPSCs). We understand that iPSC-derived stem cells are not the same as adult-donor derived cells and, therefore, would require different proof of concept studies. Since we believe in the advantages of iPSC MSCs over donor-derived cells, we intend to develop assays recommended by the FDA and demonstrate the safety of these MSCs in our preclinical studies. We are committed to the successful completion of the required clinical trials to provide an effective and safe therapy for ARDS due to COVID-19."

About Citius Pharmaceuticals, Inc.Citius is a late-stage specialty pharmaceutical company dedicated to the development and commercialization of critical care products, with a focus on anti-infectives and cancer care. For more information, please visitwww.citiuspharma.com.

About Citius iMSCCitius's mesenchymal stem cell therapy product is derived from a human induced pluripotent stem cell (iPSC) line generated using a proprietary mRNA-based (non-viral) reprogramming process. The iMSCs produced from this clonal technique are differentiated from adult donor-derived MSCs (bone marrow, placenta, umbilical cord, adipose tissue, or dental pulp) by providing genetic homogeneity. In in-vitro studies, iMSCs exhibit superior potency and high cell viability. The iMSCs secrete immunomodulatory proteins that may reduce or prevent pulmonary symptoms associated with acute respiratory distress syndrome (ARDS) in patients with COVID-19. The Citius iMSC is an allogeneic (unrelated donor) mesenchymal stem-cell product manufactured by expanding material from a master cell bank.

About Acute Respiratory Distress Syndrome (ARDS)ARDS is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. ARDS is a rapidly progressive disease that occurs in critically ill patients most notably now in those diagnosed with COVID-19. ARDS affects approximately 200,000 patients per year in the U.S., exclusive of the current COVID-19 pandemic, and has a 30% to 50% mortality rate. ARDS is sometimes initially diagnosed as pneumonia or pulmonary edema (fluid in the lungs from heart disease). Symptoms of ARDS include shortness of breath, rapid breathing and heart rate, chest pain (particularly while inhaling), and bluish skin coloration. Among those who survive ARDS, a decreased quality of life is relatively common.

About Coronavirus Treatment Acceleration Program (CTAP)In response to the pandemic, the FDA has created an emergency program called the Coronavirus Treatment Acceleration Program (CTAP) to accelerate the development of treatments for COVID-19. By redeploying staff, the FDA is responding to COVID-19-related requests and reviewing protocols within 24 hours of receipt. The FDA said CTAP "uses every available method to move new treatments to patients as quickly as possible, while at the same time finding out whether they are helpful or harmful." In practice, that means developers of potential treatments for COVID-19 would benefit from an unusually faster track at the FDA to shorten wait times at multiple steps of the process.

Safe Harbor

This press release may contain "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Such statements are made based on our expectations and beliefs concerning future events impacting Citius. You can identify these statements by the fact that they use words such as "will," "anticipate," "estimate," "expect," "should," and "may" and other words and terms of similar meaning or use of future dates. Forward-looking statements are based on management's current expectations and are subject to risks and uncertainties that could negatively affect our business, operating results, financial condition and stock price. Factors that could cause actual results to differ materially from those currently anticipated are: the risk of successfully negotiating a license agreement for a potential ARDS therapy with Novellus, Inc. within the option period; the ability to access the FDA's CTAP program for our planned ARDS therapy; risks associated with developing our product candidates, including any licensed from Novellus, Inc., including that preclinical results may not be predictive of clinical results and our ability to file an IND for such candidates; our need for substantial additional funds; risks associated with conducting our Phase 3 trial for Mino-Lok, including completing patient enrollment, opening study sites and achieving the required number of catheter failure events; the estimated markets for our product candidates, including those for ARDS, and the acceptance thereof by any market; risks related to our growth strategy; our ability to identify, acquire, close and integrate product candidates and companies successfully and on a timely basis; risks relating to the results of research and development activities; uncertainties relating to preclinical and clinical testing; the early stage of products under development; our ability to obtain, perform under and maintain financing and strategic agreements and relationships; our ability to attract, integrate, and retain key personnel; government regulation; patent and intellectual property matters; competition; as well as other risks described in our SEC filings. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations or any changes in events, conditions or circumstances on which any such statement is based, except as required by law.

Contact:

Andrew Scott Vice President, Corporate Development (O) 908-967-6677 x105 [emailprotected]

SOURCE Citius Pharmaceuticals, Inc.

Home

See more here:
Citius Receives FDA Response on Pre-Investigational New Drug (PIND) Application for its Induced Mesenchymal Stem Cells (iMSCs) to Treat Acute...

Induced Pluripotent Stem Cells Market 2020 Global Industry …

The MarketWatch News Department was not involved in the creation of this content.

Jun 18, 2020 (The Expresswire) -- Induced Pluripotent Stem Cells Market 2020 Global Industry Trends, Size, Share Analysis Report. According to this report Global Induced Pluripotent Stem Cells Market will rise from Covid-19 crisis at moderate growth rate during 2020 to 2026. Induced Pluripotent Stem Cells Market includes comprehensive information derived from depth study on Induced Pluripotent Stem Cells Industry historical and forecast market data. Global Induced Pluripotent Stem Cells Market Size To Expand moderately as the new developments in Induced Pluripotent Stem Cells and Impact of COVID19 over the forecast period 2020 to 2026.

Induced Pluripotent Stem Cells Market report provides depth analysis of the market impact and new opportunities created by the COVID19/CORONA Virus pandemic. Report covers Induced Pluripotent Stem Cells Market report is helpful for strategists, marketers and senior management, And Key Players in Induced Pluripotent Stem Cells Industry.

Get Sample Report To Know How COVID-19 Impacting Induced Pluripotent Stem Cells Market

Global Induced Pluripotent Stem Cells Market Insights:

Report Analyzes Global Induced Pluripotent Stem Cells Market Growth Size, Share And Trends By Derived Cell Type (Amniotic cells, Fibroblasts, Keratinocytes, Hepatocytes, Others), By Application (Regenerative medicines, Drug development, Toxicity testing, Reprogramming technology, Academic research, Others), By End-user (Hospitals, Education and research institutes, Biotechnological companies) and Geography Forecast till 2026.

Key players are involved in mergers and acquisition to strengthen their market position. Owing to increasing competition frequent innovations are taking place in the market. Some of the companies operating the industry are: Astellas Pharma, Ncardia, Applied StemCell, FUJIFILM Cellular Dynamics, Axol Bioscience, Bristol-Myers Squibb Company, RandD Systems, Fate Therapeutics, Evotec AG, ViaCyte Inc.

STEMCELL Technologies Inc., a global biotechnology company launched mTeSR Plus, an enhanced version of mTeSR1, a widely published feeder-free human pluripotent stem cell (hPSC) maintenance medium. mTeSR Plus will be used to prevent onset acidosis. The launch of mTeSR Plus is likely to encourage global induced pluripotent stem cells growth owing to the design of the mTeSR Plus, which offers more consistent cell culture environment through sustained medium pH and stabilized components including FGF2. Furthermore, warning by FDA for marketing dangerous unapproved stem cells products is expected to alert pharmaceutical companies to market FDA approved products. This factor will, in turn, enable growth of the global induced pluripotent stem cells. For instance, the U.S Food and Drug Administration (FDA) sent a warning to Genetech, Inc. for marketing stem cell therapy without the U.S FDA approval and nonconformity of Good Manufacturing Practice (CGMP).

Active government support for RandD activities through research grants is driving the global induced pluripotent stem cells. Increasing private funding and rising shift towards regenerative medicines are predicted to favor induced pluripotent stem cells revenue. Further, induced pluripotent stem cells have created new avenues in clinical research, regenerative medicines, and disease modeling. This has also paved the way to numerous mergers and acquisitions and potential pipeline products and patents. In addition, the diversity of donor candidates is a factor predicted to aid induced pluripotent stem cells growth. Moreover, increasing accessibility towards the cell of origin is also expected to boost the global induced pluripotent stem cells market in the forthcoming year. However, ethical issues related to the donors and potential risk of tumors are factors predicted to hamper the growth of the global induced pluripotent stem cells.

Regional Market Overview:

Regional analysis is another highly comprehensive part of the research and analysis study of the global market presented in the report. This section sheds light on the sales growth of different regional and country-level markets. For the historical and forecast period to 2024, it provides detailed and accurate country-wise volume analysis and region-wise market size analysis of the global market.

Geographically, the global induced pluripotent stem cells market is segmented into North America, Europe, Asia Pacific, Latin America, and Middle East and Africa. North America is expected to dominate the global induced pluripotent stem cells market during the forecast period due to the increasing RandD investment by key players for potential pipeline products. In Europe, the global induced pluripotent stem cells market is anticipated to grow significantly during the forecast period. The active government support and product launches are predicted to favor growth in the region. For instance, in 2018, Ncardia, a company working for drug discovery using stem cell, launched Xpress.4U LightPace Cor.4U, a kit for improving and simplifying the use of optical pacing of cardiomyocytes, a human induced pluripotent stem cell. The aforementioned factors together are enabling growth in Europe.

Intended Audience:

Competitive Analysis:

The Induced Pluripotent Stem Cells Market report examines competitive scenario by analyzing key players in the market. The company profiling of leading market players is included this report with Porter's five forces analysis and Value Chain analysis. Further, the strategies exercised by the companies for expansion of business through mergers, acquisitions, and other business development measures are discussed in the report. The financial parameters which are assessed include the sales, profits and the overall revenue generated by the key players of Market.

Inquire More Information On This Report

Report Highlights:

In-depth information about the latest Induced Pluripotent Stem Cells Industry trends, opportunities, and challenges.

Extensive analysis of the growth drivers And barriers.

Competitive landscape consisting of investments, agreements, contracts, novel product launches, strategic collaborations, and mergers and acquisitions.

List of the segments and the niche areas.

Comprehensive details about the strategies that are being adopted by key players.

Table of Content:

1.1. Research Scope

1.2. Market Segmentation

1.3. Research Methodology

1.4. Definitions and Assumptions

3.1. Market Drivers

3.2. Market Restraints

3.3. Market Opportunities

4.1. Prevalence of Key Indications, 2017 (Key Countries)

4.2. Economic (Key Countries)

4.3. Key Mergers and Acquisitions

4.4. Pricing Analysis, Key Players, 2017

4.5. Overview: New Developments in Induced Pluripotent Stem Cells

5.1. Key Findings / Summary

Continue...

Related News:

Kidney Stone Management Devices Market Report

Pleural Effusion Treatment Market Report

Dental Chairs Market Report

Artificial Intelligence in Healthcare Market Report

Atopic Dermatitis Treatment Market Report

About Us:

Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.

Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.

At Fortune Business Insights, we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.

Contact Us:

Fortune Business Insights Pvt. Ltd.

308, Supreme Headquarters,

Survey No. 36, Baner,

Pune-Bangalore Highway,

Pune -411045, Maharashtra, India.

US: +1 424 253 0390

UK: +44 2071 939123

APAC: +91 744 740 1245

Email: sales@fortunebusinessinsights.com

Press Release Distributed by The Express Wire

To view the original version on The Express Wire visit Induced Pluripotent Stem Cells Market 2020 Global Industry Analysis By Size, Growth Rate and Trends With Forecast To 2026

COMTEX_367053946/2598/2020-06-18T06:10:46

Is there a problem with this press release? Contact the source provider Comtex at editorial@comtex.com. You can also contact MarketWatch Customer Service via our Customer Center.

The MarketWatch News Department was not involved in the creation of this content.

Continued here:
Induced Pluripotent Stem Cells Market 2020 Global Industry ...

Induced Pluripotent Stem Cells Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 – Cole of Duty

Reprocell

Induced Pluripotent Stem Cells Market Competitive Landscape & Company Profiles

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the Induced Pluripotent Stem Cells market.

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Induced Pluripotent Stem Cells market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Induced Pluripotent Stem Cells Market, By Product

Regions Covered in these Report:

Asia Pacific (China, Japan, India, and Rest of Asia Pacific) Europe (Germany, the UK, France, and Rest of Europe) North America (the US, Mexico, and Canada) Latin America (Brazil and Rest of Latin America) Middle East & Africa (GCC Countries and Rest of Middle East & Africa)

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=219183&utm_source=COD&utm_medium=888

Induced Pluripotent Stem Cells Market Research Methodology

The research methodology adopted for the analysis of the market involves the consolidation of various research considerations such as subject matter expert advice, primary and secondary research. Primary research involves the extraction of information through various aspects such as numerous telephonic interviews, industry experts, questionnaires and in some cases face-to-face interactions. Primary interviews are usually carried out on a continuous basis with industry experts in order to acquire a topical understanding of the market as well as to be able to substantiate the existing analysis of the data.

Subject matter expertise involves the validation of the key research findings that were attained from primary and secondary research. The subject matter experts that are consulted have extensive experience in the market research industry and the specific requirements of the clients are reviewed by the experts to check for completion of the market study. Secondary research used for the Induced Pluripotent Stem Cells market report includes sources such as press releases, company annual reports, and research papers that are related to the industry. Other sources can include government websites, industry magazines and associations for gathering more meticulous data. These multiple channels of research help to find as well as substantiate research findings.

Table of Content

1 Introduction of Induced Pluripotent Stem Cells Market

1.1 Overview of the Market 1.2 Scope of Report 1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining 3.2 Validation 3.3 Primary Interviews 3.4 List of Data Sources

4 Induced Pluripotent Stem Cells Market Outlook

4.1 Overview 4.2 Market Dynamics 4.2.1 Drivers 4.2.2 Restraints 4.2.3 Opportunities 4.3 Porters Five Force Model 4.4 Value Chain Analysis

5 Induced Pluripotent Stem Cells Market, By Deployment Model

5.1 Overview

6 Induced Pluripotent Stem Cells Market, By Solution

6.1 Overview

7 Induced Pluripotent Stem Cells Market, By Vertical

7.1 Overview

8 Induced Pluripotent Stem Cells Market, By Geography

8.1 Overview 8.2 North America 8.2.1 U.S. 8.2.2 Canada 8.2.3 Mexico 8.3 Europe 8.3.1 Germany 8.3.2 U.K. 8.3.3 France 8.3.4 Rest of Europe 8.4 Asia Pacific 8.4.1 China 8.4.2 Japan 8.4.3 India 8.4.4 Rest of Asia Pacific 8.5 Rest of the World 8.5.1 Latin America 8.5.2 Middle East

9 Induced Pluripotent Stem Cells Market Competitive Landscape

9.1 Overview 9.2 Company Market Ranking 9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview 10.1.2 Financial Performance 10.1.3 Product Outlook 10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=219183&utm_source=COD&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Application Lifecycle Management Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Electrostatic Precipitator Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Engineering Plastics Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Go here to see the original:
Induced Pluripotent Stem Cells Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 - Cole of Duty

Stem Cell Manufacturing Market Share, Size, Trends 2020- Segments worth Observing Aiding Growth Factors | Merck Group, Becton, Dickinson And Company….

Latest Study on Growth of Global Stem Cell Manufacturing Market 2020-2027. A detailed study accumulated to offer Latest insights about acute features of the Stem Cell Manufacturing market. This Report studies the latest industry trends, market development aspects, market gains, and industry scenario during the forecast period. The report provides the details related to fundamental overview, development status, latest advancements, market dominance and market dynamics. While emphasizing the key driving and restraining forces for this market, the report also offers a complete study of the future trends and developments of the market. It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary and SWOT analysis. This Stem Cell Manufacturing Industry report is consist of the worlds crucial region market share, size, trends including the product profit, price, value, production capacity, capability utilization, supply and demand and industry growth rate.

Stem cell manufacturing is forecasted to grow at CAGR of 6.42% to an anticipated value of USD 18.59 billion by 2027 with factors like rising awareness towards diseases like cancer, degenerative disorders and hematopoietic disorders is driving the growth of the market in the forecast period of 2020-2027.

Download Exclusive Sample (350 Pages PDF) Report: To Know the Impact of COVID-19 on this [emailprotected]https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-stem-cell-manufacturing-market&AB

Stem cell manufacturing has shown an exceptional penetration in North America due to increasing research in stem cell. Increasing research and development activities in biotechnology and pharmaceutical sector is creating opportunity for the stem cell manufacturing market.

The Global Stem Cell Manufacturing Market 2020 research provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Global Stem Cell Manufacturing Market Share analysis is provided for the international markets including development trends, competitive landscape analysis, and key regions development status. Development policies and plans are discussed as well as manufacturing processes and cost structures are also analyzed.

Global Stem Cell Manufacturing Market Segematation By Product (Stem Cell Line, Instruments, Culture Media, Consumables), Application (Research Applications, Clinical Applications, Cell and Tissue Banking), End Users (Hospitals and Surgical Centers, Pharmaceutical and Biotechnology Companies, Clinics, Community Healthcare, Others)

List of TOP KEY PLAYERS in Stem Cell Manufacturing Market Report are

Thermo Fisher Scientific Merck KGaA BD JCR Pharmaceuticals Co., Ltd Organogenesis Inc Osiris Vericel Corporation AbbVie Inc AM-Pharma B.V ANTEROGEN.CO.,LTD Astellas Pharma Inc Bristol-Myers Squibb Company FUJIFILM Cellular Dynamics, Inc RHEACELL GmbH & Co. KG Takeda Pharmaceutical Company Limited Teva Pharmaceutical Industries Ltd ViaCyte,Inc VistaGen Therapeutics Inc GlaxoSmithKline plc ..

Complete Report is Available (Including Full TOC, List of Tables & Figures, Graphs, and Chart)@https://www.databridgemarketresearch.com/toc/?dbmr=global-stem-cell-manufacturing-market&AB

The report can help to understand the market and strategize for business expansion accordingly. In the strategy analysis, it gives insights from marketing channel and market positioning to potential growth strategies, providing in-depth analysis for new entrants or exists competitors in the Stem Cell Manufacturing industry. This report also states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins. For each manufacturer covered, this report analyzes their Stem Cell Manufacturing manufacturing sites, capacity, production, ex-factory price, revenue and market share in global market.

The Global Stem Cell Manufacturing Market Trends, development and marketing channels are analysed. Finally, the feasibility of new investment projects is assessed and overall research conclusions offered.

Global Stem Cell Manufacturing Market Scope and Market Size

Stem cell manufacturing market is segmented on the basis of product, application and end users. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Based on product, the stem cell manufacturing market is segmented into stem cell lines, instruments, culture media and consumables. Stem cell lines are further segmented into induced pluripotent stem cells, embryonic stem cells, multipotent adult progenitor stem cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells. Instrument is further segmented into bioreactors and incubators, cell sorters and other instruments.

On the basis of application, the stem cell manufacturing market is segmented into research applications, clinical applications and cell and tissue banking. Research applications are further segmented into drug discovery and development and life science research. Clinical applications are further segmented into allogenic stem cell and autologous stem cell therapy.

On the basis of end users, the stem cell manufacturing market is segmented into hospitals and surgical centers, pharmaceutical and biotechnology companies, research institutes and academic institutes, community healthcare, cell banks and tissue banks and others.

Healthcare Infrastructure growth Installed base and New Technology Penetration

Stem cell manufacturing market also provides you with detailed market analysis for every country growth in healthcare expenditure for capital equipment, installed base of different kind of products for stem cell manufacturing market, impact of technology using life line curves and changes in healthcare regulatory scenarios and their impact on the stem cell manufacturing market. The data is available for historic period 2010 to 2018.

The Global Stem Cell Manufacturing Market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of stem cell manufacturing market for global, Europe, North America, Asia Pacific and South America.

Key Insights in the report:

Historical and current market size and projection up to 2025

Market trends impacting the growth of the global taste modulators market

Analyze and forecast the taste modulators market on the basis of, application and type.

Trends of key regional and country-level markets for processes, derivative, and application Company profiling of key players which includes business operations, product and services, geographic presence, recent developments and key financial analysis

For More Information or Query or Customization Before Buying, Visit @https://databridgemarketresearch.com/inquire-before-buying/?dbmr=global-stem-cell-manufacturing-market&AB

Opportunities in the market

To describe and forecast the market, in terms of value, for various segments, by region North America, Europe, Asia Pacific (APAC), and Rest of the World (RoW)

The key findings and recommendations highlight crucial progressive industry trends in the Stem Cell manufacturing Market, thereby allowing players to develop effective long term strategies

To strategically profile key players and comprehensively analyze their market position in terms of ranking and core competencies, and detail the competitive landscape for market leaders Extensive analysis of the key segments of the industry helps in understanding the trends in types of point of care test across Europe.

To get a comprehensive overview of the Stem Cell manufacturing market.

With tables and figures helping analyses worldwide Global Stem Cell Manufacturing Market Forecast this research provides key statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market. There are 15 Chapters to display the Stem Cell Manufacturing market.

Chapter 1, About Executive Summary to describe Definition, Specifications and Classification of Stem Cell Manufacturing market, By Product Type, by application, by end users and regions.

Chapter 2, objective of the study.

Chapter 3, to display Research methodology and techniques.

Chapter 4 and 5, to show the Stem Cell Manufacturing Market Analysis, segmentation analysis, characteristics;

Chapter 6 and 7, to show Five forces (bargaining Power of buyers/suppliers), Threats to new entrants and market condition;

Chapter 8 and 9, to show analysis by regional segmentation[North America, Europe, Asia-Pacific etc ], comparison, leading countries and opportunities; Regional Marketing Type Analysis, Supply Chain Analysis

Chapter 10, to identify major decision framework accumulated through Industry experts and strategic decision makers;

Chapter 11 and 12, Stem Cell Manufacturing Market Trend Analysis, Drivers, Challenges by consumer behavior, Marketing Channels

Chapter 13 and 14, about vendor landscape (classification and Market Ranking)

Chapter 15, deals with Stem Cell Manufacturing Market sales channel, distributors, Research Findings and Conclusion, appendix and data source.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia or Oceania [Australia and New Zealand]

Contact Us:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:[emailprotected]

Our Upcoming Event:Future of Healthcare Robotics|Digital Conference

HEALTHCARE ROBOTICSis the upcoming future of Medical Sciences. The usage of robotics is already prevalent in surgeries across developed and emerging geographies. It has been quite a while where integration of robotics across healthcare supply chain is being discussed. The Covid 19 Pandemic is expected to speed up the timeline for these innovations and concepts to become reality. With the requirement of telemedicine and robotics in handling samples the healthcare industry is expected to see a digital paradigm shift in the next 2 years. The point here to be discussed is where the future is for healthcare robotics Surgical, Diagnostics or Telemedicine.

REGISTER NOW FOR FREE@https://www.databridgemarketresearch.com/digital-conference/future-of-healthcare-robotics?AB

In the pioneer edition of DBMR Healthcare Robotics Conference come join us in this enriching knowledge fest where experts will speak on new technologies and market dynamics perceptions. Together lets move ahead in the future of medical science and technology.

Read this article:
Stem Cell Manufacturing Market Share, Size, Trends 2020- Segments worth Observing Aiding Growth Factors | Merck Group, Becton, Dickinson And Company....

Janus-Faced PCL2? Alzheimer’s Risk Protein Toggles TREM2 and TLR Pathways – Alzforum

12 Jun 2020

Rare variants in TREM2 and PCLG2 influence a persons odds of developing Alzheimers disease, but that is far from all the two genes have in common. According to a study published June 8 in Nature Neuroscience, phospholipase C 2 acts downstream of TREM2 in a signaling pathway that supports critical microglial functions. Using human microglia derived from induced pluripotent stem cells, researchers led by Joseph Lewcock at Denali Therapeutics in South San Francisco reported that knocking out either gene product prevented the immune cells from efficiently processing lipids and neuronal debris. The researchers also found that, independently of TREM2, PLC2 is involved in a pro-inflammatory side hustle dictated by toll-like receptors, which, it so happens, is exacerbated by intracellular lipid build-up. Taken together, the findings strongly implicate faulty microglial lipid handling in the etiology of AD, and support therapeutic strategies that aim to rev up TREM2 signaling.

Using an impressive array of experimental conditions in gene-edited iPSC-microglia, [the authors] demonstrate that PLC2 is a downstream effector of TREM2 and a regulator of lipid metabolism. This exciting discovery directly connects PLC2 to well-established AD pathways involving APOE, TREM2, and microglial activation, commented Rik van der Kant, Vrije University, Amsterdam (full comment below). Florent Ginhoux of the Agency for Science, Technology and Research in Singapore, agreed. The study elegantly links TREM2 and PLC2 signaling pathways, and offers mechanistic insight into how variants in these genes affect the pathophysiology of AD, Ginhoux wrote (full comment below).

Double Dealing. When triggered by TREM2, PLC2 supports lipid metabolism and survival (left). When triggered by TLRs, PLC2 triggers inflammation. In TREM2 KO microglia (right), lipids accumulate and this exacerbates the pro-inflammatory, TLR-driven pathway. [Courtesy of Andreone et al., Nature Neuroscience, 2020.]

Since the discovery, in 2012, that rare variants in the coding region of TREM2 triple the risk of AD, researchers have pegged the receptor as supporting myriad microglial functions, including phagocytosis, walling off A plaques, and promoting an anti-inflammatory, neuroprotective environment (May 2016 news; Apr 2017 conference news;Jul 2018 conference news).

Separately, researchers discovered a rare variant in phospholipase C 2 (PLCG2) that protects against AD (Aug 2017 conference news on Sims et al., 2017). PLCs are a large family of intracellular enzymes that cleave the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3), a process that facilitates calcium signaling. In the brain, the 2 isoform is predominantly expressed by microglia, and initial studies suggest that the protective variant munches phospholipids with more gusto than the common one does (Zhang et al., 2014; May 2019 news).

Might the functions of TREM2 and PLC2 intersect in microglia? To study this question, co-first authors Benjamin Andreone and Laralynne Przybyla derived human microglia. They wove together elements from three recently developed protocols to coax so-called induced microglia (iMGs) from induced pluripotent stem cells (Muffat et al., 2016; Pandya et al., 2017; McQuade et al., 2018). They then used CRISPR to wipe out expression of TREM2 or PLCG2 in these cell-based models.

Under normal conditions, iMGs missing either TREM2 or PLCG2 appeared healthy and viable. When the going got toughi.e., when growth factors were depleted from the culture mediaboth types of knockout suffered a similar fate, dying sooner than their wild-type counterparts. The transcriptomes of each of the two iMG knockouts also differed from those of wild-type cells in similar ways. Specifically, half of the genes differentially expressed in TREM2 KO iMGs were similarly affected in PLCG KO iMGs. These common genes were part of signal transduction pathways downstream of DAP12, the adaptor protein that mediates TREM2 signaling. Using biochemical approaches, the researchers ultimately pieced together a signaling cascade by which lipids activate TREM2, leading to the phosphorylation of Syk2, which directly interacts with PLC2, unleashing its phospholipase activity and downstream signaling events.

Disabling the pathway, either by knocking out TREM2 or PLC2, had a dramatic impact on the processing of lipids, including cholesterol-laden myelin. All microglial lines in this study readily engulfed this type of fluorescently labeled debris; however, while wild-type cells had largely disposed of it after four days, TREM2 or PLCG2 knockouts were still chock-full of it by then. Tellingly, perhaps, the knockout cells failed to ramp up expression of several lipid processing genes in response to the myelin challenge.

Choking on Lipids? Wild-type microglia (left) readily digested lipids after treatment with myelin, while microglia lacking PLCG2 (middle) and TREM2 (right) accumulated the lipids. [Courtesy of Andreone et al., Nature Neuroscience, 2020.]

Lipidomics experiments revealed that the knockouts became burdened with a backlog of several subtypes of unprocessed lipid, including free cholesterol, cholesteryl esters, and myelin-derived ceramides. Similarly, in co-culture experiments with iPSC-derived neurons, both types of microglial knockout were unable to properly digest detritus from injured axons.

How might AD risk variants shift these phenotypes? The researchers generated iMGs that expressed the R47H variant of TREM2, or the protective P522R variant of PLCG2. As might be expected from prior findings on these variants, the R47H-TREM2 iMGs processed lipids more sluggishly than wild-type, whereas the P522R-PLCG2 microglia more deftly disposed of them than wild-type. Together, the findings support the idea that TREM2 and PLCG2 variants influence AD risk via lipid metabolism.

Lest a reader be tempted to tie a neat little bow on this set of results, here comes the twist: PLC2 also takes marching orders from toll-like receptors. This was previously reported in peripheral immune cells. The Denali researchers found the same in iMGs, as PLCG2 knockouts failed to mount a pro-inflammatory response to the TLR2 ligand zymosan.

Interestingly, the same pro-inflammatory cytokines that were down in response to zymosan in PLCG2 knockout iMGs were up in TREM2 knockout iMGs. For example, compared with wild-type iMGs treated with zymosan, PLCG2 knockouts secreted 50 percent less IL-1, while TREM2 knockouts secreted 64 percent more.

The same pattern emerged when the researchers used the TLR4 ligand LPS to trigger the microglial NLRP3 inflammasome, which itself has been tied to AD (Nov 2019 news). Loading up the microglia with myelin prior to triggering the inflammasome dramatically enhanced the inflammatory response in TREM2 KO iMGs, the scientists report. This implies that intracellular lipid accumulation may exacerbate damaging inflammatory pathways. The findings dovetail with those of a recent study that tied lipid droplet-accumulating microglia (LAM) in the aging hippocampus to neuroinflammation (Aug 2019 news).

Overall, the findings cast PLC2 as a two-faced player in microglia. When triggered via TREM2, this phospholipase facilitates processing of lipids and microglial survival. When tripped off by TLRs, it ramps up potentially damaging pro-inflammatory responses. And when lipids build up, as might occur in the aging brain, they exacerbate the pro-inflammatory pathway, Andreone told Alzforum. He believes the balance between these two PLC2 signaling pathways could dictate whether microglia help or harm.

The findings lend support to a therapeutic strategy of agonizing TREM2 signaling, Lewcock told Alzforum. That the protective PLC2 variant enhances lipid processing in microglia fits with the idea that even people whose TREM2 functions normally could stand to benefit from a boost in this pathway. Activating PLC2 is also a potential strategy, Lewcock said, although it would come with the risk of rousing its pro-inflammatory side. More work is needed to dissect how the PLC2 protective variant influences signaling downstream of TREM2 versus TLRs.

This is a very important paper, wrote Christian Haass at the German Center for Neurodegenerative Diseases in Munich. Haass noted that its findings fit with fresh data from his and other groups, but also cautioned that the molecular signature of a protective subpopulation of microglia needs to be defined in much greater detail (full comment below).

Denali is collaborating with Haass group to develop an activating antibody for TREM2, which will come with a blood-brain barrier transport vehicle to shuttle it into the brain (May 2019 conference news;May 2020 news).AL002, a TREM2-activating antibody developed by Alector and Abbvie, entered early clinical trials last year (see clinicaltrials.gov).Jessica Shugart

No Available Further Reading

Read more here:
Janus-Faced PCL2? Alzheimer's Risk Protein Toggles TREM2 and TLR Pathways - Alzforum

Evera, A Harvard Consumer Biotech Company, Brings Stem Cell Banking To You – Forbes

Throughout the past decade, consumer biology tests have been all the rage. Companies such as 23andMe and Ancestry DNA have made their test kits accessible to every day Americans. One can screen for anomalies in their genetic code or identify their lineage. With recent advances in stem cell research, a new opportunity within the consumer biology market has appeared. Nabeel Quryshi, Michael Chen and Zeel Patel are three Harvard undergraduates who observed the unmet, rising demand of control over ones stem cells. They worked together to create Evera, the first at-home stem cell banking company. The three Harvard students are joined by the schools world-renowned biology professor, Dr. George Church. The Cambridge, Massachusetts-based company was incubated at the Harvard Innovation Lab, and has former NASA astronaut Scott Kelly as a investor.

Evera cofounders from left to right: Nabeel Quryshi, Michael Chen and Zeel Patel.

Kelly says, "I did a lot of my independent research, consulted with NASA physicians and scientists, and experts in the stem cell for cancer treatment fields. All those discussions and research indicated that this technology has merit."

Frederick Daso: What led you and your team to identify that stem cells could be potentially used to prevent neurodegenerative disease?

Nabeel Quryshi: I wouldn't single out a focus on neurodegenerative diseases. However, over the last decade, there has been a flurry of research around the use of stem cells to treat conditions such as Parkinson's, Dementia, Alzheimer's, etc. People are working on prevention, but there are two main use cases of stem cells currently. One is for treatment (replacement of damaged or lost cells), and the other is disease modeling (being able to model diseases and test the effects of new drugs completely in vitro without having to get a biopsy).

Daso: In the same ways that blood banks function, how did you manage to apply that concept to the storage of stem cells over a long time?

Quryshi: Cord blood banks and academic stem cell banks that use standardized cryopreservation protocols have been around for a while. The main innovation behind Evera was developing technology around the collection and preservation of urine-derived cells.

Daso: Why don't more mothers store their children's cord blood in stem cell banks? Is it mostly due to a price issue, or is there some other factor at play?

Quryshi: From the countless interviews we've done, it seems to be a price issue. Additionally, it's hard to make a sale around the time of birth as families have countless other things to worry about that are more immediate to the birth of a child.

Daso: What would be driving the growth of this market both now and in the future?

Quryshi: The growth of new cutting edge cell therapies is certainly further demonstrating the need for personal cell biobanking. Furthermore, the success of the direct to consumer genetic testing industry (23andMe, Ancestry, etc.) is a significant driver of growth. From the research we've conducted and the customers we have spoken to, individuals who have already taken 23andMe or another genetic test and know what they are at risk for genetically are looking for ways to take tangible action. Evera is that next step. Instead of just understanding what your future genetic risk is, Evera allows you to make a real biological investment in your future health and wellbeing. While knowing you're at risk for saying Parkinson's is excellent, being able to set aside your youngest cells so that one day you may be able to combat the effects of such a disease is terrific.

However, one should note that although the growth and technology coming from the cell therapy and stem cell therapy industry is astonishing, these are still projections. We have yet to see a fully FDA approved therapy that utilizes the specific types of stem cells we use (induced pluripotent stem cells). Nevertheless, by the time such treatments make it to the clinic, your cells will have aged significantly, and thus it makes sense to save them away now.

Daso: Could you walk me through the thought process of figuring out how to extract stem cells from urine? (From what I know, stem cells usually come from other parts of your body!)

Quryshi: Until around 2011/2012, you would have been right. However, utilizing the fantastic technology that comprised Dr. Yamanaka's 2006 Nobel Prize, scientists have been able to convert any cell in the human body to a kind of stem cell called an induced pluripotent stem cell. This cell has the capability of being able to differentiate into any cell type in the human body. We have advanced tech around the conversation of urine-derived cells to these iPSCs.

Daso: How have you designed your D2C service to ensure that a customer's DNA and associated data are not at risk?

Quryshi: We take data and privacy extremely seriously. We are well aware of the concerns people already have to D2C genetics products. To ensure the confidentiality and privacy of your data and sample, we separate your personally identifiable information from sample information and simultaneously use multiple layers of encryption and cryptography. Your sample and associated data cannot be associated with you individually. Furthermore, our facility is monitored 24/7 with top of the line security measures. We believe that your sample is your property.

Daso: What was the turning point during your undergrad to pursue this idea?

Quryshi: Having worked at 23andMe, I was able to get the lucky opportunity to be a part of arguably the world's most successful consumer genetics company. I saw first hand the benefits of providing customers with their genetic risk. Yet, I discovered that merely providing such risk predictions may not be enough led me to found Evera on the notion that tangibly investing in one's future health and wellbeing through cell banking will propel us into the age of personalized medicine.

Daso: How do you leverage your advisory board to navigate regulations and moral hazards in this space?

Quryshi: We have assembled a dream team consisting of experts in stem cell banking and cell therapy. Our co-founders and advisors comprise of professors from Harvard and Stanford, executives from companies such as Verily as well as top grad students and postdocs in stem cell biology from Harvard and Stanford. We work collaboratively to make sure we adhere to all regulations and ensure the secure preservation of our customer's cells.

If you enjoyed this article, feel free to check out my other work onLinkedInand my personal website,frederickdaso.com. Follow me on Twitter@fredsoda, on Medium@fredsoda, and on Instagram@fred_soda.

Originally posted here:
Evera, A Harvard Consumer Biotech Company, Brings Stem Cell Banking To You - Forbes

Here’s Why Fate Therapeutics Rose 18.4% in May – The Motley Fool

What happened

Shares of Fate Therapeutics (NASDAQ:FATE) gained over 18% last month, according to data provided by S&P Global Market Intelligence. Most of the stock's gains in May can be traced to a single announcement by the cell-therapy developer.

On May 20, the development-stage company announced the U.S. Food and Drug Administration (FDA) cleared a new drug candidate to begin clinical trials. Identified as FT538, the drug candidate is the first cell therapy that has been both engineered with CRISPR gene-editing tools and derived from induced pluripotent stem cells (iPSC). The combination could lead to safer, more effective, and significantly lower-cost drug products.

Investors cheered the latest sign of progress for the early stage pipeline -- and the momentum hasn't waned. In fact, a public offering of common stock on June 9 triggered additional gains for the pharma stock. Apparently, investors are content with dilution so long as Fate Therapeutics maintains a well-funded balance sheet.

Image source: Getty Images.

Fate Therapeutics has one of the most ambitious pipelines in cell therapy, spanning 13 unique programs and multiple cell types. Until recently, investors had few tangibles to analyze, but promising (very) early-stage data and a multi-billion-dollar partnership with Johnson & Johnson subsidiary Janssen have de-risked the stock.

It might be a bit silly to get excited about a preclinical asset moving to clinical trials, but FT538 could prove to be an important bellwether for Fate Therapeutics. If researchers prove that gene-editing tools can be used with reproducible results on cells grown from master cell lines, such as iPSCs, then it would be a big step forward for the field of cell therapy. The capabilities would enable the relatively quick engineering of cell therapies, both for efficacy and safety, and allow living drug products to be manufactured at scales and costs simply not possible today.

Including cash on hand at the end of March and the expected proceeds from the stock offering on June 9, Fate Therapeutics should begin the second half of 2020 with at least $350 million in cash. That should be enough to generate results from a handful of ongoing clinical trials, but investors shouldn't forget that the company's ambitious pipeline will require many hundreds of millions of dollars to develop.

See the original post here:
Here's Why Fate Therapeutics Rose 18.4% in May - The Motley Fool

Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online

Nanion Technologies and Nexel are pleased to announce a partnership, focused on combining Nanions CardioExcyte 96 and FLEXcyte 96 cell monitoring technology with Nexels hiPSC-derived cells for demonstration purposes. Bringing together the two companies infrastructure and expertise serves to meet the growing demand for a reliable, high throughput cell monitoring technology in Asia.

The Nanion- Nexel partnership brings together profound skills in comprehensivein vitroelectrophysiology technology and development of human induced pluripotent stem cells (hiPSCs), with focus on cardiomyocytes. Under the partnership, Nexel opens a reference demonstration laboratory for Nanions systems at Nexels headquarters in Seoul, whereby both companies aim to significantly upscale support of their clients in Asia.

Dr Choong-Seong Han, CEO of Nexel, said: Nexel is proud to start this partnership with Nanion Technologies. We believe it will further build on the excellent relationship we have developed together in the last year. The Cardiosight-S cardiomyocytes have been fully validated on the CardioExcyte 96 and FLEXcyte 96 systems and our expert scientists are dedicated to provide the best demo settings as well as product experience for customers, as part of the collaboration. We hope interest in both Nanions and Nexels offerings will increase with our collaborative efforts.

Frank Henrichsen, Director of Global Sales of Nanion Technologies added: We are very eager to strengthen our position in the Asian market and especially in Korea. In Nexel, we see a valuable partner to help us develop our presence, in this case through opening their laboratories and enabling the use Nanions technology for demo purposes at their premises. Combining Nexels hiPSC-derived cardiomyocytes and cardiacin vitroassays with Nanions CardioExcyte 96 and FLEXcyte 96 systems, we are confident that our customers will get an excellent package solution for use in safety pharmacology and toxicology assays. We are also very happy that Nexel has already implemented the systems into their quality control procedure of Cardiosight-S cardiomyocytes.

Go here to see the original:
Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea - Labmate Online

Induced Pluripotent Stem Cells Market Growth Dynamics …

Induced pluripotent stem cells (iPSCs) hold profound potential in replacing the use of embryonic stem cells (ESCs) as important tool for drug discovery and development, disease modeling, and transplantation medicine. Advent of new approaches in reprogramming of somatic cells to produce iPSCs have considerably advanced stem cell research, and hence the induced pluripotent stem cells market. The iPSC technology has shown potential for disease modeling and gene therapy in various areas of regenerative medicine. Notable candidates are Parkinsons disease, spinal cord trauma, myocardial infarction, diabetes, leukemia, and heart ailments.

Over the past few years, researchers have come out with several clinically important changes in reprogramming process; a case in point is silencing retroviruses in the human genome. Molecular mechanisms that underlie reprogramming have gained better understanding. However, the tools based on this growing understanding are still in nascent stage. Several factors affect the efficiency of reprogramming, most notably chromosomal instability and tumor expression. These have hindered researchers to utilize the full therapeutic potential of iPSCs, reflecting an unmet need, and hence, a vast potential in the induced pluripotent stemcellsmarket.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6245

Global Induced Pluripotent Stem Cells Market: Growth Dynamics

The growing application of induced pluripotent stem cells in generating patient-specific stem cells for drug development and human disease models is a key dynamic shaping their demands. Growing focus on personalized regenerative cell therapies among medical researchers and healthcare proponents in various countries have catalyzed their scope of induced pluripotent stem cells market. Advent of new methods to induce safe reprogramming of cells have helped biotechnology companies improve the clinical safety and efficacy of the prevailing stem cells therapies. The relentless pursuit of alternative source of cell types for regenerative therapies has led industry players and the research fraternity to pin hopes on iPSCs to generate potentially a wide range of human cell types with therapeutic potential.

Advances pertaining to better utilizing of retrovirus and lentivirus as reprogramming transcription factors in recent years have expanded the avenue for players in the induced pluripotent stem cells market. Increasing focus on decreasing the clinical difference between ESCs and iPSCs in all its entirety has shaped current research in iPSC technologies, thus unlocking new, exciting potential for biotechnology and pharmaceutical industries.

Global Induced Pluripotent Stem Cells Market: Notable Development

Over the past few years, fast emerging markets in the global induced pluripotent stem cells are seeing the advent of patents that unveil new techniques for reprogramming of adult cells to reach embryonic stage. Particularly, the idea that these pluripotent stem cells can be made to form any cells in the body has galvanized companies to test their potential in human cell lines. Also, a few biotech companies have intensified their research efforts to improve the safety of and reduce the risk of genetic aberrations in their approved human cell lines. Recently, this has seen the form of collaborative efforts among them.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=6245&ltype=S

Lineage Cell Therapeutics and AgeX Therapeutics have in December 2019 announced that they have applied for a patent for a new method for generating iPSCs. These are based on NIH-approved human cell lines, and have been undergoing clinical-stage programs in the treatment of dry macular degeneration and spinal cord injuries. The companies claim to include multiple techniques for reprogramming of animal somatic cells.

Such initiatives by biotech companies are expected to impart a solid push to the evolution of the induced pluripotent stem cells.

Global Induced Pluripotent Stem Cells Market: Regional Assessment

North America is one of the regions attracting colossal research funding and industry investments in induced pluripotent stem cells technologies. Continuous efforts of players to generate immune-matched supply of pluripotent cells to be used in disease modelling has been a key accelerator for growth. Meanwhile, Asia Pacific has also been showing a promising potential in the expansion of the prospects of the market. The rising number of programs for expanding stem cell-based therapy is opening new avenues in the market.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6245

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United StatesTel: +1-415-520-1050Visit Site: https://www.tmrresearch.com/

Originally posted here:
Induced Pluripotent Stem Cells Market Growth Dynamics ...