Monthly Archives: October 2015

Bipolar Cell Pathways in the Vertebrate Retina by Ralph …

Ralph Nelson and Victoria Connaughton

1. Introduction.

Retinal ganglion cells are typically only two synapses distant from retinal photoreceptors, yet ganglion cell responses are far more diverse than those of photoreceptors. The most direct pathway from photoreceptors to ganglion cells is through retinal bipolar cells. Thus, it is of great interest to understand how bipolar cells transform visual signals.

Werblin and Dowling (1) were among the first to investigate light-evoked responses of retinal bipolar cells. Based on these studies using penetrating microelectrodes, they proposed that retinal bipolar cells lacked impulse activity, and that they processed visual signals through integration of analogue signals, that is synaptic currents and non-spike-generating voltage-gated membrane currents.

Frank Werblin and John Dowling discovered the ON or OFF light-evoked physiology of retinal bipolar cells (1). They characterized these neurons as processors of analogue visual signals that did not use impulse generation. The work was done at Johns Hopkins University as a part of Frank Werblins doctoral dissertation under John Dowlings mentorship.

Werblin and Dowing also proposed that retinal bipolar cells come in two fundamental varieties: ON-center and OFF-center (Fig. 1). Both types displayed a surround region in their receptive field that opposed the center, similar to the classic, antagonistic center-surround organization earlier described for ganglion-cell receptive fields (2). Ganglion cell receptive field organization is further reviewed in the Webvision chapter on ganglion cells. ON-center bipolar cells are depolarized by small spot stimuli positioned in the receptive field center. OFF-center bipolar cells are hyperpolarized by the same stimuli. Both types are repolarized by light stimulation of the peripheral receptive field outside the center (Fig. 1). Bipolar cells with ON-OFF responses were not encountered (1). ON-OFF responses, excitation at both stimulus onset and offset, first occur among amacrine cells, neurons postsynaptic to bipolar cells.

The Werblin and Dowling characterization of bipolar-cell physiology has proved quite durable over many decades. The notion that bipolar cells do not spike has found exception for some bipolar types. Dark-adapted Mb1 (rod bipolar cells) of goldfish generate light-evoked calcium spikes. These spikes originate in bipolar-cell axon terminals (3, 4). Through genetic imaging techniques this finding has been extended to the axon terminals of many zebrafish bipolar-cell types. In these studies bipolar terminals were labeled transgenically with the Ca2+ reporter protein SyGCaMP2 and light-induced fluctuations in Ca2+ were followed by 2-photon photometry. Fully 65% of the terminals delivered a spiking Ca2+ signal (4). In the cb5b bipolar-cell type of ground squirrel retina Na+ action potentials are driven by light. Other bipolar types in this retina do not exhibit spiking (5). These results suggest that bipolar cells are responsible for significantly more of the encoding of visual signals than had been previously supposed, and that axon-terminal spiking is actively involved. Impulse generation in bipolar cells is further discussed in the section on Voltage-gated currents.

Figure 1. Retinal bipolar cells initiate ON and OFF pathways. Microelectrode recordings of voltage responses from mudpuppy retinal neurons reveal two sorts of retinal bipolar cells: those hyperpolarized by central illumination (OFF Bipolar Cell) and those depolarized by central illumination (ON Bipolar Cell). In each case membrane potential is restored by concomitant illumination of annular rings surrounding the center. Such responses are typically 10 mV in amplitude and lack impulse activity. The absolute response latency to the light step above is about 100 msec for these suprathreshold stimuli. The illustration is taken from Werblin and Dowling, 1969 (1).

Morphology and connectivity

Anatomical investigations of bipolar cells reveal a multiplicity (4-22 depending on species) of different morphological types (6-12), significantly more than the just two types that early physiology implied. The diversity of human retinal bipolar types is illustrated in Fig. 2. Nonetheless all of these are either ON- or OFF-types and their diversity results from other factors, such as differing connectivity with photoreceptors and differing postsynaptic targets, as evidenced in the diversity of dendritic and axon-terminal ramification patterns. Some bipolar cells are postsynaptic only to rods, others only to cones (Fig. 2), and still others receive mixed rod-cone input. Among cone-selective bipolar cells, some innervate only red, green, or blue cones, while others are diffuse, that is, not selective (13-19). Different bipolar types express different glutamate receptors at subsynaptic contacts with cones.

Bipolar cell axon terminals are either mono- or multistratified, depending on the location of axonal boutons and branches in the inner plexiform layer (IPL). Differing terminal position and branching morphology within the IPL suggests that different morphological types selectively innervate different types of amacrine and ganglion cell (Fig 2).In primate retinas, bipolar cells are described as diffuse or midget types, based on the extent of the dendritic arbor. Midgets contact only a single cone, while diffuse types contact multiple cones. Bipolar cells are also termed flat or invaginating (20) depending on the placement of dendritic tips, either on the surface of (flat), or penetrating within photoreceptor synaptic terminals to approach presynaptic ribbons (invaginating).Fig. 2 illustrates 11 morphological types of bipolar cell seen in Golgi-stained human retinas.

Figure 2. Dendritic and axonal stratification patterns of bipolar cell types in human retina. The illustration is courtesy of Helga Kolb.

Bipolar cell axon terminals are either mono- or multistratified, depending on the location of axonal boutons and branches in the inner plexiform layer (IPL). Differing terminal position and branching morphology within the IPL suggests that different morphological types selectively innervate different types of amacrine and ganglion cell (Fig 2).In primate retinas, bipolar cells are described as diffuse or midget types, based on the extent of the dendritic arbor. Midgets contact only a single cone, while diffuse types contact multiple cones. Bipolar cells are also termed flat or invaginating (20) depending on the placement of dendritic tips, either on the surface of (flat), or penetrating within photoreceptor synaptic terminals to approach presynaptic ribbons (invaginating).Fig. 2 illustrates 11 morphological types of bipolar cell seen in Golgi-stained human retinas.

2. Different glutamate receptor types for ON and OFF bipolar cells.

Light responses in bipolar cells are initiated by synapses with photoreceptors. Photoreceptors release only one neurotransmitter, glutamate (21); yet bipolar cells react to this stimulus with two different responses, ON-center (glutamate hyperpolarization) and OFF-center (glutamate depolarization). Different postsynaptic glutamate receptor proteins mediate these different membrane polarizing mechanisms. The different glutamate-gated responses are associated with the differential expression of either ionotropic (iGluR) glutamate receptors (OFF bipolar cells), metabotropic (mGluR) glutamate receptor types (ON bipolar cells) or glutamate transporters (ON bipolar cells). As a result, signal transduction at the photoreceptor-to-bipolar synapse has a range of properties. The process of splitting images into multiple components tuned to selective visual features begins with differentiation of different photoreceptor types but is then greatly elaborated at the synapses between photoreceptors and bipolar cells.

Metabotropic responses of ON bipolar cells: mGluR6, Go, TRPM1, Nyctalopin

The conductance of ON bipolar cells increases in the light, whereas OFF bipolar cell conductance decreases (22, 23). The decrease in OFF bipolar cell conductance is easily explained as a loss of excitation by glutamate, as light inhibits glutamate release from photoreceptors (24). The positive reversal potential of the ON bipolar cell light response, coupled with a conductance increase (22, 25), implies that glutamate blocks a cation-permeable channel. Originally a puzzle, this was the first evidence of what we now understand as the action of metabotropic glutamate receptors (mGluRs). These receptors do not form ion channels themselves, but act as isolated antennae on the cell surface sensing glutamate and activating intracellular pathways, ultimately affecting membrane potential through mechanisms several steps removed from the binding site for glutamate. Metabotropic receptors have been identified on the axon terminals of both photoreceptors (26) and bipolar cells (27) where they serve as autoreceptors regulating glutamate release. However, the expression of one specific mGluR in the subsynaptic membrane of ON bipolar cell dendrites, the APB receptor, is unique to retina, where it is used in the direct signal transmission pathway from photoreceptors to ON bipolar cells.

Figure 3. Metabotropic glutamate receptors in the ON pathway. The glutamate agonist 2-Amino-4-Phosphonobutric acid (APB, later termed DL-AP4) interferes with light responses and membrane physiology of ON-center bipolar cells in mudpuppy. A. APB abolishes light responses (the rectangular depolarizing events), hyperpolarizes the membrane potential, and increases the membrane resistance. The latter is measured by the amplitude of voltage responses to injected current pulses (arrow). B. 3 mM cobalt, a blocker for synaptic release of glutamate from photoreceptors, abolishes light responses in an ON bipolar cell and depolarizes the membrane potential. The membrane potential can be later restored by application of APB, which acts as a substitute for the missing photoreceptor glutamate. As APB is selective for a subset of metabotropic glutamate receptors, synaptic transmission of light responses to ON bipolar cells must rely on a metabotropic mechanism. The illustration is adapted from Slaughter and Miller, 1981 (28).

The mGluR6 receptor

Slaughter and Miller (28) were the first to observe that the metabotropic glutamate agonist 2-amino-4-phosphonobutric acid (APB or DL-AP4, with the L enantiomer being effective) completely blocks the light responses of ON bipolar cells. In these neurons, APB acts as a substitute for photoreceptor-released glutamate (Fig. 3AB). Thus, ON bipolar cells utilize a metabotropic pathway to sense light-induced variations in release of photoreceptor glutamate. The metabotropic receptor has been identified as mGluR6 (29, 30). Transgenic knockout mice lacking the mGluR6 gene lack the electroretinographic b-wave (Fig. 4AB), an evoked-potential component associated with ON bipolar activity (31). The relation of electroretinogram components to cellular electrophysiology is further discussed in the Webvision chapter The Electroretinogram: ERG. Immunocytochemical localization for mGluR6 shows staining in the invaginating dendritic tips of monkey bipolar cells (Fig. 5) (32). Invaginating bipolar cells are thought to be mainly ON types in primate retina. Some foveal flat contacts also stained for mGluR6 (32).

Figure 4. MGluR6 is the metabotropic glutamate receptor expressed by ON bipolar cells. Light evoked ERG responses from the eye of a wild type (A, +/+) and a mutant (B, -/-) mouse deficient in the gene encoding mGluR6. The b-wave, which originates from the light responses of ON bipolar cells is absent in the mutant mouse. The illustration is adapted from Masu et al, 1995 (31).

Figure 5. Immunostaining for the metabotropic glutamate receptor mGluR6 selectively labels dendritic tips of invaginating bipolar cells (ib) in monkey retina. The adjacent dendritic contacts from horizontal cells (h) and the flat contact (f) from a flat cone bipolar cell are not labeled, nor is the presynaptic cone pedicle (c).The illustration is from Vardi et al., 1998 (33).

The G-protein Go

In addition to mGluR6, the G-protein Go is cytoplasmically localized in the dendritic tips of ON bipolar cells (Fig. 6) (33). Removal of the alpha subunit (Go) by knockout results in b-wave loss (34), similar to the mGluR6 knockout. Go was originally localized in rod bipolar cells, known to be ON-type, in a screen of potential G-protein second messengers for the metabotropic light response (35). This suggests that Go is directly involved in the intracellular pathway following mGluR6 activation.

The ion channel coupled to the APB receptor was originally thought to be cGMP-modulated (36).The closure of ion channels following APB binding onto mGluR6 seemed to require GTP and phosphodiesterase similar to phototransduction (36). However, the exact cascade by which this happened was less clear, as blocking phosphodiesterase (PDE) activity, or adding non-hydrolyzable cGMP analogs, did not inhibit the glutamate responses generated through APB-receptors (37). Further, it was Go that suppressed glutamate-gated current in ON bipolar cells, not transducin, the G-protein of the phototransduction cascade (37). Thus, removal of cGMP appears not to be required for channel closure (37).

Figure 6. Immunostaining for Go, the the alpha subunit of the G-protein Go, localizes to the invaginating dendritic tips of a rod bipolar cell (left) and a cone bipolar cell (right) in cat retina. Go is required for light activation of ON bipolar cells. The illustration is from Vardi, 1998 (33).

The TRPM1 channel

In agreement with these findings, recent work suggests the ON-bipolar-cell ion channel downstream of the mGluR6 receptor is not cGMP-gated (38). Rather, this non-selective cation channel identified as a TRPM1-L channel appears to be regulated by Go (38-40) in conjunction with G (41). The activity of the TRPM1 channel requires the presence of mGluR6, as the channel, though present, can not be activated in mGluR6 knockout mice (42).

TRP channels, or transient receptor potential channels, first identified in Drosophila photoreceptors (43), are present in all animal groups, including vertebrates (44), and as many as 28 channel subtypes have been identified. The TRP superfamily includes 7 subfamilies separated into two groups: TRPC, TRPV, TRPM, TRPN, and TRPA channels form Group 1; TRPP and TRPML channels form Group 2. TRPM1-L or melastatin, a melanoma related TRP channel, belongs to Group 1, and is found in ON bipolar cells. All channels share structural similarities and are permeable to cations; however, there is great functional diversity among the different channel subtypes. TRP channels are involved in many sensory systems including vision, hearing, taste, temperature-sensitivity, and osmoregulation, and are also involved in human disease (44-48).

Figure 7. TRPM1 channel knockouts lack photoresponses in ON-bipolar cells. A. In a wild type mouse, antibody staining for TRPM1 reveals localization in bipolar cells. No antibody staining is evident in the knockout. B. ON-bipolar-cell patch recordings in wild type mice reveal inward currents in response to light stimulation. This is the normal response of an ON-type bipolar cell as these cells are excited by light. No inward currents occur in ON-bipolar-cell recordings from the knockout. The illustrations are from Koike et al, 2010 (38).

In retina, TRP channels have been identified on photoreceptors (49), amacrine cells (50, 51), and ON-type bipolar cells. ON-bipolars (Fig. 7A), specifically, are antigenic for TRPM1 channels (52, 53) or TRPM1-L (38, 39, 54). Immunocytochemical and/orin situhybridization studies have localized TRPM1 expression to the dendritic tips of ON-bipolar cells (38, 39, 52), though labeling is seen in cell bodies and axons as well (Fig. 7A). TRP channels are absent in OFF-type bipolar cells. TRPM1-L channel currents have a reversal potential ~0mV (38) similar to the reversal potential of glutamate-gated currents in these cells. TRPM1-L has been shown to co-localize with and/or be functionally coupled to mGluR6 (38, 40, 42, 52). In transfected CHO cells that express mGluR6, Go, and TRPM1-L, Koike and colleagues (38) showed that all three of these components must be present for glutamate-evoked whole-cell currents to be recorded. Cells expressing only mGluR6 and Go,or only Goand TRPM1-L, did not respond to glutamate application (38, 39). These findings suggest TRPM1 channels are downstream of the mGluR6 receptor and are necessary for glutamate-elicited responses in these cells. Further, TRPM1 -/- knockout mice (Fig. 7B) do not have light-evoked ON-bipolar-cell responses and there is no ERG b-wave (38, 39, 55). The loss of response is similar to that reported for mGluR6 -/- mice (Fig. 4) (31, 56), again suggesting that both mGluR6 and TRPM1 channels are required for ON-bipolar-cell photic responses. While all cone bipolar cells in mouse appear to use an mGluR6 synapse with cones, there is evidence that some of these cells may modulate a cation channel in addition to TRPM1-L. In the TRPM1 -/- mouse, the mGluR6 antagonist CPPG still blocks a minor APB-induced membrane current (52).

Figure 8a. The insertion of the fusion protein EYFP-nyctalopin into nob NYX -/- mice re-establishes nyctalpin expression. Expression can be localized with EYFP antibodies. A. DIC image of mouse retinal slice. OS, outer segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GC, ganglion cell layer. B. Wild type mouse is not labeled by anti-GFP. C. EYFP-NYX rescue mouse shows fusion protein localization in bipolar-cell dendritic tips within the OPL. D. High magnification of C. E. peanut agglutinin reaction labels cone terminals. F. Overlay of D and E shows NYX expression (nyctalpin) is localized in cone terminals (yellow). Green localization is presumed in rod terminals. Scale bar in A, B and C is 50 m. The illustration is from Gregg et al, 2007 (57).

The proteoglycan nyctalopin

Nyctalopin is another protein expressed on the dendritic tips of ON-bipolar cells (Fig. 8a). It is encoded by the NYX gene. NYX is required for light- and glutamate-elicited responses in ON bipolar cells (57). Mutant nob mice (58) lack an ERG b-wave and are not responsive to focal applications of glutamate onto the bipolar cell dendritic arbor (57). In wild type mice ON bipolar cells respond with outward currents to this treatment, but in nob mice they do not (Fig. 9). The nob strain is an NYX -/- mutant (59). Generation of transgenic nob mice selectively expressing EYFP-nyctalopin fusion protein in bipolar cells completely rescued the mutant phenotype. Cellular expression was restricted to bipolar cells using a regulatory sequence for GABAc1, a GABA receptor subunit selectively produced by bipolar cells. In the EYFP-NYX line, the fusion protein expression was localized to the tips of ON-bipolar cells (Fig. 8a), the b-wave was restored, and inner retinal function was similar to controls (57).

Figure 8b. Morphology of zebrafish retinal neurons expressing nyctalopin. The transgenic strain contains an MYFP gene driven by the regulatory sequence for NYX (nyctalopin). A-D retinas from 3-day post fertilization (3 dpf) larvae show only bipolar cells, with a broad distribution of axonal filopodia within the inner plexiform layer (IPL). E-G. By 6 dpf the filopdial pattern of bipolar cell axons is restricted to the inner half of the IPL, a characteristic of ON bipolar morphology. The illustration is from Schroeter, Wong and Gregg, 2006 (60).

In zebrafish a membrane-targeted yellow fluorescent protein (MYFP) reporter strain has been generated using the upstream regulatory sequences for the NYX gene to express MYFP. This reporter marks a subset of ON-type bipolar cells with characteristic long axons and terminal boutons restricted to the inner half of the inner plexiform layer. Many of these also express the ON-bipolar marker protein kinase C (PKC) (60). This genetic reporter shows the complete morphology of the cells expressing the nyctalopin gene. This transgenic tool was used to follow embryonic refinement and development of axonal projection patterns for nyctalopin-expressing ON bipolars (60) (Fig. 8b).

Subsequent studies have reported that nyctalopin complexes with both mGluR6 and TRPM1 channels in ON-bipolar cells, serving a structural role that allows proper assembly and organization of the receptor and the channel (61). In addition, nyctalopin is able to modulate TRPM1 channels, as is mGluR6 (42, 62). Thus, glutamate binding onto mGluR6 activates a G-protein (Go and/or G) leading to the closure of TRPM1 channels. The receptor and the channel are held in close proximity by nyctalopin. Alteration or mutation of any of these components mGluR6, nyctalopin, TRPM1, and/or Go can lead to a loss of response by ON-bipolar cells. In agreement with this, individuals with congenital stationary night blindness (CSNB discussed below) display a loss of ON-bipolar cell responses as evidenced in an absent ERG b-wave, and mutations in the genes encoding mGluR6, nyctalpin, and TRPM1 are associated with at least 75% of CSNB cases (62).

Figure 9. Bipolar-cell glutamate responses in the nob (nyctalopin) knockout mouse. Patch recordings of glutamate-responses reveal outward, metobotropic glutamate, currents in both rod bipolar cells and ON-type cone bipolar cells (DBC) in control mice. No glutamate currents are recorded for these cell types in nob mice. OFF cone bipolar cells (HBC) respond with inward AMPA/kainate currents in both control and nob mice. The holding potential was -60 mV. Glutamate puffs are 100 msec from pipettes filled with 1-5mM glutamate. The illustration is from Gregg et al, 2007 (57).

Modulators and subtypes

Calcium ions are a modulator of the ON bipolar metabotropic ion channel. Calcium ions, entering through the TRPM1 ion channel (63, 64) affect channel function, either by directly down regulating the channel (63) or by activating calcium-dependent enzymes, such as CaMKII (65-67), which modulate ion channel conductance. cGMP has been shown to selectively enhance ON bipolar cell responses to dim light, and may play a modulatory role for the TRPM1 channel (68).

Metabotropic receptors for ON-center bipolar cells have sustained and transient subtypes (69). The molecular basis is not yet known. However, it appears that the sustained and transient responses of ON-center ganglion cells, such as the classic X- and Y-types (70), may have their origin, at least in part, in the type of glutamate receptor expressed on the bipolar cells which innervate them (71).

Glutamate transporter mediated responses of ON bipolar cells

Ionotropic glutamate receptors with transporter-like properties are also present on some ON-center bipolar-cell dendrites. When photoreceptor glutamate binds to these transporters, a Cl conductance forms and hyperpolarizes the cells in the dark (Fig. 10). Release from this Cl inhibition occurs in the light with the decrease in glutamate released from photoreceptors. This allows the bipolar cells to depolarize (Fig. 10). Like transporters, this glutamate-gated Cl mechanism requires [Na+]o in order to function. Thus far this mechanism has been found as a dendritic glutamate receptor only in cyprinid ON bipolar cells (72-74), though it is reported in turtle, salamander and mouse photoreceptors (75-78) and is also present in mammalian central nervous system (79). Interestingly it occurs on the axon terminals of mouse rod and cone bipolar cells, where it acts to regulate glutamate release through inhibitory feedback (78).

Figure 10. An alternate ON-bipolar synaptic mechanism is a glutamate-activated-chloride channel. Puffs of glutamate mimic photoreceptor dark release in patch recordings from bipolar cells in a zebrafish retinal slice. A. Glutamate-evoked currents are outwards for physiological ranges of membrane potential, which are positive to ECl (Cl reversal potential). They are inwards at more negative potentials. The results are consistent with an ON-center mechanism driven by changes in Cl conductance. B. The 63 mV reversal potential is consistent with a model where photoreceptor glutamate opens Cl channels. Glutamate gated Cl currents are called Iglu (73) and result from the binding of glutamate to excitatory amino acid (EAAT) transporters. The illustration is from Connaughton and Nelson, 2000 (72).

Some non-mammalian bipolar cells contain both the APB and the ionotropic (transporter-like) receptor on their dendrites, while other ON-cells express either the metabotropic or the ionotropic receptor but not both (72, 73). EAAT5 has been identified as the chloride-channel-forming glutamate transporter (80). The ionotropic mechanism is used for sustained transmission between cones and bipolar cells (81, 82), and is likely to be a fast mechanism as compared to metabotropic pathways, which involve multi-step intracellular pathways and are often relatively slow (22).

The classic Mb rod bipolar cell of fish makes synapses with both rods and cones. The rod synapse mediates a conductance increase with reversal potential positive to resting potential. The cone synapse mediates a conductance decrease with reversal potential negative to the resting potential (82). Both mechanisms provide ON-type photic responses. In retrospect it would appear that the rod synapse is metabotropic, while the cone synapse is transporter-like, two different, selectively directed post-synaptic glutamate mechanisms on the same neuron.

AMPA kainate receptor expression in ON bipolar cells

ON-center bipolar cells of mammals are immunoreactive for ionotropic AMPA receptors as well as metabotropic mGluR6 receptors (83-85). In figure 11 (right panel) immunoreactivity for GluR2/3, an ionotropic AMPA subunit, appears at an invaginating, ON-type ribbon contact in cat. Similarly in teleost retinas, ON-center bipolar cells are immunoreactive for ionotropic kainate receptors (86, 87). Particularly in mammals, no physiological role has been suggested for these conventional ionotropic receptors, usually associated with OFF bipolar cells, but also seen in ON-center bipolar cells. In giant danio Wong and Dowling find that bistratified cone bipolar cells mix ON-type and OFF-type glutamate receptor mechanisms, and utilize both transporter-like receptors and AMPA/kainate receptors in generating ON and OFF color responses respectively to different spectral stimuli (88).

Figure 11.Immunostaining for the ionotropic glutamate receptor GluR1 in bipolar cell dendrites contacting cone pedicles in cat retina. Red arrows point to flat contacts, the black arrow points to an invaginating contact, and the arrowheads point to synaptic ribbons in the cone pedicle. The illustration is from Qin and Pourcho, 1999 (261).

Figure 12. Immunostaining for ionotropic glutamate receptors in the dendritic tips of cat bipolar cells. GluR6/7 subunits are found in kainate receptors. GluR2/3 subunits are found in AMPA receptors. The red arrow (left, GluR6/7) points to a immuno-stained flat contact. The red arrow (right, GluR2/3) points to an immuno-stained invaginating contact. Letter labels are invaginating bipolar (ib), horizontal cell lateral element (h), and rod (r). The illustration is from Vardi et al., 1998 (83).

Ionotropic glutamate responses of OFF bipolar cells

Like ON bipolar cells, OFF bipolar cells express more than one type of glutamate receptor, though all are ionotropic. There are three principal types of ionotropic glutamate receptors (AMPA, kainate, and NMDA) as originally defined by agonist selectivity. Though immunocytochemical studies (84, 89, 90) and in situ hybridization (91) have identified specific NMDA receptor subunits in the outer retina, OFF bipolar cells have never been observed to utilize NMDA receptors in the generation of light responses. OFF bipolar cells selectively express either AMPA or kainate receptors (92, 93). These receptors resensitize at different rates after exposure to glutamate (Fig. 13), and as a result, emphasize different temporal characteristics of the light signal. Kainate-type glutamate receptors transfer the sustained characteristics of the visual stimulus. AMPA receptors are more selective for the transient components of the signal (92). In ground squirrel retina bipolar cells are selective for one or the other (93). The situation is interesting in so far as neurons using kainate receptors exclusively are rare in the central nervous system. Nonetheless, AMPA and kainate receptors on retinal bipolar cells are pharmacologically well-behaved. Bipolar-cell AMPA-type responses can be selectively suppressed by the lipophilic AMPA receptor antagonist GYKI 52466 (94). Conversely, bipolar-cell kainate-type responses are blocked by the desensitizing kainate receptor agonist SYM 2081 (95).

Figure 13. Different OFF bipolar cells re-sensitize at different rates after glutamate treatment. In whole cell patch recordings from ground squirrel retina, bipolar cells b3 and b2 are desensitized by an initial glutamate pulse (0). The time course of recovery is measured by responses to a second pulse after different delays. Type b3 (Fig. 16) bipolar cells utilize kainate-type glutamate receptors and require several seconds for complete recovery. Type b2 bipolar cells (Fig. 16) utilize AMPA-type glutamate receptors and recover 100 times faster. The illustration is from DeVries, 2000 (92, 93).

While all retinas contain ON and OFF bipolar cell pathways, it is easy to imagine that among these pathways natural selection might cause a divergence in the expression of dendritic glutamate receptor types depending on the visual requirements of the species. In agreement with this hypothesis, species-specific differences between ON and OFF bipolar cell dendritic glutamate responses have been found. For example, ionotropic glutamate channels with transporter-like pharmacology occur exclusively in ON type bipolar cells in fish retinas. Conversely in salamander, OFF bipolar cells utilize only AMPA receptors (96). This may also be the case in zebrafish retina where dissociated cells fail to respond to the kainate agonist SYM 2081 (86) and electroretinographic OFF responses (d-waves) are blocked by the AMPA antagonist GYKI 52466 (97). One might expect also that even within the broad classes of AMPA and kainate receptors, subforms may have evolved to fit particular visual niches. In salamander retina indeed, there are separate classes of AMPA receptors postsynaptic to rods and to cones (96, 98).

3 Bipolar-cell axons: ON and OFF lamination in the inner plexiform layer

In work performed at the National Institutes of Health in the mid 1970s (99, 100), it was noted that the ON or OFF property of cat retinal ganglion cells was related to the level of stratification of dendrites within the retinal inner plexiform layer. This led to a general scheme for ON and OFF layering illustrated in figure 14. The dendrites of OFF-center ganglion cells always arborize distal to the dendrites of ON-center ganglion cells. The zone of OFF-center dendritic arborization is called sublaminaa, while the zone of ON-center dendritic arborization is called sublaminab (Fig. 14). Within each sublamina ganglion cells make selective contacts with ON- or OFF-type bipolar cells. The pattern of ON and OFF layering of bipolar cell synaptic terminals and ganglion cell dendrites has proved to be a consistent pattern among all vertebrate retinas examined (101, 102). ON and OFF layering is particularly pronounced in retinas where ganglion cell types are predominantly monostratified. However, in more anatomically complex retinas, (i.e., turtle) with multistratified and/or diffusely stratified ganglion cell types, the ON vs. OFF layering pattern applies to monostratified cells only. The physiology of cells with processes ramifying throughout the IPL is more difficult to predict based on morphology alone (103).

Figure 14. Layering of ON and OFF bipolar cell axons in the cat inner plexiform layer (IPL). OFF ganglion cell (GC and GC) dendrites and OFF cone bipolar cell axons (OFF cb) co-stratify in sublamina a of the IPL. ON bipolar axons (ON cb) and ON ganglion cell dendrites co-stratify in sublamina b of the IPL. These are the parallel ON and OFF cone pathways that originate with bipolar-cell dendritic contacts with cones. The illustration is modified from Nelson et al, 1978 (100).

Stratification of cone bipolar cell axon terminals

Go here to see the original:
Bipolar Cell Pathways in the Vertebrate Retina by Ralph ...

California Stem Cell Report

Highlights Outrage about prices Industry euphemisms Handy demons California's stem cell direction

Halloween is just around the corner and some stem cell folks here in California are doing their best to wish away a particularly frightening specter.

Some of the rhetoric amounted to no more than whistling in the dark. Investors, researchers and business executives danced around what almost certainly appear to be extremely high treatment costs for stem cell treatments.

Those costs are the type that have stirred recent outrage among consumers and among some physicians. The controversy has emerged anew in the presidential race and last week knocked the stock market around a bit.

yesterday featured a woman with cystic fibrosis who said about a drug maker,

Inevitably meetings like the Mesa conference rarely deal directly with the tough and emotional issues that are typified by the ire expressed by that woman,Klyn Elsbury, who lives a few miles north of the Mesa meeting.Instead biotech executives retreat behind such euphemisms as reimbursement, which is a catch-all term for how do we make a profit.

Yesterday the matter of pricing did come before one panel. While this writer came in late and did not hear all the names, the general response could be called if we build it, they will come.

Many of the potential products being tested now involve unmet medical needs, and thus the demand could be extraordinarily high. In other words, if you want to live, you will have to pay our price.

It would be super transformative in the market place, one speaker said, if a company has produced the only drug that will save a persons life. Another said the system will eventually find a (pricing) model. Which is where whistling in the dark comes in. But if the industry doesnt directly face the emotional and medical concerns about predatory business actions, the industry, in all likelihood, will be hoist on its own pricing petard.

Lawmakers and regulators fueled by public outrage may well react to overly aggressive prices and begin to impose what could amount to some sort of profit rationing. After all good public health is a virtuous thing. And if prices stand in the way, something needs to be done about it. Or so the reasoning will go. Every politician needs a demon to rail against. Big Pharma and related stem cell firms could be that handy demon.

The argument in some circles maintains that prices will start out sky high and then decrease over time. But that does not mean the public and other payers will wait for decades and patiently pay $1 million per treatment.

That figure popped up this week in an item by UC Davis stem cell scientist Paul Knoepfler. He wrote on his blog, ipscell.com, about a pricing model that did, in fact, run as high as $1 million.

Knoepfler said the stem cell community needs to answer following question and soon.

Californias $3 billion stem cell agency, in particular, has an economic dog in the pricing hooha. The agency is in the midst of determining how to spend its last $800 million or so. It can decide to put that money into research that offers the likelihood of relatively affordable treatments or instead into $1 million cash cow therapies for Big Pharma.

What the agency does now will affect whether it vanishes in a few years for lack of funding or can find additional support from the state and/or private sources. If its only product after running through $6 billion (including interest) is a $1 million therapy, some might look askance at providing additional cash.

Read this article:
California Stem Cell Report

U.S. Stem Cell Clinic

US Stem Cell Clinic

We are proud to announce the opening of our new state of the art US Stem Cell clinic at Sawgrass Medical Center in Sunrise, Florida. Conveniently located near Fort Lauderdale and Miami international airports, our clinic will provide first class stem cell therapy to both local patients from the South Florida area and patients from around the world. There are several quality hotel options nearby and plenty of shopping and restaurants adjacent to our clinic at the Sawgrass Mills Mall. Our staff members are standing by ready to assist out-of-town patients with their travel plans.

US Stem Cell takes pride in our Medical Team. We exclusively offer adult autologous stem cell treatment here at US Stem Cell; we do not perform any other procedures. We remain committed to providing continuing education and training for our staff. This means that our patients can have complete confidence that they are receiving the highest caliber treatment available anywhere in the world.

VIDEO:PATIENT WEBINAR STEM CELLS 101

Read more from the original source:
U.S. Stem Cell Clinic

What is a cell? – Genetics Home Reference

Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the bodys hereditary material and can make copies of themselves.

Cells have many parts, each with a different function. Some of these parts, called organelles, are specialized structures that perform certain tasks within the cell. Human cells contain the following major parts, listed in alphabetical order:

Within cells, the cytoplasm is made up of a jelly-like fluid (called the cytosol) and other structures that surround the nucleus.

The cytoskeleton is a network of long fibers that make up the cells structural framework. The cytoskeleton has several critical functions, including determining cell shape, participating in cell division, and allowing cells to move. It also provides a track-like system that directs the movement of organelles and other substances within cells.

This organelle helps process molecules created by the cell. The endoplasmic reticulum also transports these molecules to their specific destinations either inside or outside the cell.

The Golgi apparatus packages molecules processed by the endoplasmic reticulum to be transported out of the cell.

These organelles are the recycling center of the cell. They digest foreign bacteria that invade the cell, rid the cell of toxic substances, and recycle worn-out cell components.

Mitochondria are complex organelles that convert energy from food into a form that the cell can use. They have their own genetic material, separate from the DNA in the nucleus, and can make copies of themselves.

The nucleus serves as the cells command center, sending directions to the cell to grow, mature, divide, or die. It also houses DNA (deoxyribonucleic acid), the cells hereditary material. The nucleus is surrounded by a membrane called the nuclear envelope, which protects the DNA and separates the nucleus from the rest of the cell.

The plasma membrane is the outer lining of the cell. It separates the cell from its environment and allows materials to enter and leave the cell.

Ribosomes are organelles that process the cells genetic instructions to create proteins. These organelles can float freely in the cytoplasm or be connected to the endoplasmic reticulum (see above).

The Genetic Science Learning Center at the University of Utah offers an interactive introduction to cells and their many functions.

Nature Educations Scitable explains what cells are made of and how they originated in their fact sheet What is a Cell?

Arizona State Universitys Ask a Biologist provides a description and illustration of each of the cells organelles.

Queen Mary University of London allows you to explore a 3-D cell and its parts.

Additional information about the cytoskeleton, including an illustration, is available from the Cytoplasm Tutorial. This resource is part of The Biology Project at the University of Arizona.

Next: What is DNA?

The rest is here:
What is a cell? - Genetics Home Reference

Stem cell treatment lessens impairments caused by dementia …

October 15, 2015 Neural stem cells (green) migrate throughout an injured brain site in DLB mice and begin to differentiate into astrocytes (red), leading to improved motor and cognitive function. Credit: Blurton-Jones lab

Neural stem cells transplanted into damaged brain sites in mice dramatically improved both motor and cognitive impairments associated with dementia with Lewy bodies, according to University of California, Irvine neurobiologists with the Sue & Bill Gross Stem Cell Research Center and the Institute for Memory Impairments and Neurological Disorders.

DLB is the second-most common type of age-related dementia after Alzheimer's disease and is characterized by the accumulation of a protein called alpha-synuclein that collects into spherical masses called Lewy bodies - which also accumulate in related disorders, including Parkinson's disease. This pathology, in turn, impairs the normal function of neurons, leading to alterations in critical brain chemicals and neuronal communication and, eventually, to cell death.

The UCI researchers, led by associate professor of neurobiology & behavior Mathew Blurton-Jones and doctoral student Natalie Goldberg, hope that one day transplantation of neural stem cells into human patients might help overcome the motor and cognitive impairments of DLB.

Study results appear online in Stem Cell Reports.

To test this idea, they transplanted mouse neural stem cells into genetically modified mice exhibiting many of the key features of DLB. One month later, the mice were retested on a variety of behavioral tasks, and significant gains in both motor and cognitive function were observed. For example, these mice could run on a rotating rod for much longer and recognize novel objects far better than untreated DLB mice.

To understand how stem cell transplantation alleviated impairments, Goldberg and colleagues examined the effects of the stem cells on brain pathology and circuitry connecting neurons. They found that functional improvements required the production of a specific growth factor - called brain-derived neurotrophic factor - by neural stem cells.

The team examined two of the key brain structures that become dysfunctional in DLB - dopamine- and glutamate-making neurons - to determine how BDNF might drive recovery. "Our experiments revealed that neural stem cells can enhance the function of both dopamine-and glutamate-producing neurons, coaxing the brain cells to connect and communicate more appropriately. This, in turn, facilitates the recovery of both motor and cognitive function," Goldberg said.

To further confirm the importance of BDNF in these effects, the researchers modified the stem cells so that they could no longer produce the growth factor. When these modified cells were transplanted, they failed to improve behavioral function and no longer enhanced dopamine and glutamate signaling.

Testing the possibility that BDNF alone might be an effective treatment, Goldberg used a virus to deliver the growth factor to the brains of DLB mice.

She found that this treatment resulted in good recovery of motor skills in the test rodents but only limited recovery of cognitive function. This, Goldberg said, suggests that while BDNF is critical to stem cell-mediated motor and cognitive recovery, it does not achieve this outcome alone.

These results imply that transplantation of BDNF-producing neural stem cells may one day offer a new approach for treating DLB, and Blurton-Jones and Goldberg are cautiously optimistic.

"Many important questions remain before we could envision moving forward with early-stage trials," Blurton-Jones said. "For example, we'll need to identify and test human neural stem cells first."

Nevertheless, if this approach holds up, BDNF-producing neural stem cells might also be beneficial for several other diseases. "BDNF, dopamine and glutamate are implicated in other neurodegenerative conditions, including Huntington's and Alzheimer's disease," Goldberg noted.

Explore further: Neurons made from stem cells drive brain activity after transplantation in laboratory model

Researchers with the Marshall University Joan C. Edwards School of Medicine (SOM) and the Marshall University Institute for Interdisciplinary Research (MIIR) have identified a mechanism for blocking the signal by which the ...

For the first time, researchers have used a cocktail of small molecules to transform human brain cells, called astroglial cells, into functioning neurons for brain repair. The new technology opens the door to the future development ...

Regenerative medicine is a new and expanding area that aims to replace lost or damaged cells, tissues or organs in the human body through cellular transplantation. Embryonic stem cells (ESCs) are pluripotent cells that are ...

Using a sensitive new technology called single-cell RNA-seq on cells from mice, scientists have created the first high-resolution gene expression map of the newborn mouse inner ear. The findings provide new insight into how ...

In work involving several new generations of mouse model development, Jackson Laboratory (JAX) researchers have tested a therapeutic intervention for spinal muscular atrophy (SMA) that restores some function lost due to a ...

Drowsy mice make poor stem cell donors, according to a new study by researchers at the Stanford University School of Medicine.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Originally posted here:
Stem cell treatment lessens impairments caused by dementia ...

Stem cell treatment may reduce impairment caused by …

IRVINE, Calif., Oct. 15 (UPI) -- Neural stem cells transplanted into mice brains reduced impairments related to dementia with Lewy bodies, or DLB, researchers found in a study conducted at the University of California Irvine.

Dementia with Lewy bodies, spherical masses of a protein called alpha-synuclein, impairs the function of neurons causing alteration to brain chemicals and neuronal communication, and eventual brain cell death.

DLB, the second most common form of dementia after Alzheimer's disease, plays a role in other forms of the condition, including Parkinson's and Huntington's -- which researchers hope neural stem cells could help treat.

"Our experiments revealed that neural stem cells can enhance the function of both dopamine- and glutamate-producing neurons, coaxing the brain cells to connect and communicate more appropriately," said Natalie Goldberg, a doctoral student at the University of California Irvine, in a press release. "This, in turn, facilitates the recovery of both motor and cognitive function."

Researchers transplanted mouse neural stem cells into mice exhibiting signs of dementia. A month after the treatment, the mice who'd received it could run on a rotating rod and recognize objects better than untreated mice.

A growth factor called brain-derived neurotrophic factor, or BDNF, is key to enhancing the function of dopamine- and glutamate-making neurons in the brain. The researchers tested this, finding that without BDNF improvement in cognitive decisions by the mice did not improve, and without the enhancing the function of both dopamine and glutamate in the brain improvements were not as drastic.

"Many important questions remain before we could envision moving forward with early-stage trials [with humans]," said Mathew Blurton-Jones, an associate professor of neurobiology and behavior at UC Irvine. "For example, we'll need to identify and test human neural stem cells first."

The study is published in Stem Cell Reports.

Related UPI Stories

See the rest here:
Stem cell treatment may reduce impairment caused by ...

The Future of Stem Cell Therapy for Multiple Sclerosis …

Among the different therapeuticapproaches being explored for treating MS,adult stem cell therapy continues to beone of the most discussed and anticipatedin the MS community. Stem cells the common term for undifferentiated, self-renewing proliferating cells are currently being investigated for their ability to treatpatients in a wide range of disease indications, includingmultiple sclerosis,due to their ability to reboot the immune system, address inflammation in the body and repair damage caused by injury or disease. For MS, some researchers believe that stem cell therapy can effectively repair damaged myelin, preventing the progression of the disease and minimizing its effect onpatients quality of life.

Stem cell treatment for multiple sclerosisbeginswiththe introduction of adult mesenchymal stem cells (MSC) taken from the Stromal Vascular Fraction (SVF) the fatty material that is removed in procedures such as lipsosuction which is processed and reintroduced back into the body. From there, these MSCs are believed to be able to travel past the blood brain barrier and repair the myelin sheath around nerve cells that becomes damaged by the immune system in MS in a process known as remyelination.In addition, stem cells also act as modulators of the immune system in patients with multiple sclerosis, as MSCs secrete cytokines and other molecules that can have an anti-inflammatory effect or produce an inhibitory action on pro-inflammatory pathways. Since MS is an autoimmune disease, if stem cell therapy is provento restore normal function to the immune system as well as repair damaged myelin,itwould represent a revolutionary,next generation approach totreating the disease.

While stem cell therapy is currently available to patients seeking therapeutic alternatives for treating MS where traditional prescribed therapies have failed, the treatment is still being studied, particularly with respect to how effective the therapy is in improving quality of life for patients, and how to best deliver stem cells back into the body. StemGenex, a company that is committed to advancing stem cell therapy for a wide range of disease, is currently managing several clinical studies one of which is for the treatment of multiple sclerosis. Outcomes Data of Adipose Stem Cells to Treat Multiple Sclerosis aims to recruit 100 patients between the ages of 18 and65 years old to particulate in thestudy. Recruited participants will be treated with a stem cell concentrate derived from their own adult adipose (fat) tissue, or the stromal vascular fraction (SVF).

Researching clinicians administer a customized treatment that may include: intravenous drip, intra nasal administration, bladder catheterization, or direct site injections. The locations in the body receiving the cells are the areas in most need of immunomodulatory stem cells to help repair damage. When the cells are in the patients body, theydisperse into adjacent tissue, differentiate into mature cells of the surrounding tissue, secrete immunomodulatory growth factors, and/or attract blood vessel growth. In the case of MS, stem cells ability to differentiate into mature cells that may repair myelin as well as stabilize the immune system is what researchers believe can positively impact quality of life for patients as well as slow down disease progression.

For the present clinical studies, to determine if there is a benefit to receiving a dose of SVF, research clinicians will monitor patients for a variety of outcome measures. Primarily, StemGenex is interested in observing a change in overall quality of life over a twelve-month period following treatment at baseline. During this twelve-month period, patients will be assessed for quality of life changes at times of one, three, six, and twelve months following treatment using the Multiple Sclerosis Quality of Life Inventory (MSQLI). According to the National Multiple Sclerosis Society, this inventory is composed of ten separate rating scales that assess everything from feelings of fatigue to sexual satisfaction and can be completed entirely by the patient in approximately 30-45 minutes. The change in score from each individual rating scale during the twelve-month period is a separate secondary outcome measure in the study.

In spite of recent therapeutic advancements, there are still major unmet medical needs for those with multiple sclerosis. While improved disease modifying drugs continue to delay the progression of the relapsing forms of the disease, most patients continue to suffer from worsening symptoms, and can eventually developsecondaryprogressiveMS, for which there are no FDA approved therapies. In many cases, MS patients have few if any options when it comes to conventional therapy, making the exploration of alternative treatment options such as stem cell therapy critically important to helping those living with the disease.

Stem Cell therapy is a different approach from taking a prescribed medicine its success depends on patients willingness to try the therapy themselves and allow investigators to optimize it for the best results possible. Those who participate are given early access to a treatment that could potentially improve their condition. In addition, their participation makes it possible for researchers to accelerate development of novel therapies. In this way, the future of stem cell therapy for multiple sclerosis and whether it is fully developed into a mainstream treatment option for those with MS depends upon clinical studies that confirm its effectiveness.

.

Read the original post:
The Future of Stem Cell Therapy for Multiple Sclerosis ...

Official Publications: Research Expertise and Publications …

UWA Home Official Publications Research Expertise and Publications Search Site Map

Cuddy, S., Letcher, R., Chiew, F.H.S., Nancarrow, B.E. and Jakeman, A.J. A Role for Streamflow Forecasting in Managing Risk Associated with Drought and Other Water Crises, Drought and Water Crises: Science, Technology, and Management Issues, ed Donald A. Wilhite, United States, Taylor & Francis CRC Press, pp 346-364 (2005)

Georgiou, S., Bateman, I.J. and Langford, I.H. Cost-benefit analysis of improved bathing water quality in the United Kingdom as a result of a revision of the European Bathing Water Directive, Cost Benefit Analysis and Water Resources Management, ed Brouwer, R. and Pearce, D.W., United Kingdom, Edward Elgar, 1: pp 270-289 (2005)

Hertzler, G.L. Prospects for Insuring Against Drought in Australia, From Disaster Response to Risk Management, ed Botterill, L.C., Wilhite, D.A., Netherlands, Springer, pp 127-138 (2005)

Jakeman, A., Letcher, R., Saifuk, K. and Ongsomwang, S. Integrated water resources assessment and management, Integrating knowledge for river basin management, ed Jakeman, A.J., Letcher, R.A., Rojanasoonthon, S., Cuddy, S. and Scott, A., Canberra, Australian Centre for International Agricultural Research, pp 13-27 (2005)

Jakeman, A., Roganasoonthon, S., Letcher, R. and Scott, A. Improving integrated assessment approaches, Integrating knowledge for river basin management, ed Jakeman, A.J., Letcher, R.A., Rojanasoonthon, S., Cuddy, S. and Scott, A., Canberra, Australian Centre for International Agricultural Research, pp 203-219 (2005)

Letcher, R., Jakeman, A. and Ekasingh, B. Principles of integrated assessment, Integrating knowledge for river basin management, ed Jakeman, A.J., Letcher, R.A., Rojanasoonthon, S., Cuddy, S. and Scott, A., Canberra, Australian Centre for International Agricultural Research, pp 55-66 (2005)

Schreider, S.Y. and Jakeman, A.J. The disaggregation of monthly streamflow for ungauged sub-catchments of a gauged irrigated catchment in northern Thailand, Forests, Water and People in the Humid Tropics, ed Bonell, M. and Bruijnzeel, L.A., United Kingdom, Cambridge University Press, pp 742-755 (2005)

Soto, G.M.O. and Bateman, I.J. Cost-benefit analysis of urban water supply in Mexico City, Cost Benefit Analysis and Water Resources Management, ed Brouwer, R. and Pearce, D.W., United Kingdom, Edward Elgar, 1: pp 361-380 (2005)

Abadi Ghadim, A.K., Pannell, D.J. and Burton, M.P. Risk, uncertainty and learning in adoption of a crop innovation, Agricultural Economics, 33:1, pp 1-9 (2005)

Bateman, I.J., Brouwer, R., Georgiou, S., Hanley, N., Machado, F., Mourato, S. and Saunders, C. A 'Natural Experiment' Approach to Contingent Valuation of Private and Public UV Health Risk Reduction Strategies in Low and High Risk Countries, Environmental and Resource Economics, 31:1, pp 47-72 (2005)

Bateman, I.J. and Munro, A. An Experiment on Risky Choice Amongst Households, The Economic Journal, 115:502, pp 176-189 (2005)

Baumann, A.C., Osman, M., Burton, M.P. and Lumley, S. Understanding Western Australian Consumers' Voews: Acceptance of Food Produced Using Gene Technology, Environmental Science and Pollution Research, 12:1, p 56 (2005)

Brouwer, R. and Bateman, I.J. Temporal stability and transferability of models of willingness to pay for flood control and wetland conservation, Water Resources Research, 41: pp 1-6 (2005)

Brouwer, R. and Bateman, I.J. Benefits transfer of willingness to pay estimates and functions for health-risk reductions: a cross-country study, Journal of Health Economics, 24:3, pp 591-611 (2005)

Brown, B., Weersink, A. and de Loe, R.C. Measuring Financial Capacity and the Effects of Regulatory Changes on Small Water Systems in Nova Scotia, Canadian Water Resources Journal, 30:3, pp 197-210 (2005)

Burton, M.P. and Bencini, R. Consumer Acceptance of New Sheep Milk Cheeses, Australasian Agribusiness Review, 13: (2005)

Chambers, R.G. and Quiggin, J. Incentives and Standards in Agency Contracts, Journal of Public Economic Theory, 7:2, pp 201-228 (2005)

Chambers, R.G. and Quiggin, J. Output Price Subsidies in a Stochastic World, American Journal of Agricultural Economics, 87:2, pp 501-508 (2005)

Chambers, R.G. and Melkonyan, T.A. Eliciting the core of a supermodular capacity, Economic Theory, 26:1, pp 203-209 (2005)

Chambers, R.G. and Quiggin, J. Linear-risk-tolerant, invariant risk preferences, Economics Letters, 86:3, pp 303-309 (2005)

Doole, G.J. Optimal management of the New Zealand longfin eel (Anguilla dieffenbachii), Australian Journal of Agricultural and Resource Economics, 49:4, pp 395-411 (2005)

Flugge, F.A. and Schilizzi, S.G.M. Greenhouse gas abatement policies and the value of carbon sinks: Do grazing and cropping systems have different destinies?, Ecological Economics, 55:4, pp 584-598 (2005)

Fraser, I. and Fraser, R. Targeting Monitoring Resources to Enhance the Effectiveness of the CAP, EuroChoices, 4:3, pp 22-27 (2005)

Georgiou, S. and Bateman, I.J. Revision of the EU Bathing Water Directive: economic costs and benefits, Marine Pollution Bulletin, 50:4, pp 430-438 (2005)

Gilmour, J.K., Letcher, R.A. and Jakeman, A.J. Analysis of an integrated model for assessing land and water policy options, Mathematics and Computers in Simulation, 69:1-2, pp 57-77 (2005)

Hart, R. and Latacz-Lohmann, U. Combating moral hazard in agri-environmental schemes: a multiple-agent approach, European Review of Agricultural Economics, 32:1, pp 75-91 (2005)

Henderson, B. and Kingwell, R.S. Rainfall and Farm Efficiency Measurement for Broadacre Agriculture in South-Western Australia, Australasian Agribusiness Reivew, 13: (2005)

John, M.B., Pannell, D.J. and Kingwell, R.S. Climate change and the economics of farm management in the face of land degradation: Dryland salinity in Western Australia, Canadian Journal of Agricultural Economics, 53:4, pp 443-459 (2005)

Kingwell, R.S. and Pannell, D.J. Economic trends and drivers affecting the grainbelt of Western Australia to 2030, Australian Journal of Agricultural Research, 56:6, pp 553-561 (2005)

Kingwell, R.S. Institutional Change and Plant Variety Provision in Australia, Australasian Agribusiness Reivew, 13: (2005)

Kingwell, R.S. Future Broadacre Farming Systems - a personal view, Connections, 1:Autumn 2005 (2005)

Lefroy, E.C., Flugge, F.A., Avery, A. and Hume, I. Potential of current perennial plant-based farming systems to deliver salinity management outcomes and improve prospects for native biodiversity: a review, Australian Journal of Experimental Agriculture, 45:11, pp 1357-1367 (2005)

Llewellyn, R.S., Pannell, D.J., Lindner, R.K. and Powles, S.B. Targeting key perceptions when planning and evaluating extension, Australian Journal of Experimental Agriculture, 45:12, pp 1627-1633 (2005)

Lobb, A.E. and Fraser, R.W. Implications of Recent Australian Wheat Industry Developments for Domestic and Overseas Prices, Journal of International Agricultural Trade and Development, 1:2, pp 93-108 (2005)

Merritt, W.S., Croke, B.F.W. and Jakeman, A.J. Sensitivty testing of a model for exploring water resources utilisation and management options, Environmental Modlling & Software, 20:8, pp 1013-1030 (2005)

Monjardino, M., Pannell, D.J. and Powles, S.B. The economic value of glyphosate-resistant canola in the management of two widespread crop weeds in a Western Australian farming system, Agricultural Systems, 84:3, pp 297-315 (2005)

Pannell, D.J. Farm, food and resource issues: politics and dryland salinity, Australian Journal of Experimental Agriculture, 45:11, pp 1471-1480 (2005)

Pannell, D.J. Voluntary versus Regulatory Approaches to Protecting the Environment in Rural Areas, Farm Policy Journal, 2:3, pp 1-9 (2005)

Pepper, C., Mccann, L.M.J. and Burton, M.P. Valuation study of urban busland at Hartfield Park, Forrestfield, Western Australia, Ecological Management & Restoration, 6:3, pp 190-196 (2005)

Potter, N.J., Zhang, L., Milly, P.C.D., McMahon, T.A. and Jakeman, A.J. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments, Water Resources Research, 41:6, pp 1-11 (2005)

Ridley, A. and Pannell, D.J. An Investment Framework for Managing Dryland Salinity in Australia, Farm Policy Journal, 2:4, pp 39-49 (2005)

Ridley, A.M. and Pannell, D.J. The role of plants and plant-based research and development in managing dryland salinity in Australia, Australian Journal of Experimental Agriculture, 45:11, pp 1341-1355 (2005)

Rigby, D. and Burton, M.P. Preference heterogeneity and GM food in the UK, European Review of Agricultural Economics, 32:2, pp 269-288 (2005)

Sadoddin, A., Letcher, R.A., Jakeman, A.J. and Newham, L.T.H. A Bayesian decision network approach for assessing the ecological impacts of salinity management, Mathematics and Computers in Simulation, 69:1-2, pp 162-176 (2005)

Sudmeyer, R. and Flugge, F.A. The economics of managing tree-crop competition in windbreak and alley systems, Australian Journal of Experimental Agriculture, 45:11, pp 1403-1411 (2005)

Ticehurst, J.L., Croke, B.F.W. and Jakeman, A.J. Model design for the hydrology of tree belt plantations on hillslopes, Mathematics and Computers in Simulation, 69:1-2, pp 188-212 (2005)

Weersink, A. and Wossink, A. Lessons from agri-environmental policies in other countries for dealing with salinity in Australia, Crop Protection, 45:11, pp 1481-1493 (2005)

Weersink, A., Llewellyn, R.S. and Pannell, D.J. Economics of pre-emptive management to avoid weed resistance to glyphosate in Australia, Crop Protection, 24:7, pp 601-693 (2005)

Weersink, A., Pannell, D.J., Fulton, M. and Meyer-Aurich, A. Agriculture's Likely Role in Meeting Canada's Kyoto Commitments, Canadian Journal of Agricultural Economics, 53:4, pp 425-441 (2005)

White, B. An Economic Analysis of Ecological Monitoring, Ecological Economics, 189:3-4, pp 241-250 (2005)

White, B. and Dawson, P.J. Measuring Price Risk on UK Arable Farms, Journal of Agricultural Economics, 56:2, pp 239-252 (2005)

Drewry, J.J., Newham, L.T.H., Greene, R.S.B., Jakeman, A.J. and Croke, B.F.W. An Approach to Assess and Manage Nutrient Loads in Two Coastal Catchments of the Eurobodalla Region, NSW, Australia, MODSIM05, Melbourne, Modelling and Simulation Society of Australia and New Zealand, 1: pp 2658-2664 (2005)

Hailu, A. and Schilizzi, S.G.M. Learning in a "Basket of Crabs": An Agent-Based Computational Model of Repeated Conservation Auctions, Nonlinear Dynamics and Heterogeneous Interacting Agents, Germany, Springer-Verlag, 8th: pp 27-39 (2005)

Ticehurst, J.L., Rissik, D., Letcher, R.A., Newham, L.H.T. and Jakeman, A.J. Development of Decision Support Tools to Assess the Sustainability of Coastal Lakes, MODSIM05, Melbourne, Modelling and Simulation Society of Australia and New Zealand, 1: pp 2414-2420 (2005)

Lindner, R.K. Impacts of Mud Crab Hatchery Technology in Vietnam, :1, pp 1-68, Canberra (2005)

Raitzer, D.A. and Lindner, R.K. Review of the Returns to ACIAR's Bilateral R&D Investments, 1:35, pp 1-64, Canberra (2005)

Catts, O. and Zurr, I. The Art of the Semi Living, Art et Biotechnologies, ed Poissant, L. and Daubner, E., Quebec, Presses de lniversite du Quebec, pp 99 - 115 (2005)

Chisholm, J.S., Burbank, V.K., Coall, D.A. and Gemmiti, F. Early Stress: Perspectives from Developmental Evolutionary Ecology, Origins of the Social Mind, ed Ellis, B.J., Bjorklund, D.F., New York, The Guilford Press, pp 1-525 (2005)

Lynch, G.S., Shavlakadze, T. and Grounds, M.D. Strategies to reduce age-related skeletal muscle wasting, Ageing Interventions and Therapies, ed Rattan, S.I.S., Singapore, World Scientific, pp 63-84 (2005)

Wessen, K. Simulating Human Origins and Evolution, UK, Cambridge University Press (2005)

Arfuso, F., McGeachie, J.K. and Meyer, G.T. A quantitative study of blood capillary formation (angiogenesis) concomitant with parenchymal tissue differentiation, Endothelium, 12: pp 171-177 (2005)

Bates, K.A., Harvey, A.R., Carruthers, M. and Martins, R.N. Androgens, andropause and neurodegeneration: exploring the link between steroidogenesis, androgens and Alzheimer's disease, Cellular and Molecular Life Sciences, 62: pp 281-292 (2005)

Camelo, S., Kezic, J. and McMenamin, P.G. Anterior chamber associated immune deviation: a review of the anatomical evidence for the afferent arm of this unusual experimental model of ocular immune responses, Clinical and Experimental Ophthalmology, 33: pp 426-432 (2005)

Charles, A.K., Hisheh, S., Liu, D., Rao, R.M., Waddell, B.J., Dickinson, J.E., Rao, A.J. and Dharmarajan, A.M. The expression of apoptosis related genes in the first trimester human placenta using a short term in vitro model, Apoptosis, 10:1, pp 135-140 (2005)

Chen, X., Milne, N. and O'Higgins, P. Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance, Journal of Morphology, 266: pp 167-181 (2005)

Chinnery, H., Kezic, J., Yeung, S. and McMenamin, P.G. The cause of a band-like opacity in the corneas of abattoir acquired pig eyes, Clinical and Experimental Ophthalmology, 33: pp 665-674 (2005)

Chisholm, J.S., Quinlivan, J.A., Petersen, R.W. and Coall, D. Early stress predicts age at Menarche and first birth, adult attachment and expected lifespan, Human Nature, 16:3, pp 233-265 (2005)

Dixon, K.J., Hilber, W., Speare, S., Willson, M.L., Bower, A.J. and Sherrard, R.M. Post-lesion transcommissural olivocerebellar reinnervation improves motor function following unilateral pedunculotomy in the neonatal rat, Experimental Neurology, 196: pp 254-265 (2005)

Eastwood, P.R., Platt, P.R., Shepherd, K., Maddison, K. and Hillman, D.R. Collapsibility of the upper airway at different concentrations of propofol anesthesia, Anesthesiology, 103:3, pp 470-477 (2005)

Eppler, E., Walch, M., Latinovic-Golic, S., Dumrese, C., Filgueira, L. and Groscurth, P. Human dendritic cells process and present Listeria antigens for in vitro priming of autologous CD4+ T lymphocytes, Histochemistry and Cell Biology, 123: pp 169-178 (2005)

Fournier, B., Lohof, A.M., Bower, A.J., Mariani, J. and Sherrard, R.M. Developmental modifications of olivocerebellar topography: the granuloprival cerebellum reveals multiple routes from the inferior olive, The Journal of Comparative Neurology, 490: pp 85-97 (2005)

Fox, S.A., Kusmiaty, D., Loh, S., Dharmarajan, A.M. and Garlepp, M.J. Cisplatin and TNF-a downregulate transcription of Bcl-xL in murine malignant mesothelioma cells, Biochemical and Biophysical Research Communications, 337: pp 983-991 (2005)

Franklin, D., Freedman, L. and Milne, N. Three-dimensional technology for linear morphological studies: a re-examination of cranial variation in four southern African indigenous populations, Homo-Journal of Comparative Human Biology, 56: pp 17-34 (2005)

Franklin, D., Freedman, L. and Milne, N. Sexual dimorphism and discriminant function sexing in indigenous South African crania, Homo - Journal of Comparative Human Biology, 55: pp 213-228 (2005)

Gaudieri, S., De Santis, D., McKinnon, E., Moore, C., Nolan, D., Witt, C.S., Mallal, S.A. and Christiansen, F.T. Killer immunoglobulin-like receptors and HLA act both independently and synergistically to modify HIV disease progression, Genes and Immunity, 1: (2005)

Gaudieri, S., Nolan, D., McKinnon, E., Witt, C.S., Mallal, S. and Christiansen, F.T. Associations between KIR epitope combinations expressed by HLA-B/-C haplotypes found in an HIV-1 infected study population may influence NK mediated immune responses, Molecular Immunology, 42: pp 557-560 (2005)

Grounds, M. The Wonder of Stem Cells and their Clinical Applications, Australian Biochemist, 36:1, p 3 (2005)

Grounds, M.D., Davies, M., Torrisi, J., Shavlakadze, T., White, J. and Hodgetts, S. Silencing TNF alpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice, Cell and Tissue Research, 320: pp 509-515 (2005)

Grounds, M.D., Sorokin, L. and White, J. Strength at the extracellular matrix-muscle interface, Scandinavian Journal of Medicine & Science in Sports, 15: pp 381-391 (2005)

Grove, J.R., Wilkinson, A., Dawson, B.T., Eastwood, P.R. and Heard, N.P. Effects of exercise on subjective aspects of sleep during tobacco withdrawal, Australian Psychologist, 41:8, pp 1-8 (2005)

Harriso, G.A., Schmitt, L.H. and Harrison, C.B.G. Reflections on Aboriginal Health, Society, Biology & Human Affairs, 70:2, pp 53-55 (2005)

Hayes, S., Taylor, R. and Paterson, A. Forensic Facial Approximation: An Overview of Current Methods Used at the Victorian Institute of Forensic Medicine/Victoria Police Criminal Identification Squad, The Journal of Forensic Odonto-Stomatology, 23:2, pp 45-50 (2005)

Haynes, M.J., Cala, L.A., Melsom, A., Mastaglia, F.L., Milne, N. and McGeachie, J.K. Posterior ponticles and rotational stenosis of vertebral arteries. A pilot study using doppler ultrasound velocimetry and magnetic resonance angiography, Journal of Manipulative and Physiological Therapeutics, 28:5, pp 323-329 (2005)

Hill, K. and Eastwood, P.R. Respiratory muscle training: the con argument, Chronic Respiratory Disease, 2: pp 223-224 (2005)

Hu, Y., Leaver, S.G., Plant, G.W., Hendriks, W.T.J., Niclou, S.P., Verhaagen, J., Harvey, A.R. and Cui, Q. Lentiviral-mediated transfer of CNTF to Schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration, Molecular Therapy, 11:6, pp 906-915 (2005)

Kam, D.W.R., Charles, A.K. and Dharmarajan, A.D. Caspase-14 expression in the human placenta, Reproductive BioMedicine Online, 11:2, pp 236-243 (2005)

Kidd, R. and Oxnard, C. Little foot and big thoughts - a re-evaluation of the Stw573 foot from Sterkfontein, South Africa, Homo-Journal of Comparative Human Biology, 55: pp 189-212 (2005)

Kovar, J., Willett, K.E., Hislop, A. and Sly, P.D. Impact of postnatal glucocorticoids on early lung development, Journal of Applied Physiology, 98: pp 881 - 88 (2005)

Laird, R., Dawkins, R.L. and Gaudieri, S. Use of the genomic matching technique to complement multiplex STR profiling reduces DNA profiling costs in high volume crimes and intelligence led screens, Forensic Science International, 151: pp 249-257 (2005)

Lareu, R.R., Lacher, M.D., Friis, R.R. and Dharmarajan, A.M. Cloning and characterization of a novel zinc finger protein (rZFP96) in the rat corpus luteum, Biochimica et Biophysica Acta, 1732: pp 69-75 (2005)

Lee-Pullen, T. and Grounds, M. The reality of skeletal muscle stem cells, Australian Biochemist, 36:1, pp 4-6 (2005)

Lee-Pullen, T.F. and Grounds, M.D. Muscle-Derived Stem Cells: Implications for Effective Myoblast Transfer Therapy, IUBMB Life, 57:11, pp 731-736 (2005)

Lohof, A.M., Mariani, J. and Sherrard, R.M. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination, European Journal of Neuroscience, 22: pp 2681-2688 (2005)

Lucas, A.D., Gaudieri, S., Rauch, A., Nolan, D. and Mallal, S.A. Cellular Tropism of HIV-1 Mediated and Constrained by Coreceptor Dependencies, The Journal of Viral Entry, 1:1, pp 17-27 (2005)

Maddison, K.J., Shepherd, K.L., Hillman, D.R. and Eastwood, P.R. Function of the lower isophageal sphincter during and after high-intensity exercise, Medicine & Science in Sports & Exercise, 37:10, pp 1728-1733 (2005)

McMenamin, P.G. A simple interactive teaching aid for medical undergraduates studying the brachial plexus, Medical Teacher, 27:2, pp 169-171 (2005)

Meagher, J., Zellweger, R. and Filgueira, L. Functional dissociation of the basolateral transcytotic compartment from the apical phago-lysosomal compartment in human osteoclasts, Journal of Histochemistry & Cytochemistry, 53:5, pp 665-570 (2005)

Merino, M.L., Milne, N. and Vizcaino, S.F. A cranial morphometric study of deer (Mammalia, Cervidae) from Argentina using three-dimensional landmarks., Acta Theriologica, 50:1, pp 91-108 (2005)

Original post:
Official Publications: Research Expertise and Publications ...

The 5-Steps Behind Platelet-Rich Plasma Injections

Post-traumatic arthritis. Tennis elbow. Hamstring tear. These are a few of thesports injuries that doctors are treating with platelet-rich plasma injections.

ButPRP injections are also proving effective treatments for those who suffer from knee arthritis and other non-sports related injuries.

If youve been reading my posts for long youve no doubt heard me talk about PRP therapy and its relation to sports medicine. One thing Ive never done, however, is explain the steps behind an actual procedure. I want to take that time right now to do that.

Step One: Consultation

The very first thing I do with the patient is consult with them. We talk about the injury, the cause, the level of pain, the history. I want as much information as I possibly can.

As a side note: Usually at this stage I discover that this is a last-ditch effort for the patient. Theyve exhausted all other approaches and want to avoid surgery. See my final thoughts to see why this important.

Step Two: Draw Blood

Next we draw blood from the patient. Usually about 20 to 60 ccs.

Step Three: Spin the Blood

We then take that blood and put it into a centrifuge. Thatcentrifuge spins the blood, separating it into three different layers: the platelet-poor layer, the buffy coat (which contains the platelets and white blood cells) and the red blood cells. Its that middle layer that will be injected.

Step Four: Anesthetize the Injury Area

While the blood is being spun, our next step is to clean the sight and numb the area around the joint.

Step Five: Inject the Plasma

The final step consists of actually injecting the plasma into the injured area. We use an ultra sound machine to guide the needle to make sure we are injecting the fluid in the appropriate place.

The entire procedure takes less than 15 minutes. Its an in-office visit and patients can usually drive themselves to and from our clinic.

Is PRP Therapy Safe?

Yes, little evidence exists to definitely prove that plasma injections can have a positive impact on healing, but in my own work and many of my colleagues Ive seen tremendous outcomes.

Patients with six-week old injuries recover more rapidly as do patients whove been suffering from a decade old injury. Age of injury or patient doesnt matter.

It is important that you explore all of your alternatives first because most insurance companies will not cover this procedure. However, if youve exhausted all of your options and the next step is surgery, investigating whether plasma injections are right for you is a good thing to do before surgery.

Dr. Rick Lehman is a distinguished orthopedic surgeon in St. Louis, Missouri and an articular cartilage reconstruction pioneer He owns U. S. Sports Medicine in Kirkwood, MO, and LehmanHealth. Learn more about Dr. Rick.

Read the original:
The 5-Steps Behind Platelet-Rich Plasma Injections

Platelet Rich Plasma (PRP) – Dr. Hal Brown

PRP, Platelet Rich Plasma, Vancouver

PRP, Platelet Rich Plasma Regenerative Injection Therapy, under ultrasound guidance, for the treatment of back pain, neck pain, tendonitis, shoulders, elbows, wrists, fingers, hips, knees, ankles, feet, all joints of the body.

PRP Regenerative Injection Therapy, Platelet Rich Plasma

A new treatment for pain is becoming popular among orthopedic and pain specialists: the injection of platelet rich plasma PRP. Most everyone thinks of blood platelets as being responsible for blood clotting after injury which is true. What many people do not know is that blood platelets serve many other important functions. Blood platelets are responsible for bringing white blood cells to the injured area to clean up the remains of dead and injured cells, which is what most people believe is "chronic inflammation or tendonitis. This non productive stagnant "swelling" is called tendonosis and is not helpful for healing and must be resolved for recovery to proceed. Most importantly, blood platelets release growth factors that are directly responsible for tissue regeneration. PRP has also been shown to increase chondrocytes, the cells which grow into cartilage tissue. PRP has been used for years in surgical centers around the US and abroad to improve the success of bone grafting (especially in dental surgery) and also by cosmetic surgeons for speeding healing time and decreasing the risk of infection after surgery. More recently PRP is being used for the treatment of chronic pain. All joints, ligaments and tendon injuries can be treated, whether chronic or acute, including: tennis elbow, plantar fasciitis, Achilles tendonitis, rotator cuff tears, shoulder dislocations, meniscal tears, osteoarthritis and chronic low back, neck pain and many more areas are are all being treated with the injection of PRP; the goal being to promote the regeneration of degenerated and/or torn or strained connective tissue, ligaments, tendons and joints. The reports are of great success at a magnitude greater than regular dextrose prolotherapy, and of benefit where prolotherapy effects have plateaued or not been sufficient.

What is PRP - Platelet Rich Plasma ? Platelet Rich Plasma or PRP is blood plasma with concentrated platelets. The concentrated platelets found in PRP include growth factors among the huge reservoirs of bioactive proteins that are vital to initiate and accelerate tissue repair and regeneration. These bioactive proteins increase stem cell production to initiate connective tissue healing, bone regeneration and repair, promote development of new blood vessels and stimulate the wound healing process.

While a normal concentration of platelets circulating in your blood is 200,000 per micro liter, the platelet count in Platelet Rich Plasma can exceed 2 million platelets per micro liter. To be considered PRP the platelet count must be 4x or greater above baseline.

Normal Platelet Count

Concentrated Platelet Count

How is Platelet Rich Plasma made?

The process of creating Platelet Rich Plasma begins by drawing 20 - 60 cc of blood (500 cc is taken in blood bank donations).

The blood is then put into the Harvest SmartPReP2 Platelet Concentrate System and spun down separating the red blood cells, plasma and concentrating the platelets.

Heres how it works:

All injuries result in tissue damage. The bodys natural response to injury is an organized process of regeneration and remodeling of damaged cells, ultimately returning the injured tissues to their normal state. Collectively this process is known as the healing cascade. This healing cascade is primarily controlled by bioactive tissue growth factors found in platelets. With PRP prolotherapy, these growth factors are concentrated and injected directly into the site of injury.

Growth Factor Biology

The response of living tissue to injury forms the foundation of all surgical practice:

Bioactive proteins replace, repair, and regenerate tissue. These proteins are natural components found in the body and are considered by many to be a new frontier of clinical treatment. Increasing the bioactivity at the wound site takes medicine one step closer toward its ultimate goal of naturally accelerating the body's normal healing process.

The bioactive proteins carried by platelets are already being used succesfully for hemostasis, wound sealing, and wound healing in surgical disciplines such as: oral and maxillofacial, orthopaedic, neurology, otolaryngology, cardiovascular, vascular, general, plastic and reconstructive, non-healing wounds, and pediatrics.

Why use your own platelets?

Platelets are tiny cells that are critical to healing. They are the bodys primary source of bioactive tissue growth factors, including CTGF (Connective Tissue Growth Factor) PGDF (Platelet Derived Growth Factor), TGF- (Transforming Growth Factor-beta), EGF (Epidermal Growth Factor), IGF (Insulin Growth Factor), bFGF (basic Fibroblast Growth Factor), and VEGF (Vascular Endothelial Growth Factor. By concentrating these growth factors and injecting them at the site of injury or degeneration,, the body's own stem cells are drawn to the injured area and differentiate to cause regeneration of new healthy and robust ligaments, tendons and cartilage..

PRP provides a fibrin matrix graft. : Fibrin matrix provides the scaffolding for new collagen to form along damaged ligaments and tendons. With a fibrin matrix graft, even severely damaged tissues can re-organize and heal.

PRP concentrates Mesenchymal stem cells (MSCs).

MSCs are multi-potent stem cells that can differentiate into a variety of cell types during tissue repair processes. Cell types that MSCs have been shown to differentiate into include collagen secreting cells, bone forming osteoblasts and cartilage forming chondrocytes. Together these cells have the potential of rejuvenating tissues damaged by injury, degenerative changes, and osteoarthritis.

What does it do?

The PRP process concentrates fibrin, mesenchymal stem cells, and platelets so that each cubic millimeter of solution contains 1.5 to 2 million platelets, resulting in up to a five-fold increase in platelets and bioactive growth factors. Because it is so concentrated, PRP acts as a potent tissue growth stimulant, amplifying the natural process of tissue repair and healing. Studies show that PRP induces the production of new collagen by the fibroblasts, bone and cartilage cells at the site of the injection, rebuilding the joint cartilage and strengthening injured ligaments and tendons. This new collagen is naturally incorporated directly into your existing cartilage and ligaments, making them thicker, stronger and more elastic.

How Does PRP Regenerative Injection Therapy Compare With Cortisone Shots? Occasionally a single cortisone shot may give someone significant relief. Usually however, cortisone shots provide temporary relief and stop inflammation, but may not provide long term healing requiring ongoing injections. The problem is that cortisone is catabolic to tissues, meaning that its use will promote degeneration and wasting over time and with continued use.. PRP therapy is healing, regenerative and strengthening these tendons and ligaments and in some cases thickening the tissue up to 40%.

How Does PRP Regenerative Injection Therapy Compare With Hyaluronic Acid Injections?

Hyaluronic Acid injections ( Synvisc, Hyalgan, and Orthovisc and more) are very effective at increasing comfort and range of motion in injured joints. It does not, however, provide a mechanism of regeneration and it is necessary to continue injections about every 3 months to maintain benefit. PRP is regenerative, which means it stimulates the body to actually grow new ligaments, tendons and joint tissues which will last and function like normal healthy tissues.

How Does PRP Regenerative Injection Therapy compare with regular Dextrose Prolotherapy?

Clinical and anecdotal experience is demonstrating that using PRP as the regenerative injection method creates a much more profound healing effect and results in improved results in less treatments. Prolotherapy is a very effective and useful therapy, but PRP is especially useful when regular prolotherapy has provided positive results, but recovery has not been ideal. In these cases PRP is often the treatment that will resolve these less responsive or more injured areas.

Frequency Of Treatments While responses to treatment vary, most people will require 2 to 6 sets of injections of PRP. Each set of treatments is spaced 4 to 6 weeks apart.Usually positive development is evident after 2 treatments. Often satisfactory results may occur even sooner, but cannot be predicted with certainty.

The American Journal of Sports Medicine; May 2013

Treatment of Partial Ulnar Collateral Ligament Tears in the Elbow With Platelet-Rich Plasma

This study gives positive evidence for the use of PRP in sports injuries.

Drs. Luga Podesta and Lew Yocum, demonstrated that 30 of 34 athletes (88%) had returned to the same level of play without any complaints. The average time to return to play was 12 weeks. As well, real physical changes inside the elbow were observed.

Conclusion: The results of this study indicate that PRP is an effective option to successfully treat partial UCL tears of the elbow in athletes.

Articles

Platelet Rich Plasma (PRP) Therapy Literature Reviews

By Gary B. Clark, MD, MPA

Visions of Regenerations to Come

Published in the Journal of Prolotherapy

Mayo Clinic research identifies optimal treatment sequence for "tennis elbow"

The study included 34 patients with a wide range of tendon and soft tissue injuries, from rotator cuff tendinitis to plantar fasciitis, an inflammation on the bottom of the foot....patients received an injection of concentrated platelets from their own blood. The platelets release growth factors into the area to start the healing process. Researchers found maximum benefits tended to occur within four months after the procedure. More than 70 percent of patients had better use of their tendons, and 76 percent reported improvement in pain. In addition, researchers found some indication of tendon healing, which was detected with sophisticated ultrasound imaging.

Platelet-rich plasma (PRP) injections as an effective treatment for early osteoarthritis.

The New York Yankees star third baseman Alex Rodriguez gets PRP

Texas Rangers' 2nd basemanIan Kinslersaid he had PRP injection

"I feel 100 percent ,and it's the first time I can say that in a long time," Kinsler said

Tiger Woods discusses PRP Platelet Rich Plasma

VIDEO:

Tiger woods held a press conference a the Augusta Masters today to address concerns of his medical treatment among other issues that have been circling in the media. Tiger clarified that he has never used performance enhancing drugs (PEDs). However Tiger did confirm that he received 4 injections ofPRP Platelet Rich Plasmato his knee ligament (LCL) following a slow post operative recovery from ACL repair. Woods also received treatment for his Achilles tendon which he tore & adversely affected his driving distance . He claims that the treatments were successful & he feels strong.

While Tiger Woods has been surrounded bydisappointments of his family & fans of infidelity, it appears that he has not violated any medical laws or restrictions in sport.PRPhas been used to treat many athletes & even more weekend warriors. We are conducting several studies including a 10multicenter clinical trial on tennis elbow as well as a pilot knee arthritis study that was submitted for publication.

So hopefully the bright side of all this media frenzy will be the attention placed on an emerging therapy PRP. In no way is this a panacea but it appears a safe alternative to cortisone. More studies will emerge soon, some pro and some con to best determine which patients and injuries will be proper candidates for PRP.

Research In PRP Regenerative Injection Therapy:

Platelet Rich Plasma - PRP Matrix Graft by David Crane, MD and Peter A.M. Everts PhD

PRP Articles

Globe and Mail: Injured? Heal yourself with your own blood

Journal of the American Academy of Orthopaedic Surgeons (JAAOS). Early outcomes of PRP appear promising

PRP Prolotherapy used successfully for professional athletes

PRP keeps Hines Ward and Troy Polamalu of the Pittsburgh Steelers in the game

PRP used by figure skater Patrick Chan, Canadian Olympic Team, B.C. Lions

Takashi Saito, Dodger Pitcher, regains career after PRP elbow treatment

Houston Astro's Picture Doug Brocail recovers from hamstring injury with PRP and continues his season

PRP news show video of Doug Brocail

Sports Groin Injuries:

Efficacy of Dextrose Prolotherapy in Elite Male Kicking-Sport Athletes With Chronic Groin Pain Archives of Physical Medicine and Rehabilitation 2005; 86: 697-702 Conclusions: " marked efficacy for chronic groin pain in this group of elite rugby and soccer athletes."

Stem Cell Prolotherapy in Regenerative Medicine Background, Theory and Protocols

Donna D. Alderman, DO, Robert W. Alexander, MD, DMD, FICS, Gerald R. Harris, DO, Patrick C. Astourian, MS, PA-C

Journal of Prolotherapy

Mesenchymal Stromal Cell (MSC) Prolotherapy

The next advance in Regenerative Medicine

hsb

Follow this link:
Platelet Rich Plasma (PRP) - Dr. Hal Brown