Author Archives: admin

Heart Cell Research Leads to Discovery That May Lead to Unreliable Data – Newswise

MEDIA CONTACT

Available for logged-in reporters only

American Journal of PhysiologyCell Physiology

Research Results

MEDICINE

Newswise Rockville, Md. (January 16, 2020)Researchers studying proteins in heart cells have unexpectedly discovered that a common microscopy fluorescent protein carries reversible photobleaching properties. This phenomenon may lead to inaccurate or unreliable data. The study is published ahead of print in the American Journal of PhysiologyCell Physiology and was chosen as an APSselect article for January.

Fluorescence recovery after photobleaching (FRAP) is a technique that uses fluorescent microscopy to determine the amount and rate of protein movement in a cell or region of a cell. Scientists using FRAP mark a part of a cell with a fluorescent protein tag and take time-lapse images to capture the cells fluorescent protein signal. Then, they use a high-power laser that removes the proteins fluorescence in a process called photobleaching. The final phase of FRAP is recovery: the cell begins to emit fluorescence again when new fluorescent proteins are produced or transported within the cell.

One important principle in FRAP is the assumption that photobleaching is irreversible, as the [laser] disrupts the fluorescence protein structure and function, explains Adrian Cadar, PhD, first author of the study.

Researchers performed FRAPusing a fluorescent protein called mEos3.2on beating human heart cells to learn more about the turnover of titin. Titin is a very large, elastic protein that forms a complex molecular framework of muscle cells called the sarcomere. Previous research has found that the sarcomere is a dynamic structure in which there is a constant and rapid exchange of titin molecules. However, in the current study, titin tagged with mEos3.2 had a much quicker recovery time than the research team had anticipated. To determine if the recovery signal was indeed due to titin movement, the team performed a critical control by treating the cells with paraformaldehydea process called fixation. The fixation process crosslinks the proteins within the cell together, thus immobilizing them. The researchers then performed FRAP in these fixed cells, which surprisingly revealed a fluorescence recovery signal similar to the initial live cell measurements. The researchers discovered that, unlike other proteins used in FRAP, mEos3.2 refolds or restructures itself to regain fluorescence. This reversibility leads to unreliable data.

When using fluorescent proteins for FRAP studies, it is important that one validates the photo-properties of their particular fluorescent protein. In our case, the mEos3.2 photoconvertible fluorescent protein displayed a significant reversible photobleaching property which hasnt been described before. This property makes the mEos3.2 fluorescent protein an inappropriate tool for FRAP studies as the reversible photobleaching led to an overestimation of the fluorescent recovery signal, Cadar wrote.

Read the full article, Real-time visualization of titin dynamics reveals extensive reversible photobleaching in human induced pluripotent stem cell-derived cardiomyocytes, published ahead of print in the American Journal of PhysiologyCell Physiology. It is highlighted as one of this months best of the best as part of the American Physiological Societys APSselect program. Read all of this months selected research articles.

NOTE TO JOURNALISTS:To schedule an interview with a member of the research team, please contact theAPS Communications Officeor call 301.634.7314. Find more research highlights in our News Room.

Physiology is the study of how molecules, cells, tissues and organs function in healthand disease.Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents nearly 10,000 members and publishes 15 peer-reviewed journals with a worldwide readership.

Original post:
Heart Cell Research Leads to Discovery That May Lead to Unreliable Data - Newswise

Global Stem Cell and Platelet Rich Plasma (PRP) Alopecia Therapies Market 2019 Valuable Growth Prospects and Upcoming Trends till 2024 Dagoretti News…

Industry Research Report On GlobalStem Cell and Platelet Rich Plasma (PRP) Alopecia TherapiesMarket Quantitative And Qualitative Analysis

GlobalStem Cell and Platelet Rich Plasma (PRP) Alopecia TherapiesMarketis a new market res earch study recently announced byMRInsights.biz. The report studies theStem Cell and Platelet Rich Plasma (PRP) Alopecia Therapiesindustrys coverage, current market competitive status, and market outlook and forecast by 2024. The report clarifies business verticals like aggressive market situation, regional nearness, and improvement openings. The report is incomplete without having the knowledge of the key players or competitors within the market. Different sidelines of the area along with a SWOT investigation of the real players have been demonstrated in the report.

The report serves an overall market overview onStem Cell and Platelet Rich Plasma (PRP) Alopecia Therapiesmarket dynamics, historic volume and value, current & future trends, market methodology, Porters Five Forces Analysis, upstream and downstream industry chain, and cost structure. Further, the report has analyzed sales, suppliers, nations, advance technology, production, the variable cost, types, sales, and market share for the approximate time from 2019 to 2024. The report accounts for various market factors including development, confinements, and the organized attributes of a component of the market. The report investigates the type of product, its applications, customers, prime players, and various components related to the market. The report examines the global market status, competition landscape, market share, growth rate, future trends, market drivers, opportunities and challenges.

DOWNLOAD FREE SAMPLE REPORT:https://www.mrinsights.biz/report-detail/220643/request-sample

Company Profile:

The report presents theStem Cell and Platelet Rich Plasma (PRP) Alopecia Therapiescompany profile, descriptions of the product, and production values along with the assistance of the statistical review. The report reveals the all-inclusive global market covering magnitude, production, manufacturing value, loss/gain, supply/demand, and import/export. Many companies are operating in the market and conduct their businesses through joint ventures, which benefit the overall market. The key players analysis for the industry is presented in this report.

Crucial leading players of industry:Orange County Hair Restoration Center, Colorado Surgical Center & Hair Institute, Evolution Hair Loss Institute, Hair Sciences Center of Colorado, Hair Transplant Institute of Miami, Anderson Center for Hair, Virginia Surgical Center, Savola Aesthetic Dermatology Center,

The global version of this report with a geographical classification such as:

North America (United States, Canada and Mexico)

Europe (Germany, France, UK, Russia and Italy)

Asia-Pacific (China, Japan, Korea, India and Southeast Asia)

South America (Brazil, Argentina, Colombia)

Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)

The next part of the report offers markets vital information and statistically evaluated technical data and manufacturing plants analysis with regards to capacity analysis, sales analysis, and sales price analysis. It mainly scrutinizes in-depth global market trends and outlook coupled with the factors driving the market, as well as those hindering it. By identifying the growth, size, leading players and segments in the globalStem Cell and Platelet Rich Plasma (PRP) Alopecia Therapiesmarket, the report will save and reduce the time taken by entry-level research. The research has used immense data sources and various tools and techniques to collect and analyze the information.

Main Pointers Presented In TheStem Cell and Platelet Rich Plasma (PRP) Alopecia TherapiesMarket Report:

ACCESS FULL REPORT:https://www.mrinsights.biz/report/global-stem-cell-and-platelet-rich-plasma-prp-220643.html

Moreover, the report comprises predictions using a proper set of assumptions and methodologies. For predictions on market values, the researchers have used several methodological, analytical, and statistical techniques, such as probability, standard deviation, and CAGR. Additionally, the report research report estimatesStem Cell and Platelet Rich Plasma (PRP) Alopecia Therapiesmarket necessary characteristics, including profit, potential application rate, cost, development ratio, level of investments, production, and provision.

Customization of the Report:This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

Read more here:
Global Stem Cell and Platelet Rich Plasma (PRP) Alopecia Therapies Market 2019 Valuable Growth Prospects and Upcoming Trends till 2024 Dagoretti News...

In Vitro Lung Model Market to 2027 Increasing Adoption Of 3D Model Systems – PharmiWeb.com

Opportunity & Market Drivers: Significant Growth in Research Funding, Rising Research on Lung Diseases, Increasing Number of Start-Up Companies

The global in vitro lung model market is expected to reach US$ 701.81 Mn in 2027 from US$ 185.80 Mn in 2018. The market is estimated to grow with a CAGR of 16.2% from 2019-2027.

Get PDF Sample Brochure at https://decisionmarketreports.com/request-sample/1263397

Driving factors of the in vitro lung model are significant growth in research funding, and increasing adoption of 3d model systems for in vitro studies. Also, growing research on lung diseases is likely to have a positive impact on the growth of the market in the coming years. Besides, rising healthcare expenditure, and advancements in cell culture techniques is likely to have a positive effect on the growth of the market in the forecast years.

The cases of asthma, lung cancer, and COPD has been growing across the globe at a significant rate. Thus there is a growing need to study lung diseases specifically. Since early 2010s the practices of creating lab-grown organ buds, mostly referred to as organoids, have become more popular. These organ buds are miniature organ-like structures that are maintained in the lab, and researchers are able to grow these organoids, which resembles human body tissues. Lung diseases, like idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), is a significant cause of death and illness worldwide. A recently published report by Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at the University of California developed a new system for building lung 3D organoids to model lung disease. Moreover, Lung cancer cell lines have made a significant contribution to lung cancer research and biomedical discovery. The high similarities between lung cancer cell lines and the lung tumor helps in discovering new drug molecules. Thus the growing research on lung diseases is expected to offer broad growth opportunities for the in vitro lung model market at the global level.

Know More about discounts & methodology: https://decisionmarketreports.com/request-methodolgy/1263397

The global in vitro lung model market is segmented by type, and application. On the basis of type, the market is segmented into 2D and 3D. The 3D segment is expected to dominate the type segment market as 3D cell culture gives better phenotypes insights which are poorly reproduced in conventional 2D cell culture, Based on the application, market is segmented into drug screening, toxicology, 3d model development, physiologic research, stem cell research, and regenerative medicine. Toxicology segment is expected to dominate the application segment during the forecast period.

Some of the important primary and secondary sources included in the report are, Food and Drug Administration, World Health Organization (WHO), American Society of Clinical Oncology, American Type Culture Collection, Centers for Disease Control and Prevention, Canadian Lung Association and others.

About Us

Decision Market Reports is a one-stop solution, covers market research studies of all the industries, companies and regions. DMR aims at providing quality research, and insights about every market to helps our clients in taking right decisions. Our repository consists of most trending industry reports, niche areas, and leading company profiles. A comprehensive collection of reports is updated daily to offer hassle-free access to our latest updated report databases.

Contact Us

Gasper James

304, S Jones Blvd,

Las Vegas,

NV 89107, USA

US Toll Free +18666051052

Email: sales@decisionmarketreports.com

Web: http://decisionmarketreports.com/

This content has been distributed via WiredRelease press release distribution service. For press release service enquiry, please reach us at contact@wiredrelease.com.

Continued here:
In Vitro Lung Model Market to 2027 Increasing Adoption Of 3D Model Systems - PharmiWeb.com

Stem Cell Assay Market Predicted to Accelerate the Growth by 2017-2025 Dagoretti News – Dagoretti News

Stem Cell Assay Market: Snapshot

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.

Download Brochure of This Market Report at https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

View original post here:
Stem Cell Assay Market Predicted to Accelerate the Growth by 2017-2025 Dagoretti News - Dagoretti News

Team builds the 1st living robots – EarthSky

Scientists from the University of Vermont (UVM) and Tufts University in Massachusetts said on January 13, 2020, that theyve now assembled living cells into entirely new life-forms. They call them living robots, or xenobots for the frog species from whose cells the little robots sprang. The scientists describe them as tiny blobs, submillimeter in size (a millimeter is about 1/25th of an inch, so these little blobs are smaller than that). The blobs contain between 500 and 1,000 cells. They can heal themselves after being cut. The blobs have been able to scoot across a petri dish, self-organize, and even transport minute payloads. Maybe, eventually, theyll be able to carry a medicine to a specific place inside a human body, scrape plaque from arteries, search out radioactive contamination, or gather plastic pollution in Earths oceans.

And, yes, the scientists do acknowledge possible ethical issues. More about that below.

Joshua Bongard, a computer scientist and robotics expert at the University of Vermont who co-led the new research, said in a statement:

These are novel living machines. Theyre neither a traditional robot nor a known species of animal. Its a new class of artifact: a living, programmable organism

You look at the cells weve been building our xenobots with, and, genomically, theyre frogs. Its 100% frog DNA but these are not frogs. Then you ask, well, what else are these cells capable of building?

The results of the new research were published January 13 in the Proceedings of the National Academy of Sciences.

EarthSky 2020 lunar calendars are available! Only a few left. Order now!

A manufactured quadruped (4-footed) organism, 650-750 microns in diameter (a micron is a millionth of a meter). The scientists described this creature (if we can call it a creature) as a bit smaller than a pinhead. Image via Douglas Blackiston/ Tufts University/ University of Vermont.

In their published paper, these scientists wrote:

Most technologies are made from steel, concrete, chemicals, and plastics, which degrade over time and can produce harmful ecological and health side effects. It would thus be useful to build technologies using self-renewing and biocompatible materials, of which the ideal candidates are living systems themselves. Thus, we here present a method that designs completely biological machines from the ground up: computers automatically design new machines in simulation, and the best designs are then built by combining together different biological tissues. This suggests others may use this approach to design a variety of living machines to safely deliver drugs inside the human body, help with environmental remediation, or further broaden our understanding of the diverse forms and functions life may adopt.

The new creatures were designed on a supercomputer at UVM, and then assembled and tested by biologists at Tufts University. The scientists statement described their process this way:

With months of processing time on the Deep Green supercomputer cluster at UVMs Vermont Advanced Computing Core, the team including lead author and doctoral student Sam Kriegman of UVM [@Kriegmerica on Twitter] used an evolutionary algorithm to create thousands of candidate designs for the new life-forms. Attempting to achieve a task assigned by the scientists like locomotion in one direction the computer would, over and over, reassemble a few hundred simulated cells into myriad forms and body shapes. As the programs ran driven by basic rules about the biophysics of what single frog skin and cardiac cells can do the more successful simulated organisms were kept and refined, while failed designs were tossed out. After a hundred independent runs of the algorithm, the most promising designs were selected for testing.

Then the team at Tufts, led by Michael Levin and with key work by microsurgeon Douglas Blackiston transferred the in-silico designs into life. First they gathered stem cells, harvested from embryos of African frogs, the species Xenopus laevis [African clawed frogs; hence the name xenobots.]

These were separated into single cells and left to incubate. Then, using tiny forceps and an even tinier electrode, the cells were cut and joined under a microscope into a close approximation of the designs specified by the computer.

Assembled into body forms never seen in nature, the cells began to work together. The skin cells formed a more passive architecture, while the once-random contractions of heart muscle cells were put to work creating ordered forward motion as guided by the computers design, and aided by spontaneous self-organizing patterns allowing the robots to move on their own.

These reconfigurable organisms were shown to be able move in a coherent fashion and explore their watery environment for days or weeks, powered by embryonic energy stores. Turned over, however, they failed, like beetles flipped on their backs.

Later tests showed that groups of xenobots would move around in circles, pushing pellets into a central location spontaneously and collectively. Others were built with a hole through the center to reduce drag. In simulated versions of these, the scientists were able to repurpose this hole as a pouch to successfully carry an object.

Wow yes?

The scientists said they see this work as part of a bigger picture. And they acknowledged that some may fear the implications of rapid technological change and complex biological manipulations. Levin commented:

That fear is not unreasonable. When we start to mess around with complex systems that we dont understand, were going to get unintended consequences.

However, he said:

If humanity is going to survive into the future, we need to better understand how complex properties, somehow, emerge from simple rules.

He said much of science is focused on:

controlling the low-level rules. We also need to understand the high-level rules.

I think its an absolute necessity for society going forward to get a better handle on systems where the outcome is very complex. A first step towards doing that is to explore: how do living systems decide what an overall behavior should be and how do we manipulate the pieces to get the behaviors we want?

In other words, he said:

this study is a direct contribution to getting a handle on what people are afraid of, which is unintended consequences.

Bongard added:

Theres all of this innate creativity in life. We want to understand that more deeply and how we can direct and push it toward new forms.

On the left, the anatomical blueprint for a computer-designed organism, discovered on a UVM supercomputer. On the right, the living organism, built entirely from frog skin (green) and heart muscle (red) cells. The background displays traces carved by a swarm of these new-to-nature organisms as they move through a field of particulate matter. Image via Sam Kriegman/ UVM.

Bottom line: Scientists said in early January 2020 that theyve created the first living robots, or xenobots, assembled from the cells of frogs. Their creators promise advances from drug delivery to toxic waste clean-up.

Source: A scalable pipeline for designing reconfigurable organisms

Via UVM

Read this article:
Team builds the 1st living robots - EarthSky

Team Builds the First Living Robots – Newswise

MEDIA CONTACT

Available for logged-in reporters only

Research Results

SCIENCE

Newswise A book is made of wood. But it is not a tree. The dead cells have been repurposed to serve another need.

Now a team of scientists has repurposed living cells--scraped from frog embryos--and assembled them into entirely new life-forms. These millimeter-wide "xenobots" can move toward a target, perhaps pick up a payload (like a medicine that needs to be carried to a specific place inside a patient)--and heal themselves after being cut.

"These are novel living machines," saysJoshua Bongard, a computer scientist and robotics expert at the University of Vermont who co-led the new research. "They're neither a traditional robot nor a known species of animal. It's a new class of artifact: a living, programmable organism."

The new creatures were designed on a supercomputer at UVM--and then assembled and tested by biologists at Tufts University. "We can imagine many useful applications of these living robots that other machines can't do," says co-leader Michael Levin who directs theCenter for Regenerative and Developmental Biologyat Tufts, "like searching out nasty compounds or radioactive contamination, gathering microplastic in the oceans, traveling in arteries to scrape out plaque."

The results of the new research were published January 13 in theProceedings of the National Academy of Sciences.

BESPOKE LIVING SYSTEMS

People have been manipulating organisms for human benefit since at least the dawn of agriculture, genetic editing is becoming widespread, and a few artificial organisms have been manually assembled in the past few years--copying the body forms of known animals.

But this research, for the first time ever, "designs completely biological machines from the ground up," the team writes in their new study.

With months of processing time on the Deep Green supercomputer cluster at UVM'sVermont Advanced Computing Core, the team--including lead author and doctoral student Sam Kriegman--used an evolutionary algorithm to create thousands of candidate designs for the new life-forms. Attempting to achieve a task assigned by the scientists--like locomotion in one direction--the computer would, over and over, reassemble a few hundred simulated cells into myriad forms and body shapes. As the programs ran--driven by basic rules about the biophysics of what single frog skin and cardiac cells can do--the more successful simulated organisms were kept and refined, while failed designs were tossed out. After a hundred independent runs of the algorithm, the most promising designs were selected for testing.

Then the team at Tufts, led by Levin and with key work by microsurgeon Douglas Blackiston--transferred the in silico designs into life. First they gathered stem cells, harvested from the embryos of African frogs, the speciesXenopus laevis. (Hence the name "xenobots.") These were separated into single cells and left to incubate. Then, using tiny forceps and an even tinier electrode, the cells were cut and joined under a microscope into a close approximation of the designs specified by the computer.

Assembled into body forms never seen in nature, the cells began to work together. The skin cells formed a more passive architecture, while the once-random contractions of heart muscle cells were put to work creating ordered forward motion as guided by the computer's design, and aided by spontaneous self-organizing patterns--allowing the robots to move on their own.

These reconfigurable organisms were shown to be able move in a coherent fashion--and explore their watery environment for days or weeks, powered by embryonic energy stores. Turned over, however, they failed, like beetles flipped on their backs.

Later tests showed that groups of xenobots would move around in circles, pushing pellets into a central location--spontaneously and collectively. Others were built with a hole through the center to reduce drag. In simulated versions of these, the scientists were able to repurpose this hole as a pouch to successfully carry an object. "It's a step toward using computer-designed organisms for intelligent drug delivery," says Bongard, a professor in UVM'sDepartment of Computer ScienceandComplex Systems Center.

LIVING TECHNOLOGIES

Many technologies are made of steel, concrete or plastic. That can make them strong or flexible. But they also can create ecological and human health problems, like the growing scourge of plastic pollution in the oceans and the toxicity of many synthetic materials and electronics. "The downside of living tissue is that it's weak and it degrades," say Bongard. "That's why we use steel. But organisms have 4.5 billion years of practice at regenerating themselves and going on for decades." And when they stop working--death--they usually fall apart harmlessly. "These xenobots are fully biodegradable," say Bongard, "when they're done with their job after seven days, they're just dead skin cells."

Your laptop is a powerful technology. But try cutting it in half. Doesn't work so well. In the new experiments, the scientists cut the xenobots and watched what happened. "We sliced the robot almost in half and it stitches itself back up and keeps going," says Bongard. "And this is something you can't do with typical machines."

CRACKING THE CODE

Both Levin and Bongard say the potential of what they've been learning about how cells communicate and connect extends deep into both computational science and our understanding of life. "The big question in biology is to understand the algorithms that determine form and function," says Levin. "The genome encodes proteins, but transformative applications await our discovery of how that hardware enables cells to cooperate toward making functional anatomies under very different conditions."

To make an organism develop and function, there is a lot of information sharing and cooperation--organic computation--going on in and between cells all the time, not just within neurons. These emergent and geometric properties are shaped by bioelectric, biochemical, and biomechanical processes, "that run on DNA-specified hardware," Levin says, "and these processes are reconfigurable, enabling novel living forms."

The scientists see the work presented in their newPNASstudy--"A scalable pipeline for designing reconfigurable organisms,"--as one step in applying insights about this bioelectric code to both biology and computer science. "What actually determines the anatomy towards which cells cooperate?" Levin asks. "You look at the cells we've been building our xenobots with, and, genomically, they're frogs. It's 100% frog DNA--but these are not frogs. Then you ask, well, what else are these cells capable of building?"

"As we've shown, these frog cells can be coaxed to make interesting living forms that are completely different from what their default anatomy would be," says Levin. He and the other scientists in the UVM and Tufts team--with support from DARPA's Lifelong Learning Machines program and the National Science Foundation-- believe that building the xenobots is a small step toward cracking what he calls the "morphogenetic code," providing a deeper view of the overall way organisms are organized--and how they compute and store information based on their histories and environment.

FUTURE SHOCKS

Many people worry about the implications of rapid technological change and complex biological manipulations. "That fear is not unreasonable," Levin says. "When we start to mess around with complex systems that we don't understand, we're going to get unintended consequences." A lot of complex systems, like an ant colony, begin with a simple unit--an ant--from which it would be impossible to predict the shape of their colony or how they can build bridges over water with their interlinked bodies.

"If humanity is going to survive into the future, we need to better understand how complex properties, somehow, emerge from simple rules," says Levin. Much of science is focused on "controlling the low-level rules. We also need to understand the high-level rules," he says. "If you wanted an anthill with two chimneys instead of one, how do you modify the ants? We'd have no idea."

"I think it's an absolute necessity for society going forward to get a better handle on systems where the outcome is very complex," Levin says. "A first step towards doing that is to explore: how do living systems decide what an overall behavior should be and how do we manipulate the pieces to get the behaviors we want?"

In other words, "this study is a direct contribution to getting a handle on what people are afraid of, which is unintended consequences," Levin says--whether in the rapid arrival of self-driving cars, changing gene drives to wipe out whole lineages of viruses, or the many other complex and autonomous systems that will increasingly shape the human experience.

"There's all of this innate creativity in life," says UVM's Josh Bongard. "We want to understand that more deeply--and how we can direct and push it toward new forms."

###

SEE ORIGINAL STUDY

Read the original here:
Team Builds the First Living Robots - Newswise

The ‘xenobot’ is the worlds newest robot and it’s made from living animal cells – The Loop

Forget gleaming metal droids -- the robots of the future may have more in common with the average amphibian than with R2D2.

A team of scientists have found a way to not just program a living organism, but to build brand new life-forms from scratch using cells, creating what researchers are calling xenobots.

Tiny in size, but vast in potential, these millimetre-sized bots could potentially be programmed to help in medical procedures, ocean cleanup and investigating dangerous compounds, among other things.

"They're neither a traditional robot nor a known species of animal, said researcher Joshua Bongard in a news release. It's a new class of artifact: a living, programmable organism."

In the introduction for the research published in Proceedings of the National Academy of Sciences (PNAS) on Monday, researchers point out that the traditional building blocks weve used for robots and tech -- steel, plastic, chemicals, etc. -- all degrade over time and can produce harmful ecological and health side-effects.

After realizing that the best self-renewing and biocompatible materials would be living systems themselves, researchers decided to create a method that designs completely biological machines from the ground up.

The bots are made out of stem cells taken from frog embryos -- specifically, an African clawed frog called xenopus laevis, which supplied the inspiration for the name xenobot. To design the xenobots, the possible configurations of different cells were first modeled on a supercomputer at the University of Vermont.

The designs then went to Tufts University, where the embryonic cells were collected and separated to develop into more specialized cells. Then, like sculptors (if sculptors used microsurgery forceps and electrodes), biologists manually shaped the cells into clumps that matched the computer designs.

Different structures were sketched out by the computer in accordance with the scientists goal for each xenobot.

For example, one xenobot was designed to be able to move purposely in a specific direction. To achieve this, researchers put cardiac cells on the bottom of the xenobot. These cells naturally contract and expand on their own, meaning that they could serve as the xenobots engine, or legs, and help move the rest of the organism, which was built out of more static skin cells.

In order to test if the living robots were truly moving the way they were designed to, and not just randomly, researchers performed a test that has stumped many a living creature.

They flipped the robot on its back. And just like a capsized turtle, it could no longer move.

When researchers created further designs for the bots, they found that they could design them to push microscopic objects, and even carry objects through a pouch.

"It's a step toward using computer-designed organisms for intelligent drug delivery," says Bongard.

The possible uses for these tiny robots are numerous, researchers say.

In biomedical settings, one could envision such biobots (made from the patients own cells) removing plaque from artery walls, identifying cancer, or settling down to differentiate or control events in locations of disease, the research paper suggests.

A robot made out of metal or steel generally has to be repaired by human hands if it sustains damage. One major benefit that researchers found of creating these robots out of living cells was how they reacted to physical damage.

A video taken by the researchers showed that when one of their organisms was cut almost in half by metal tweezers, the two sides of the wound simply stitched itself back together.

These living robots, researchers realized, could repair themselves automatically, something you cant do with typical machines, Bongard said.

Because they are living cells, they are also naturally biodegradable, Bongard pointed out. Once theyve fulfilled their purpose, theyre just dead skin cells, making them even more optimal for usage in medical or environmental research.

Although scientists have been increasingly manipulating genetics and biology, this is the first time that a programmable organism has been created from scratch, researchers say.

This new research takes scientists a step closer to answering just how different cells work together to execute all of the complex processes that occur every day in animals and humans.

"The big question in biology is to understand the algorithms that determine form and function," said co-leader Michael Levin in the press release. He directs the Center for Regenerative and Developmental Biology at Tufts.

"What actually determines the anatomy towards which cells co-operate? he asked. You look at the cells we've been building our xenobots with, and, genomically, they're frogs. It's 100 per cent frog DNA -- but these are not frogs. Then you ask, well, what else are these cells capable of building? As we've shown, these frog cells can be coaxed to make interesting living forms that are completely different from what their default anatomy would be.

Of course, a biological organism created and programmed by humans which is capable of healing itself might sound a little alarming. After all, one of the sponsors of the research is the Defense Advanced Research Projects Agency, which is affiliated with the U.S. military.

Researchers acknowledged in the press release that the implications around such technological and biological advancements can be worrying at times.

That fear is not unreasonable, Levin said. However, he believes that in order to move forward with science, we should not hold back from complex questions. This study is a direct contribution to getting a handle on what people are afraid of, which is unintended consequences.

"I think it's an absolute necessity for society going forward to get a better handle on systems where the outcome is very complex," Levin says. "A first step towards doing that is to explore: how do living systems decide what an overall behavior should be and how do we manipulate the pieces to get the behaviors we want?"

More on this story from CTVNews.ca

Link:
The 'xenobot' is the worlds newest robot and it's made from living animal cells - The Loop

Zika Virus’ Key into Brain Cells ID’d, Leveraged to Block Infection and Kill Cancer Cells – UC San Diego Health

Zika virus infection can stunt neonatal brain development, a condition known as microcephaly, in which babies are born with abnormally small heads. To determine how best to prevent and treat the viral infection, scientists first need to understand how the pathogen gets inside brain cells.

Employing different approaches to answer different questions, two research teams at University of California San Diego School of Medicine independently identified the same molecule v5 integrin as Zika virus key to entering brain stem cells.

In a pair of papers published January 16, 2020 by Cell Press, the researchers also found ways to take advantage of the integrin to both block Zika virus from infecting cells and turn it into something good: a way to shrink brain cancer stem cells.

Integrins are molecules embedded in cell surfaces. They play important roles in cell adherence and communication, and are known to be involved in cancer progression and metastasis. Several other integrins are known entry points for other viruses, including adenovirus, foot-and-mouth disease virus and rotavirus, but v5 was not previously known for its role in viral infections.

One team, led by Tariq Rana, PhD, professor and chief of the Division of Genetics in the Department of Pediatrics at UC San Diego School of Medicine and Moores Cancer Center, used CRISPR gene editing to systematically delete every gene in a 3D culture of human glioblastoma (brain cancer) stem cells growing in a laboratory dish. Then they exposed each variation to Zika virus to determine which genes, and the proteins they encode, are required for the virus to enter the cells. The virus was for the first time labeled with green fluorescent protein (GFP) to allow the researchers to visualize viral entry into the cells.

3D human brain organoids. Left: normal, uninfected. Center: infected with Zika virus. Right: infected with Zika virus and treated with cilengitide, which protects the cells from destruction by the virus.

Their study, published in Cell Reports, uncovered 92 specific human brain cancer stem cell genes that Zika virus requires to infect and replicate in the cells. But one gene stood out, the one that encodes v5 integrin.

Integrins are well known as molecules that many different viruses use as doorknobs to gain entry into human cells, Rana said. I was expecting to find Zika using multiple integrins, or other cell surface molecules also used by other viruses. But instead we found Zika uses v5, which is unique. When we further examined v5 expression in brain, it made perfect sense because v5 is the only integrin member enriched in neural stem cells, which Zika preferentially infects. Therefore, we believe that v5 is the key contributor to Zikas ability to infect brain cells.

The second study, published in Cell Stem Cell, was led by Jeremy Rich, MD, professor in the Department of Medicine at UC San Diego School of Medicine and director of neuro-oncology and of the Brain Tumor Institute at UC San Diego Health. Knowing that many viruses use integrins for entry into human cells, Richs team inhibited each integrin with a different antibody to see which would have the greatest effect.

When we blocked other integrins, there was no difference. You might as well be putting water on a cell, said Rich, who is also a faculty member in the Sanford Consortium for Regenerative Medicine and Sanford Stem Cell Clinical Center at UC San Diego Health. But with v5, blocking it with an antibody almost completely blocked the ability of the virus to infect brain cancer stem cells and normal brain stem cells.

Richs team followed up by inhibiting v5 in a glioblastoma mouse model with either an antibody or by deactivating the gene that encodes it. Both approaches blocked Zika virus infection and allowed the treated mice to live longer than untreated mice. They also found that blocking the v5 integrin in glioblastoma tumor samples removed from patients during surgery blocked Zika virus infection.

Ranas team also blocked v5 in mice, treating them daily with cilengitide or SB273005, two experimental cancer drugs that target the integrin. Six days after Zika virus infection, the brains of their drug-treated mice contained half as much virus as mock-treated mice.

The neat thing is that these findings not only help advance the Zika virus research field, but also opens the possibility that we could similarly block the entry of multiple viruses that use other integrins with antibodies or small molecule inhibitors, Rana said.

Rana and team are now engineering a mouse model that lacks v5 integrin in the brain a tool that would allow them to definitively prove the molecule is necessary for Zika viral entry and replication.

Rich is a neuro-oncologist who specializes in diagnosing and treating patients with glioblastoma, a particularly aggressive and deadly type of brain tumor. When he first saw how the Zika virus shrinks brain tissue, it reminded him of what he hopes to achieve when hes treating a patient with glioblastoma. In 2017, he and collaborators published a study in which they determined that Zika virus selectively targets and kills glioblastoma stem cells, which tend to be resistant to standard treatments and are a big reason why glioblastomas recur after surgery and result in shorter patient survival rates.

Richs latest study helps account for the virus preference for glioblastoma stem cells over healthy brain cells. The v5 integrin is made up of two separate subunits v and 5. The team found that glioblastoma stem cells produce a lot of both the v subunit (associated with stem cells) and 5 subunit (associated with cancer cells). Together, these units form the v5 integrin, which, the team discovered, plays an important role in glioblastoma stem cell survival. Those high levels of v5 integrin also help explain why, in the study, glioblastoma stem cells were killed by Zika virus at much higher rates than normal stem cells or other brain cell types.

It turns out that the very thing that helps cancer cells become aggressive cancer stem cells is the same thing Zika virus uses to infect our cells, Rich said.

To see how this might play out in a more realistic model of human disease, Richs team partnered with an expert in human brain disease modeling Alysson Muotri, PhD, professor at UC San Diego School of Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine, and team. Pinar Mesci, PhD, a postdoctoral researcher in Muotris lab, generated a new brain tumor model, where human glioblastoma tumors were transplanted into human brain organoids, laboratory mini-brains that can be used for drug discovery. The researchers discovered that Zika virus selectively eliminates glioblastoma stem cells from the brain organoids. Inhibiting v5 integrin reversed that anti-cancer activity, further underscoring the molecules crucial role in Zika virus ability to destroy cells.

Now Richs team is partnering with other research groups to perform targeted drug studies. In addition to searching for drugs to block Zika virus, as Ranas group is doing, Rich is interested in genetic modifications to the virus that could help better target its destruction to brain cancer cells, while leaving healthy cells alone.

While we would likely need to modify the normal Zika virus to make it safer to treat brain tumors, we may also be able to take advantage of the mechanisms the virus uses to destroy cells to improve the way we treat glioblastoma, Rich said. We should pay attention to viruses. They have evolved over many years to be very good at targeting and entering specific cells in the body.

Zika virus was perhaps best known in 2015-16, when a large outbreak affected primarily Latin America, but also several other regions of the world. While that particular epidemic has passed, Zika virus has not gone away. Smaller, local outbreaks continue and this past summer, the first few cases of native Zika virus infection were recorded in Europe. Scientists warn Zika could continue to spread as climate change affects the habitat range of the mosquito that carries it. The virus can also be transmitted from pregnant mother to fetus, and via sexual contact. More than half of all people on Earth are at risk for Zika virus infection, and there is no safe and effective treatment or vaccine.

Co-authors of Ranas study, published January 16, 2020 in Cell Reports, include: Shaobo Wang, Qiong Zhang, Shashi Kant Tiwari, Gianluigi Lichinchi, Edwin H. Yau, Hui Hui, Wanyu Li, UC San Diego; and Frank Furnari, UC San Diego and Ludwig Institute for Cancer Research.

This research was funded, in part, by the National Institutes of Health (grants AI125103, CA177322, DA039562, DA046171 and DA049524).

Co-authors of Richs study, published January 16, 2020 in Cell Stem Cell, also include: Zhe Zhu, Jean A. Bernatchez, Xiuxing Wang, Hiromi I. Wettersten, Sungjun Beck, Alex E. Clark, Qiulian Wu, Sara M. Weis, Priscilla D. Negraes, Cleber A. Trujillo, Jair L. Siqueira-Neto, David A. Cheresh, UC San Diego; Ryan C. Gimple, Leo J.Y. Kim, UC San Diego and Case Western Reserve University; Simon T. Schafer, Fred H. Gage, Salk Institute for Biological Studies; Briana C. Prager, UC San Diego, Case Western Reserve University and Cleveland Clinic; Rekha Dhanwani, Sonia Sharma, La Jolla Institute for Allergy and Immunology; Alexandra Garancher, Robert J. Wechsler-Reya, Sanford Burnham Prebys Medical Discovery Institute; Stephen C. Mack, Baylor College of Medicine, Texas Childrens Hospital; Luiz O. Penalva, Childrens Cancer Research Institute; Jing Feng, Zhou Lan, Rong Zhang, Alex W. Wessel, Michael S. Diamond, Hongzhen Hu, Washington University School of Medicine; Sanjay Dhawan, and Clark C. Chen, University of Minnesota.

The research was funded, in part, by the National Institutes of Health (grants CA217065, CA217066, CA203101, CA159859, CA199376, NS097649-01, CA240953-01, NS096368, R01DK103901,R01AA027065, MH107367, N5105969, CA045726, CA050286, CA197718, CA154130, CA169117, CA171652, NS087913, NS089272), California Institute for Regenerative Medicine (CIRM, grants FA1-00607, DISC209649) and International Rett Syndrome Foundation.

Disclosures: Tariq Rana is a co-founder of, member of the scientific advisory board for, and has equity interest in ViRx Pharmaceuticals. Alysson Muotri is a co-founder and has equity interest in TISMOO, a company dedicated to genetic analysis focusing on therapeutic applications customized for autism spectrum disorder and other neurological disorders. David Cheresh is a co-founder of TargeGen and AlphaBeta Therapeutics, a new but currently unfunded company developing an antibody to integrin v5 involved in cancer treatment. The terms of these arrangements have been reviewed and approved by UC San Diego in accordance with its conflict of interest policies. In addition, Michael Diamond, of Washington University School of Medicine, is a consultant for Inbios and Atreca and serves on the Scientific Advisory Board of Moderna.

More:
Zika Virus' Key into Brain Cells ID'd, Leveraged to Block Infection and Kill Cancer Cells - UC San Diego Health

Koepka Tied for 3rd in Abu Dhabi in Return From Knee Injury – The New York Times

ABU DHABI, United Arab Emirates Brooks Koepka shot a 6-under 66 Thursday in his return to competition after a knee injury and was tied for third place after the opening round of the Abu Dhabi Championship.

Koepka, ranked No. 1 in the world, missed three months after re-injuring his knee when he slipped while walking off the tee on Oct. 18 at the CJ Cup in South Korea. He previously had stem cell treatment for a partially torn tendon in his patella.

The four-time major winner had physical therapy in San Diego for most of December and began to hit balls before Christmas. He has said he's pain free, but acknowledged earlier this week his left knee doesn't feel the same as my right.

Koepka is two shots behind co-leaders Shaun Norris, of South Africa, and Renato Paratore, of Italy.

He looked sharp Thursday, making birdies on two of the first three holes on the way to a bogey-free round.

The first day I picked up the club, same thing, felt like I hadn't left," Koepka said. I've done it for years and years. You don't forget how to swing the golf club.

It was a little sore last night, the American said, "just did some treatment on it, that's expected.

The 23-year-old Paratore is seeking his second European Tour title. He was beaten by Rasmus Hojgaard in a playoff at the Mauritius Open in December.

Koepka, who is tied with Australian Jason Scrivener, said his knee felt fine.

Sergio Garcia is among six players tied fourth after an opening 67.

Defending champion Shane Lowry opened with a 2-under 70.

___

View original post here:
Koepka Tied for 3rd in Abu Dhabi in Return From Knee Injury - The New York Times

Giraffe Will Go Through Risky Procedure At Cheyenne Mountain Zoo To Treat Ongoing Health Issues – CBS Denver

COLORADO SPRINGS, Colo. (CBS4) A 16-year-old giraffe named Mahali will go through a risky procedure as animal care specialists work to treat some ongoing health issues. Animal care specialists say Mahali has arthritis and fractures in his feet, which hes recently indicated have become painful.

Zoo officials say theyve treated similar conditions before with special shoes and stem cell injections but Mahali has recently regressed in his training and isnt allowing them to attempt those treatments.

Weve exhausted all of our usual treatment options. This means we are now gearing up for an anesthetization to immobilize and treat Mahali, officials stated Wednesday.

The VP of Mission and Programs, Dr. Liza, and Giraffe Animal Care Manager, Jason, explained that giraffe anesthesia is risky but say it is in Mahalis best interest in this case.

Read more:
Giraffe Will Go Through Risky Procedure At Cheyenne Mountain Zoo To Treat Ongoing Health Issues - CBS Denver