ASLAN Pharmaceuticals Announces Receipt of Nasdaq Notice

SAN MATEO, Calif. and SINGAPORE, April 19, 2024 (GLOBE NEWSWIRE) -- ASLAN Pharmaceuticals (Nasdaq: ASLN), a clinical-stage, immunology-focused biopharmaceutical company developing innovative treatments to transform the lives of patients, today announced that it received a letter (the “Letter”) on April 18, 2024 from The Nasdaq Stock Market (“Nasdaq”) informing the Company that it failed to maintain the continued listing requirement under Nasdaq Listing Rule 5550(b)(1) for the Nasdaq Capital Market, which requires that a listed company’s stockholders’ equity be at least $2.5 million (the “Stockholders’ Equity Requirement”).

Go here to read the rest:
ASLAN Pharmaceuticals Announces Receipt of Nasdaq Notice

Celularity Inc. Announces Receipt of Nasdaq Notice Regarding Late Form 10-K Filing

FLORHAM PARK, N.J., April 19, 2024 (GLOBE NEWSWIRE) -- Celularity Inc. (NASDAQ: CELU) (the “Company”), a regenerative medicine company developing placental-derived allogeneic cell therapies and advanced biomaterial products, announced today that on April 17, 2024, the Company received notification from the Listing Qualifications department of the Nasdaq Stock Market LLC (“Nasdaq”) stating that because the Company has not yet filed its Annual Report on Form 10-K for the year ended December 31, 2023, it is no longer in compliance with Nasdaq’s continued listing requirements which requires listed companies to timely file all required periodic financial reports with the Securities and Exchange Commission. Nasdaq’s notice has no immediate effect on the listing of Celularity’s common stock and warrants, which continue to trade on the Nasdaq Capital Market under the symbols “CELU” and “CELUW,” respectively.

Go here to read the rest:
Celularity Inc. Announces Receipt of Nasdaq Notice Regarding Late Form 10-K Filing

The risks of unproven stem cell treatments – Marketplace

This is Uncomfortable April 18, 2024 Transcript

Note: Marketplace podcasts are meant to be heard, with emphasis, tone and audio elements a transcript cant capture. Transcripts are generated using a combination of automated software and human transcribers, and may contain errors. Please check the corresponding audio before quoting it.

Reema Khrais: Its a beautiful home.

Doris Tyler: Oh, thank you, we love it.

Reema: Im entering a cozy townhouse in Banner Elk, North Carolina. Its tucked away among beautiful mountains with snow on their peaks. Im here to meet Doris Tyler.

Doris: Would you like some water or coffee or anything?

Reema: Im good, thank you so much

Reema: Her home is cozy. Its December. Theres a Christmas tree, wood burning in the fireplace, and family photos everywhere you look

Doris: Im glad you got to come and see the beautiful mountain country we live in up here.

Reema: I know! Its so beautiful

Reema: Right away I feel the type of person Doris is. Full of energy despite her 80 some years. Incredibly warm. We sit down to talk. Her feet dangle from the couch.

Reema: So how would friends and family describe you?

Doris: One of my granddaughters called me Crazy Granny.

Reema: *laugh* Why is that?

Doris: Uh, Im very lively. I love people, I love to meet new people, um, I love hugs.

Reema: How, how would you describe her?

Don: That she loves life.

Reema: Thats Doriss husband, Don. Hes sitting on a recliner across from her. I notice when Doris talks, she becomes his only focus.

Doris: We met singing in the choir and actually started dating on, um, choir tour to California. And, um, I dont know if I should say this but my, he first kissed me in Bernardino, California.

Reema: Aw! Was there, I dont know, like a song early on that you all really connected over?

Doris: Uh, it was When I Fall in Love by Nat King Cole.

MUSIC: When I fall in love it will be forever

Reema: The song says, when I fall in love, it will be forever

Doris: Don said that to me when he kissed me that day in Bernardino, and so thats why.

Reema: Don was enamored with Doriss energetic personality and how unafraid she was to be herself. Like when shed go to baseball games, shed yell so loud her family would joke they could hear her from home. Their romance moved fast.

Doris: We got back from choir tour on April 1st and April 18th we were engaged.

Reema: Wow!

Doris: And we were married August 11th.

Reema: Yall wasted no time!

Doris: And everyone said it wouldnt last! And here it is 61 years.

Reema: Don and Doris lived a happy life together. Both would go on to teach music: Doris taught elementary school and Don taught college. They didnt make a lot of money, but it was enough. Doris was very active, even after retirement. She loved doing things for herself and for her church. And then one day, everything changed.

Doris was driving to a womens meeting at her church. It was starting to get dark. And then it started to rain.

Doris: And cars started coming towards me, and I couldnt, I couldnt see to judge exactly where I was on the road. And, um, so, uh, the further I got, the slower I was driving, trying to, uh, you know, be careful and not run off the road or not hit somebody.

Reema: Her vision was so blurry she could barely see. The road from her home was a little curvy, but Doris had driven this way so many times, it should have been automatic.

Doris: And the more, the more I went, the more, um, upset I got. And I finally just pulled into a parking lot. And I turned around and crept back home.

Reema: When she came inside, Don was surprised to see the state she was in.

Doris: And I was boohooing, boohooing, and Don thought Id had a wreck, because of the way I was. And I told him, when I got in there, I said, I am never, ever driving again! I just was so afraid that I would hurt or kill someone if I, you know, if I caused a wreck, and I just, I couldnt do that. I just couldnt do that. Id rather give up driving than do that.

Reema: Doris went to her eye doctor and learned that she had macular degeneration, which is a common eye disease among older people. It causes the center of your vision to be blurry.

There was good news and bad news: The good news was that she could treat the condition with injections, and that should stop her vision from getting too much worse. With her social security benefits, those injections would cost 200 dollars a month, which seemed more than worth it. The bad news was that her vision would probably never be the same again.

So Doris started getting those injections each month. The idea of a needle in her eye sounded terrifying at first, but she quickly got used to it.

Life went on like that for a while. Don helped Doris as much as he could. Doris could no longer read the small print in her music or her recipes, so Don would type them up for her in bigger fonts.

Don: I mean, I was always on the computer doing something, you know, so I just typed the words for her or whatever that she needed as far as the recipes, didnt seem like that big a deal.

Reema: And then, suddenly, in 2016, the injections stopped working. The doctor told her, theres this other type of injection you can try. But instead of $200 a month, it would cost $2000 a month. Ten times as much. There was just no way they could afford it.

Don and Doris had just about lost hope, when a friend handed them a booklet. The print was small, and Doris couldnt read it, so Don read it aloud to her. It basically described a new technology: stem cells, that could cure all kinds of ailments. The idea was that you could take cells from a healthy part of the body and inject them into a damaged part of the body, and the healthy cells would help the damaged cells heal and regenerate.

Doris learned she could get stem cell injections in her eyes to restore her vision. The procedure would cost $8000 for both eyes.

Reema: At the time, what was $8000 like for you all?

Doris: Well, I, I just said to Don, We cant do it.

Reema: They were retired school teachers who didnt have even 8000 dollars in their savings account. But then, Doriss children had an idea: they insisted on setting up a GoFundMe for her.

Doris: My boys, my sons, they said, Mom, you need to get this, uh, done. You know, this would help you so much.

Reema: Doris had never heard of GoFundMe. She had never heard of stem cells, either. But she did want her vision back.

Im Reema Khrais and youre listening to This is Uncomfortable, a show about life and how money messes with it.

Youve probably heard stories before of people using crowdfunding for their healthcare when insurance wont cover it. Its hard to know how to feel about these stories. Like, on the one hand, its nice to think about people supporting the ones they love; and on the other hand, it paints a bleak picture of our healthcare system. Many Americans cant afford basic medical care.

Doris and her family didnt just have to go outside the traditional insurance system, but the traditional healthcare system too. Stem cells were this new, cutting edge technology. Like, what if they could help Doris drive again or play the piano without squinting?

When Doriss family set up a GoFundMe for her, she didnt expect much to come of it. She didnt realize how beloved she was in the community, how many people, how many former students would be eager to help her restore her vision. But that was just the beginning of the surprises.

Soon after Doriss family set up the GoFundMe, money started pouring in.

Doris: I think within a week maybe two weeks wasnt it, Don? At least a week that we had it. And I was shocked that we had that much.

Reema: Doris sent Don out to buy thank you cards for everyone who donated. They had enough money for the procedure. Doris was relieved.

At that point, they were confident that stem cell treatments were the way to go. Don had been doing a lot of research online about them. Trained doctors were responsible for developing and administering the procedure. Don and Doris had spoken to the doctors on the phone. They said, this is really safe because the injections are coming from your own body.

Don: We put it in your eye, and so, you know, nothing bads gonna happen. I mean, its just part of you going back into you.

Reema: There was a chance it wouldnt work, but that risk seemed more than worth it to Doris. She and Don had selected the stem cell business that was in the pamphlet they got. Their website talks about how they collect data from all over the world, how they have more than 100 clinics in the US alone, and how theyd carefully designed sterile surgical procedures.

Doris: It would either improve my sight or it would stay the same. Uh, which, when you think youre going blind, that sounds pretty good, you know?

Reema: Doris and Don lived in Florida at the time. The closest affiliated clinic was in another state. So they packed up the car and drove.

Doris: Is it 10 hours?

Reema: Thats a long drive.

Don: Uh, no, more like 6 or 7.

Doris: Its between 8 and 10.

View original post here:
The risks of unproven stem cell treatments - Marketplace

New 3D embryonic stem cell culture system sheds light on gastrulation mechanism – MRC Laboratory of Molecular Biology

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok

Follow this link:
New 3D embryonic stem cell culture system sheds light on gastrulation mechanism - MRC Laboratory of Molecular Biology

Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl … – Nature.com

Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184197 (2019).

Article CAS PubMed Google Scholar

Esser, C. & Rannug, A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 67, 259279 (2015).

Article CAS PubMed Google Scholar

Burbach, K. M., Poland, A. & Bradfield, C. A. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA 89, 81858189 (1992).

Article CAS PubMed PubMed Central Google Scholar

Ema, M. et al. cDNA cloning and structure of mouse putative Ah receptor. Biochem. Biophys. Res. Commun. 184, 246253 (1992).

Article CAS PubMed Google Scholar

Nebert, D. W. Aryl hydrocarbon receptor (AHR): pioneer member of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of sensors of foreign and endogenous signals. Prog. Lipid Res. 67, 3857 (2017).

Article CAS PubMed PubMed Central Google Scholar

Bersten, D. C., Sullivan, A. E., Peet, D. J. & Whitelaw, M. L. bHLH-PAS proteins in cancer. Nat. Rev. Cancer 13, 827841 (2013).

Article CAS PubMed Google Scholar

Gutierrez-Vazquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 1933 (2018).

Article CAS PubMed PubMed Central Google Scholar

Shinde, R. & McGaha, T. L. The aryl hydrocarbon receptor: connecting immunity to the microenvironment. Trends Immunol. 39, 10051020 (2018).

Article CAS PubMed PubMed Central Google Scholar

Murray, I. A. & Perdew, G. H. How Ah receptor ligand specificity became important in understanding its physiological function. Int. J. Mol. Sci. 21, 9614 (2020).

Article CAS PubMed PubMed Central Google Scholar

Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716724 (2018).

Article CAS PubMed Google Scholar

Chiaro, C. R., Patel, R. D., Marcus, C. B. & Perdew, G. H. Evidence for an aryl hydrocarbon receptor-mediated cytochrome p450 autoregulatory pathway. Mol. Pharmacol. 72, 13691379 (2007).

Article CAS PubMed Google Scholar

Rifkind, A. B. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab. Rev. 38, 291335 (2006).

Article CAS PubMed Google Scholar

Wei, Y. D., Bergander, L., Rannug, U. & Rannug, A. Regulation of CYP1A1 transcription via the metabolism of the tryptophan-derived 6-formylindolo[3,2-b]carbazole. Arch Biochem. Biophys. 383, 99107 (2000).

Article CAS PubMed Google Scholar

Wei, Y. D., Helleberg, H., Rannug, U. & Rannug, A. Rapid and transient induction of CYP1A1 gene expression in human cells by the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. Chem. Biol. Interact 110, 3955 (1998).

Article CAS PubMed Google Scholar

Heath-Pagliuso, S. et al. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37, 1150811515 (1998).

Article CAS PubMed Google Scholar

Mescher, M. & Haarmann-Stemmann, T. Modulation of CYP1A1 metabolism: from adverse health effects to chemoprevention and therapeutic options. Pharmacol. Ther. 187, 7187 (2018).

Article CAS PubMed Google Scholar

Mimura, J., Ema, M., Sogawa, K. & Fujii-Kuriyama, Y. Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev. 13, 2025 (1999).

Article CAS PubMed PubMed Central Google Scholar

MacPherson, L. et al. Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int. J. Mol. Sci. 15, 79397957 (2014).

Article PubMed PubMed Central Google Scholar

Stockinger, B., Shah, K. & Wincent, E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 18, 559570 (2021).

Article CAS PubMed PubMed Central Google Scholar

Ma, W. et al. Kynurenine produced by tryptophan 2,3-dioxygenase metabolism promotes glioma progression through an aryl hydrocarbon receptor-dependent signaling pathway. Cell Biol. Int. 46, 15771587 (2022).

Article CAS PubMed Google Scholar

Xiong, J. et al. Aryl hydrocarbon receptor mediates Jak2/STAT3 signaling for non-small cell lung cancer stem cell maintenance. Exp. Cell Res. 396, 112288 (2020).

Article CAS PubMed Google Scholar

Pan, Z. Y. et al. Activation and overexpression of the aryl hydrocarbon receptor contribute to cutaneous squamous cell carcinomas: an immunohistochemical study. Diagn Pathol. 13, 59 (2018).

Article PubMed PubMed Central Google Scholar

Mohamed, H. T. et al. Inflammatory breast cancer: activation of the aryl hydrocarbon receptor and its target CYP1B1 correlates closely with Wnt5a/b-beta-catenin signalling, the stem cell phenotype and disease progression. J. Adv. Res. 16, 7586 (2019).

Article CAS PubMed Google Scholar

Mian, C. et al. AHR over-expression in papillary thyroid carcinoma: clinical and molecular assessments in a series of Italian acromegalic patients with a long-term follow-up. PLoS One 9, e101560 (2014).

Article PubMed PubMed Central Google Scholar

To, K. K., Yu, L., Liu, S., Fu, J. & Cho, C. H. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol. Carcinog. 51, 449464 (2012).

Article CAS PubMed Google Scholar

Su, J. M., Lin, P., Wang, C. K. & Chang, H. Overexpression of cytochrome P450 1B1 in advanced non-small cell lung cancer: a potential therapeutic target. Anticancer Res. 29, 509515 (2009).

PubMed Google Scholar

Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 542, 242245 (2017).

Article CAS PubMed PubMed Central Google Scholar

Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353362 e355 (2018).

Article CAS PubMed PubMed Central Google Scholar

Murray, I. A., Patterson, A. D. & Perdew, G. H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat. Rev. Cancer 14, 801814 (2014).

Article CAS PubMed PubMed Central Google Scholar

Panda, S. K. et al. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity 56, 797812 e794 (2023).

Article CAS PubMed Google Scholar

Ly, M. et al. Diminished AHR signaling drives human acute myeloid leukemia stem cell maintenance. Cancer Res. 79, 57995811 (2019).

Article CAS PubMed Google Scholar

Singh, K. P. et al. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice. Stem Cells Dev. 23, 95106 (2014).

Article CAS PubMed Google Scholar

Singh, K. P., Wyman, A., Casado, F. L., Garrett, R. W. & Gasiewicz, T. A. Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells. Carcinogenesis 30, 1119 (2009).

Article CAS PubMed Google Scholar

Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197203 (2011).

Article CAS PubMed Google Scholar

Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586597 (2016).

Article CAS PubMed PubMed Central Google Scholar

Shinde, R. et al. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans. Nat. Immunol. 19, 571582 (2018).

Article CAS PubMed PubMed Central Google Scholar

Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying Aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837851 e810 (2020).

Article CAS PubMed PubMed Central Google Scholar

Granados, J. C. et al. AHR is a master regulator of diverse pathways in endogenous metabolism. Sci. Rep. 12, 16625 (2022).

Article PubMed PubMed Central Google Scholar

Cannon, A. S. et al. AhR activation leads to attenuation of murine autoimmune hepatitis: single-cell RNA-Seq analysis reveals unique immune cell phenotypes and gene expression changes in the liver. Front. Immunol. 13, 899609 (2022).

Article CAS PubMed PubMed Central Google Scholar

Dean, J. W. et al. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8(+) T cell differentiation and function. Cell Rep. 42, 111963 (2023).

Article CAS PubMed PubMed Central Google Scholar

Stinn, A., Furkert, J., Kaufmann, S. H. E., Moura-Alves, P. & Kolbe, M. Novel method for quantifying AhR-ligand binding affinities using microscale thermophoresis. Biosensors (Basel) 11, 60 (2021).

Article CAS PubMed Google Scholar

Finn, R. N. The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat Toxicol. 81, 337354 (2007).

Article CAS PubMed Google Scholar

Noda, S. et al. Gene expression of detoxifying enzymes in AhR and Nrf2 compound null mutant mouse. Biochem. Biophys. Res. Commun. 303, 105111 (2003).

Article CAS PubMed Google Scholar

Hannon, S. L. & Ding, X. Assessing cytochrome P450 function using genetically engineered mouse models. Adv. Pharmacol 95, 253284 (2022).

Article CAS PubMed PubMed Central Google Scholar

Degrelle, S. A., Ferecatu, I. & Fournier, T. Novel fluorescent and secreted transcriptional reporters for quantifying activity of the xenobiotic sensor aryl hydrocarbon receptor (AHR). Environ. Int. 169, 107545 (2022).

Article CAS PubMed Google Scholar

Jones, S. N., Jones, P. G., Ibarguen, H., Caskey, C. T. & Craigen, W. J. Induction of the Cyp1a-1 dioxin-responsive enhancer in transgenic mice. Nucleic Acids Res. 19, 65476551 (1991).

Article CAS PubMed PubMed Central Google Scholar

Campbell, S. J., Carlotti, F., Hall, P. A., Clark, A. J. & Wolf, C. R. Regulation of the CYP1A1 promoter in transgenic mice: an exquisitely sensitive on-off system for cell specific gene regulation. J. Cell Sci. 109, 26192625 (1996).

Article CAS PubMed Google Scholar

Galijatovic, A. et al. The human CYP1A1 gene is regulated in a developmental and tissue-specific fashion in transgenic mice. J. Biol. Chem. 279, 2396923976 (2004).

Article CAS PubMed Google Scholar

Operana, T. N., Nguyen, N., Chen, S., Beaton, D. & Tukey, R. H. Human CYP1A1GFP expression in transgenic mice serves as a biomarker for environmental toxicant exposure. Toxicol Sci. 95, 98107 (2007).

Article CAS PubMed Google Scholar

Van de Pette, M. et al. Visualizing changes in Cdkn1c expression links early-life adversity to imprint Mis-regulation in adults. Cell Rep. 18, 10901099 (2017).

Article PubMed PubMed Central Google Scholar

Read more:
Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl ... - Nature.com

Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction … – Nature.com

Single-cell map of epithelial lineage development at the GE-SCJ

The adult human esophageal mucosa is lined with stratified squamous epithelium that meets the columnar epithelium-lined stomach at the GE-SCJ (Fig.1a). Whereas in the mouse, the esophagus opens into the stomach that comprises two regions- a stratified squamous epithelium-lined fore-stomach similar to the esophagus and columnar epithelium-lined stomach (Fig.1a). To study the developmental process and the evolution of cellular features during GE-SCJ histogenesis, we carried out single-cell transcriptome analyses of the esophagus, GE-SCJ, and stomach tissue samples obtained from embryonic day 15 (E15), E19, newborn (pup), and adult mice. Although we expected tissue level changes during the different developmental stages of GE-SCJ, the nature of transcriptional shifts, regulatory mechanisms, and the intermediate cell types during the temporal development and GE-SCJ histogenesis is unknown. Towards this, scRNA-seq data offer a vital input source for unambiguously identifying an individual cell (or cell group) based on their transcriptional states. The uniform manifold approximation and projection (UMAP) distribution of the generated time course single-cell transcriptomes showed a clear separation of cells by developmental time at pre- and postnatal stages (Supplementary Fig.1a). We performed unsupervised clustering and annotated based on the expression of known lineage signatures and cell type markers. This analysis revealed the presence of squamous and columnar epithelial, stromal, endothelial, immune, and neural cell populations (Fig. 1b, Supplementary Fig.1b). UMAP sub-clustering of epithelial cells revealed transcriptionally distinct clusters separated based on squamous and columnar lineages and reflecting their developmental state (Fig.1c). Since esophageal epithelium at GE-SCJ is predisposed to replacement with non-resident metaplastic epithelium16,17, we first focused on understanding the temporal evolution and establishment of epithelial lineages at the GE-SCJ during development (Fig.1d). To identify precursor cells of squamous and columnar epithelial lineages at the GE-SCJ, pseudotime analysis using scRNA seq data was performed by reconstructing branching developmental trajectories using diffusion maps. This analysis revealed two different lineages branching out from the embryonic epithelial cells at the center from the E15 and E19 stages (Fig.1e).

a Schematic of human and mouse adult esophagus and stomach anatomy, including GE-SCJ. b UMAP of scRNA-seq data of esophagus, GE-SCJ, and stomach from embryonic day 15 (E15), E19, pup, and adult mice showing six distinct cellular clusters; dots represent single cells, colored by cell types. c UMAP of epithelial cells, color-coded by tissue type and time point. d UMAP of GE-SCJ epithelial, colored by time point. e Diffusion map (DM) illustrates the branching differentiation of GE-SCJ epithelial cells. f Heatmap of differentially expressed genes (DEGs) across subclusters, with cells ordered by developmental trajectory as in (e). g Normalized expression of selected markers, visualized by DM projection as in (e). h Violin plots show expression levels of specific genes across tissues and stages. i smRNA-ISH and immunostaining images of mouse GE-SCJ with Sox11 (white), KRT5 (green), KRT8 (red), and nuclei (blue). j Immunostained images of the mouse stomach, including distal esophagus with KRT5 (green), KRT7 (Red), P63 (white), and nuclei (blue). Magnified view of the boxed GE-SCJ region (Right panel). Sq, Co, PR, Es, Fs, and Hs indicate squamous epithelia, columnar epithelia, precursor cell region, esophagus, forestomach, and hind stomach. Images are representative of three biological replicates in (ij). k Dendrogram from URD trajectory analysis of GE-SCJ epithelial cells; each dot represents a single cell, colored by time point. Cells are ordered based on pseudotime values, starting from early at the top to late at the bottom of the tree. l, m UMAP of re-clustered GE-SCJ epithelial subpopulation positive for all selected embryonic markers (Vcan, Igf2, Sox11, and H19), colored by time point (l) and lineage type (m). np Joint gene-weighted density estimation of columnar (n), precursor (o), and squamous (p) epithelia. q Bar plot of epithelial types relative proportion at GE-SCJ by time point. r UMAP showing epithelial subclusters in combined GE-SCJ cells from E15 to adult, colored by cluster. s Sankey plot representing the contribution of epithelial cells from each time point to the combined GE-SCJ epithelial subclusters, as shown in (r).

Differential expression analysis across GE-SCJ epithelial cell clusters unraveled the gene expression signature associated with embryonic precursor epithelial cells (Sox11, Igf2, H19, Cldn6, Vcan, and Bex1)18,19,20,21,22,23,24 committing to either the squamous (Trp63, Col17a1, Krt5, Krt15, Krt13, Lgals7) or columnar (Muc5b, Furin, Pgc, Muc6, Agr2) epithelial lineages (Fig.1f, g, and Supplementary Data2). Next, we analyzed the absolute expression of embryonic precursor, squamous, and columnar epithelial marker genes in the GE-SCJ region across all time points (Fig.1h). We found that cells expressing embryonic precursor-associated gene signatures were lost in the postnatal stages (Fig.1h, i, Supplementary Fig.2a, b). However, expression of Krt7, previously described as an exclusive marker for the residual embryonic epithelial cell at adult GE-SCJ and implicated in BE development25,26 was observed to be expressed in cells across all the time points (Fig.1h). These observations were further clarified by immunohistochemistry (IHC) and/or single-molecule RNA in situ hybridization (smRNA-ISH) for KRT5, P63, and KRT7 (Fig.1j, Supplementary Fig.2cf). All the epithelial cells lining E13 mucosa express KRT7. However, these KRT7 cells in the esophagus and foregut region differentiate into P63+KRT5+ cells and show reduced KRT7 expression during squamous stratification. Eventually, KRT7high cells positioned above the P63+KRT5+ squamous epithelial cells in the esophagus and forestomach sloughed off during the E19 stage, thus visibly demarcating the KRT7low squamous and KRT7high columnar epithelial regions of the esophagus and stomach respectively in the adult stage (Fig.1j, Supplementary Fig.2cf). This data shows that in the adult GE-SCJ mucosa, the columnar and squamous epithelial cells express distinct gene signatures from embryonic epithelium, indicating lineage commitment of these epithelial cells. The tree diagram delineated the epithelial differentiation steps by ordering cells based on their pseudotime values, starting from the early embryonic cells that branch into late squamous (Sq3) and columnar epithelial cells (Gland base and pit) (Fig. 1k). To identify early differentiation events, we extracted the early embryonic cell population and performed re-clustering. This revealed the presence of three subclusters within them, showing higher expression of aforementioned lineage-specific markers for squamous, columnar, and precursor populations (Fig.1lp, Supplementary Fig.1c, d). The cell proportion graph further substantiates our findings that the precursor cell population was only present in the embryonic epithelial cells (at E15 and E19) and, to a very less extent, in the pup but not in the adult stage. (Fig.1q). Similarly, the precursor cell population was restricted to embryonic stages in the esophagus and stomach epithelia (Supplementary Fig.1eg). Next, to understand the overall GE-SCJ epithelial characteristics, we performed combined clustering of GE-SCJ cells from all time points, revealing nine subpopulations (Jn_1 9) together with the projected precursor cell population that were either shared or unique during different developmental stages (Fig.1r). Sankey analysis showed that the precursor cell population was majorly contributed by E15 epithelial cells. In contrast, the postnatal epithelial cells majorly contributed to Jn-36 and 8-9 clusters (Fig.1s).

Corroborating to scRNA seq data in Fig.1, we observed that the adult GE-SCJ comprises two epithelial lineages, namelysquamous and columnar, each characterized by lineage-specific gene expression patterns. Similar to P63+KRT5+ and KRT7high expression pattern (Fig.1j, Supplementary Fig.2cf), we observed that KRT8+ cells from the E13 stage differentiate to P63+KRT5+ squamous and KRT8high columnar epithelia during GE-SCJ development eventually defining the adult GE-SCJ (Fig.2ac, Supplementary Fig.3ac). Furthermore, the smRNA-ISH analysis confirmed that Krt5 and Krt8 mRNA are specifically expressed in the adult esophagus and stomach epithelial cells, respectively (Supplementary Fig.3d, e). Next, by inducing lineage tracing in Krt5-CreERT2; Rosa26-tdTomato and Krt8-CreERT2; Rosa26-tdTomato mice (Fig.2d), we confirmed that the Krt5 cells regenerate squamous epithelium of esophagus and Krt8 cells regenerate columnar epithelium of the stomach that meet at GE-SCJ (Fig.2e, f).

ac Tiled images of the entire stomach, including distal esophagus of E13, E16, and E19 mice (a); GE-SCJ of the adult mouse (b) and human (c) immunostained with KRT5 (green), KRT8 (Red), P63 (white), and nuclei (blue). A magnified view of the boxed GE-SCJ regions (right panel) (a). df Treatment scheme for lineage tracing of mice (d) and tiled images of GE-SCJ tissue sections from Krt5-CreERT2; Rosa26-tdTomato (e) or Krt8-CreERT2; Rosa26-tdTomato (f). Nuclei (blue). The white dotted line indicates the basal cells of squamous epithelia at GE-SCJ. g UMAP of esophagus and stomach epithelia (excluding GE-SCJ); cells color-coded by time point. h, i URD differentiation tree of the esophagus (h) and stomach (i) epithelial population; each dot represents a single cell, colored by cell type. Cells ordered based on pseudotime values starting from early (top) to late (bottom). j Circular dendrogram indicating the similarity between epithelial cell clusters as in (h, i) from both tissue types at different time points; Font color indicates time point and tissue type. k Heatmap showing top 20 DEG across esophagus and stomach epithelial stem cell compartments from the embryonic to adult time points; color bar denotes the z-scored mean expression range from high (deep pink) to low (blue). l Heatmap of 20 most variable transcription factors (TF) across epithelial stem cell compartments. The color bar depicts the scaled TF activity scores from high (deep pink) to low (blue). m Confocal images of the mouse GE-SCJ immunostained with CDH1 (green), GATA6 (red), SOX2 (white), and nuclei (blue). Sq, Co, Es, Fs, Hs indicate squamous epithelia, columnar epithelia, esophagus, forestomach, and hind stomach, respectively (ac, e, f, m). Images are representative of three biological replicates in (ac, e, f, m).

Next, we dissected the cell-type specification and subcellular differentiation within squamous and columnar lineage from the scRNA-seq data of E15, E19, pup, and adult esophagus and stomach samples. We clustered epithelial cells from the esophagus and stomach at individual time points separately (Supplementary Fig.3f, g). E15 and E19 esophagus contains early basalstem-like epithelial sub-clusters (Sq1, Sq2), which exhibited higher expression of embryonic developmental genes such as Sox11, Vcan, and Fras1. Whereas the actual higher-order differentiation of epithelial cells was observed in postnatal tissues starting from the pup stage (Sq1A, Sq1B, Sq2A, Sq2B, Sq2C, Sq3). Sq1 represented the basal cell population with a remarkably higher expression of Trp63, Krt5, and Col17a1. Sq2 was positive for parabasal markers like Jun and Fosb, while Sq3 was positive for differentiation markers such as Krt13, Lor, and Spink5 (Supplementary Figs.3f, 4a, c). In the case of the stomach, at E15, all the epithelial cells show high proliferation and expression of embryonic developmental markers. However, two subgroups of cells showed relatively low expression of proliferation (Mki67, Top2a) and developmental (Vcan) markers, indicating the onset of differentiation of these early epithelial cells into other cell types (Neck-like and Pit-like). The presence of epithelial cell types defining the stomach gland region was evident only from E19, which contains cells expressing Lgr5, Axin2, Chga (Base), Atp4a, Muc6 (Neck), Stmn1, Mki67 (Isthmus), Gkn2, Tff1 (Pit) genes (Supplementary Figs.3g, 4b, d). Cell type proportion analysis across both samples at pre- and postnatal stages showed that early embryonic columnar epithelial cells were present only in the E15 and E19 stomach samples. However, in the case of the esophagus, the basal squamous epithelium was shared at all the time points in opposition to differentiated cells that were present only during postnatal time points (Supplementary Fig.4e). Combined clustering of epithelial cells from both esophagus and stomach across all time points revealed that the clustering of cells was not only driven by cell type but was also influenced by tissue type and developmental stages (Fig.2g).

Pseudotime analysis of esophagus epithelial cells showed linear trajectory starting from E15, branched into two trajectories leading to differentiated states of i) E19 (Sq2) and pup (Sq2c) and ii) adult (Sq1-3) (Fig.2h). Whereas, in the stomach, we recovered a branching tree which clearly showed the ordering of cells from embryonic to adult time points with cells from base region confined separately from cells that belong to neck and pit regions (Fig.2i). Additionally, in the rightmost branch of the trajectory, a combination of cells mostly from E15, E19 and few from pup time points exhibited expression of early embryonic markers like Sox11, Vcan, while differentiated cells such as Chga and Muc5ac were found in the left trajectories mainly in pup and adult states (Supplementary Fig.4f-i). Since scRNA-seq data represents the cells transcriptome at a given time, it is inferred that the embryonic differentiated cells (neck-like and pit-like), which are distinct from the differentiated adult cells on the rightmost branch, could indicate transient states and may differentiate to the adult type or likely shed off during development. Dendrogram analysis of identified cell types within the esophagus and stomach from all time points also confirmed that squamous and columnar epithelial cells were transcriptionally dissimilar (Fig.2j). In the esophagus, basal and parabasal cells occupy separate subbranches, while highly differentiated cells (Sq2C-Pup and Sq3-Adult) appeared in a distinct subbranch, revealing transcriptional distinction between these cell types. Similarly, in the stomach, epithelial cells from the adult time point formed a separate branch, emphasizing the well-developed glandular units comprising complex cell types distinct from earlier developmental time points.

To understand the transcriptional difference and essential regulators underlying precursor cell population and stem cell compartment of the lineage-committed esophagus and stomach epithelia, we performed differential expression (DE) and transcription factors (TF) activity analysis (Fig.2k, l, and Supplementary Data3, 4). DE analysis showed some transcriptional similarity of precursor cell population with embryonic stem cell compartment. However, no similarity was observed with the postnatal stem cell compartment (Fig.2k, and Supplementary Data3). We computed TF activities based on the expression levels of their target genes. TF-target interactions were sourced from curated evidence with high confidence levels using DoRothEA27. This analysis revealed an overlap of cell cycle-related genes between the precursor cell population and the early-stage stem cell compartment, correlating to the higher proliferation. Columnar lineage stem cells of the stomach were enriched for the TF activities of Gata6, Foxa1/2, and Hnf4a28,29,30, which were also enriched but at a lower extent in the precursor cell population, suggesting the shared identity of columnar stem cells and precursor cells. Squamous lineage-defining Trp63, Sox2, and Klf531 genes are only expressed in the esophageal epithelial cells. SOX2 expression was confirmed to be high in the squamous epithelium, aligning with previous findings32, and GATA6 was highly expressed in the columnar lineage at the GE-SCJ (Fig.2m, Supplementary Fig.S4j). GATA6 expression was confined specifically to the lower part of the stomach gland, suggesting that it might play a role in columnar stem cell maintenance and differentiation that needs to be further elucidated. In line with this, other studies have shown that GATA6 regulates intestinal epithelial proliferation, lineage maturation, and BMP repression33,34,35. Further, TFs such as Nanog, Tead1, Prdm14, Pax536,37 activity were enriched in the early-stage squamous epithelium and specific cell states of columnar epithelia (Fig.2l, and Supplementary Data4). However, their mechanistic role in lineage commitment within the squamous and columnar epithelia is unclear and an avenue for future research. Thus, this study provides the temporal landscape of the TF activity of epithelial stem cells during GE-SCJ development.

To gain insights into the heterogeneity of the stromal fibroblast population, which shapes epithelial morphogenesis, we analyzed stromal cells from the pre- and postnatal esophagus, stomach, and GE-SCJ tissue regions. As a result, we identified a clear separation of stromal clusters according to pre- and postnatal developmental stages (Supplementary Fig.5a, b). Next, to elucidate the pivotal role of underlying fibroblasts in steering the development of distinct squamous and columnar epithelia, we focused on the esophagus and stomach fibroblast cells, excluding the GE-SCJ, as it is a blend of the esophagus and stomach stromal niche (Fig. 3a). Unsupervised clustering of combined-fibroblast (C-FB) population revealed 16 transcriptionally distinct cellular subsets segregated based on tissue region and time points (Fig.3b, Supplementary Fig.5c). Euclidean distance measurement showed that fibroblast subpopulations from the embryonic stage grouped together and are distinct from the postnatal stromal clusters. Thus, pre- and postnatal fibroblasts possess distinct transcriptional properties (Fig.3c). These subclusters were grouped into 4 major types based on the cells transcriptional state similarity (Fig.3d). Group-1 includes C-FB1, C-FB11, and C-FB15 consisting of cells from all the time points, represented by smooth muscle cells that highly expressed Acta2, Myh11, Tagln (Fig.3a, d, f, Supplementary Data5). Groups 2 and 3 expressed fibroblast marker genes (Col1a1, Col3a1, Dcn, Lum, Postn) segregated into embryonic and adult fibroblasts, respectively38. Group 4 type fibroblasts (C-FB7) expressed muscle cell phenotypic markers such as Acta1, Tnnt3, and Mb and formed a distinct cluster (Fig.3d, f Supplementary Data5). Validation of ACTA2 and POSTN proteins in mouse E19 and Adult GE-SCJ showed the presence of two distinct Group1 and Group 2-3 fibroblast populations (Fig.3e, Supplementary Fig.6a, b). Among Group 2 and 3 fibroblast clusters, C-FB2-4, 10, and 16 enriched for the collagen-related genes, suggesting their role in establishing mechanical structure during development. C-FB9 is highly enriched for the proliferation marker genes Mki67, Top2a, and Stmn1, suggesting a putative fibroblast precursor cell population in the embryonic stage. C-FB6 and C-FB8 derived from the postnatal tissue enriched for the Wingless-related integration site (WNT) inhibitor genes Dkk2 and Sfrp4, indicating their role in the WNT signal modulation. The C-FB12 cluster expressed Rgs5 and Fn1, previously characterized as pericyte-like cells39. C-FB13 exhibited strong expression of Bmp4, Ptch1 which mediates key signaling pathways like Bone Morphogenetic Proteins (BMP) and Sonic Hedgehog (SHH), indicating a potential role in the epithelial morphogenesis during development40,41 (Fig.3d, f, Supplementary Data5). We further identified the transcriptional signatures of fibroblasts specific to tissue regions (esophagus or stomach specific) and developmental stages with few markers shared over time for both esophagus and stomach (Fig.3a, f, Supplementary Fig.5d, f, Supplementary Data5). The Sankey analysis highlighted the shared (C-FB2, 5, 8, 9, 14, 15, 16) or mutually exclusive (C-FB1, 3, 4, 6 for esophagus and C-FB10, 11, 12, 13 for stomach) cluster contributions of different stromal cell sub-types across the tissue during development (Fig.3g, h). Similarly, we individually examined the distribution and heterogeneity of fibroblast types within the esophagus and stomach at all time points. We observed a clear separation of the fibroblast population between the pre- and postnatal stages, while some fibroblast states were shared across the developmental stages (Supplementary Fig.5gl).

a, b UMAP of combined fibroblast (C-FB) cell clusters from esophagus and stomach samples; colored by tissue type and time point (a) in shades of green and magenta, respectively, and cluster annotation (b). c, d Dendrograms highlighting the similarity between fibroblast cell clusters from esophageal and stomach tissue types at different time points (c) and at annotated cluster levels (d); font color denotes subclusters as in figures (a, b), respectively. e Tiled images of mouse esophagus, GE-SCJ, and stomach tissue sections from E19 and adult stages immunostained with CDH1 (green), POSTN (red), and ACTA2 (white) and nuclei (blue). Images are representative of three biological replicates. Sq, Co indicates squamous and columnar epithelia, respectively. f Heatmap of top 20 DEG across fibroblast subclusters as in (b) and subclusters were grouped as in (d); Color bar denotes the z-scored mean expression values ranging from high (deep pink) to low (blue). g, h Sankey plots highlighting the contribution of fibroblast cells from the esophagus (g) and stomach (h) samples at each time point to the subclusters, as shown in (b).

Our previous study14 shows that Wnt signaling between epithelia and stromal microenvironment plays a crucial role in dictating lineage specification. Here, we observed that Rspo3, a key WNT signaling agonist known for regulating stem cell regeneration42, was expressed by a subset of fibroblasts in both esophagus and stomach (Fig.4a, cf). Interestingly, the proximity of Rspo3 signals to the epithelial stem cell compartment of the esophagus and stomach differed. The average distance of the Rspo3 signals to the epithelia is greater in the esophagus than in the stomach (Fig.4df). On the contrary, Dkk2, a WNT inhibitory morphogen43,44, was strongly expressed in the fibroblasts and smooth muscle cells of the esophagus with relatively low expression in the stomach (Fig.4b, c, gi and Supplementary Data6). Further, expression of Kremen1, a receptor of DKK244, is observed only in the esophageal epithelial cells (Fig.4m), suggesting the establishment of the WNT inhibitory microenvironment in the esophagus. Further lineage tracing of canonical WNT signaling target gene Axin245 in mice confirmed that esophageal epithelial cells were negative for AXIN2 lineage. In contrast, the AXIN2+ cells labeled the columnar epithelium of the stomach gland (Fig.4n, o, Supplementary Fig.6c). This observation was further confirmed by smRNA-ISH for Lgr5 and Axin2 in adult mice (Supplementary Fig.6dg). Together, the data revealed that the fibroblast compartment evolves concordant to the temporal development of GE-SCJ from embryonic to adult stages. The distinct sub-cell types of fibroblasts underlying the esophagus and stomach epithelia have a unique spatial organization and secrete unique location-specific morphogens. We show that the spatially defined distinct WNT fibroblast microenvironment underlying the columnar and squamous epithelia that meet at GE-SCJ plays a vital role in determining the adult GE-SCJ borders.

a, b Feature plots showing normalized expression levels of markers Rspo3 (a) and Dkk2 (b) within fibroblast cells. c Trend plots depict the changes associated with mean expression levels of the selected markers over time, as in (a, b). Line color denotes genes, and point shapes represent tissue type. di smRNA-ISH images of the WNT pathway genes Rspo3 (d) and Dkk2 (g) in the mouse esophagus tissue (i), GE-SCJ (ii), and stomach glands (iii). Nuclei (blue). Quantification of Rspo3 (e) and Dkk2 (h) signal counts in epithelia (Ep), stroma (St), and myofibroblast (My) in the mouse GE-SCJ tissue regions and distance (m) from epithelia to Rspo3 (f) and Dkk2 (i) signal. Data are mean+/-SEM (e, f, and h, i). n=number of signal count and their distance to epithelia (f, i) from three non-overlapping 100m2 regions of esophagus and stomach tissues. jl Confocal images of adult mouse esophagus and stomach tissue sections immunostained for CDH1 (green), POSTN (red), and ACTA2 (red) and smRNA-ISH for Rspo3 (white), Dkk2 (white) and Sfrp4 (white) as indicated. m Violin plot showing the normalized gene expression values of Lrp6 and Kremen1 from embryonic to adult time points at different tissue regions. n Scheme for lineage tracing of mice expressing Axin2-CreERT2/Rosa26-tdTomato. o Tiled images of GE-SCJ sections from Axin2-CreERT2/Rosa26-tdTomato mice co-immunostained for KRT5 (green), AXIN2 lineage traced cells marked by Tdtomato (red), and nuclei (blue). Sq, Co indicates squamous and columnar epithelia, respectively. Images are representative of three biological replicates in (d, g, jl, o). For (e, f, and h, i), source data are provided as a Source Data file.

Based on the above-observed distribution of WNT signals in the fibroblasts (Fig.4ao, Supplementary Fig.6ce), we tested the role of WNT signaling in stemness and regeneration by establishing stomach and esophageal epithelial organoids. Mouse esophageal stem cells grew into mature squamous stratified esophageal epithelial organoids in the presence and absence of WNT3a and RSPO1 (W/R) (Fig.5a). However, they lost the stemness and growth capacity over a few passages in the presence of W/R (Fig.5a, b, e, f). Consistently, patient-derived esophageal cells fail to form organoids in the presence of W/R, while their absence supports the growth and differentiation into mature stratified epithelium (Fig.5c, d). This is in contrast to previous studies that showed the culture of esophageal organoids with either the Wnt agonist R-Spondin alone6 or in combination with a Wnt ligand46, suggesting that Wnt signaling is dispensable for the esophageal organoid formation.

ad Bright-field images of the mouse (a, b) and human (c, d) esophageal and stomach organoids grown in the presence or absence of WNT3A (W) and R-spondin1 (R). b, d Higher magnification of (a, c). e, f Percentage of organoid formation (e) and long-term passaging (f) from esophagus and stomach under indicated conditions and passages (P); data derived from two biological replicates (n=2). # indicates organoids can be passaged beyond the stated number. g, h Images of mouse esophageal and stomach organoid immunolabeled for KRT5 (green), KRT7 (Red), P63 (white), KRT8 (Red), nuclei (blue). i, j Organoid diameter measurement from mouse esophagus (i) and stomach (j) grown in indicated media. n=number of organoids measured. Data are representative of three biological replicates. Data are mean+/-SEM; statistical significance was calculated using a two-sided t-test, P-values as indicated. k, l Bright-field (k) and confocal images showing KRT5 (green), KRT8 (red), MUC5AC (white), and nuclei in blue (l). m, n smRNA-ISH images of Lgr5 (m) and Axin2 (n) in mouse esophagus (i) and stomach organoids with inset images (ii). Lgr5-highlighted in arrowhead (m-ii). oq Scheme for lineage tracing of mice (o). Organoids cultured from cells lineage traced for KRT5 (p) and KRT8 (q) in indicated media. r UMAP showing cellular subclusters of esophageal and stomach epithelial organoids. Cells colored by cluster (ST, stomach; ES, esophagus; Co, Columnar epithelia; Sq, squamous epithelia). s Pseudotime trajectories in esophagus epithelial subclusters. tv Dot plot depicting relative gene expression for stomach (t) and esophagus (u) epithelial subclusters for canonical and non-canonical WNT pathway (v). Circle size denotes percentage of cells expressing a gene; color represents the scaled mean expression level from high (red) to low (blue) (tv). w, x Images of human tissue (upper panel) and mouse esophagus organoids (lower panel), immunostained for KRT17 (yellow), JUN (red), KRT6 (red), CDH1 (green) and nuclei (blue). Images are representative of three biological replicates in (ad, g-h, kn, p-q, w-x). For (e, f, and i, j), source data is provided as a Source Data file.

In contrast to the esophagus, and in agreement with previous studies47,48, W/R conditioned media was essential for stomach columnar epithelial organoid growth (Fig.5af). Cultured organoids maintained in vivo epithelial lineage specificity and morphology of esophagus (P63+KRT5+) and stomach (KRT8high, KRT7high), respectively (Figs.2ac, 5g, h, Supplementary Fig.3a-c). A stem cell marker of the stomach, Lgr5, and WNT target genes Axin2 were absent in esophagus organoids (Fig.5m, n). Further, inhibition of endogenous WNT signaling by pan canonical and non-canonical WNT secretion inhibitor IWP2 did not influence the growth of esophageal organoids but reduced the stomach organoid growth and accelerated its differentiation with high expression of MUC5AC (Fig.5il).

Next, we asked if these distinct epithelial stem cell lineages possess the plasticity to transdifferentiate with altering WNT growth factors. For this, epithelial cells from the esophagus and stomach were isolated from induced Krt5-CreERT2;Rosa26-tdTomato and Krt8-CreERT2;Rosa26-tdTomato mice, and cultured as organoids in the presence or absence of W/R media (Fig.5oq). Irrespective of the presence or absence of W/R esophageal stratified organoids from Krt5-CreERT2;Rosa26-tdTomato mice were found to be labeled, whereas matched stomach columnar organoids were not (Fig.5p). Similarly, stomach columnar organoids from Krt8-Cre;Rosa26-tdTomato mice were found to be labeled, whereas matched esophageal stratified organoids were not labeled (Fig.5q). Thus, the adult GE-SCJ consists of two committed squamous and columnar epithelial stem cells that do not transdifferentiate with the change in the WNT microenvironment. Instead, spatial WNT signaling factors play a critical role in the differential proliferation of stratified and columnar epithelia, maintaining the homeostasis of the GE-SCJ.

Further, global transcriptomic and scRNA seq analysis of the esophageal and stomach organoids corroborated the single-cell transcriptional signatures of the in vivo epithelial tissue. Microarray analysis revealed that among 34393 unique probes, encompassing protein-coding genes and long non-coding RNAs, 8030 genes were differentially regulated between columnar and squamous epithelium (Supplementary Fig.7a, Supplementary Data7). Gene ontology terms associated with the differentially expressed genes between the esophagus and stomach organoids showed enrichment of distinct pathways specific to the epithelial types (Supplementary Fig.7b and Supplementary Data8). Pathways related to epidermal cell development, keratinocyte differentiation, transcription and translation, and regulation of cell-cell adhesion were highly enriched in the esophageal epithelial cells. In the stomach epithelial cells, metabolic and catabolic processes related to lipids, fatty acids, and ion transport were enriched. While WNT signaling was critical in regulating GE-SCJ homeostasis, our analysis revealed that columnar epithelial cells were enriched for the canonical WNT beta-catenin and non-canonical WNT/Ca2+ pathway genes. In contrast, squamous epithelial cells were enriched for the non-canonical WNT/planar cell polarity (PCP) pathway genes (Supplementary Fig.7c).

Further, scRNA seq analysis revealed the heterogeneity and subcellular composition of columnar and squamous epithelial cells of gastroesophageal organoids. We categorized cells from stomach (ST) organoids into two major clusters (ST-Co1, ST-Co2 and the squamous epithelial cells of esophageal (ES) organoids were segregated into five unique clusters (Sq1, Sq2A, Sq2B, Sq3A and Sq3B) (Fig.5r). The UMAP recapitulates the differentiation stages of the columnar stomach and stratified esophageal epithelial cells. The ST-Co1 subcluster was enriched for the expression of well-known stomach stem cell markers Lgr5, Aqp5, and Axin2 with high levels of Pgc, Muc6, Gkn3, and Atp4a expression, which are key markers of cells present in the neck and isthmus region. These cells also expressed high levels of proliferation markers, including Mki67, Pcna, Top2a, and Stmn1. The second subcluster, ST-Co2, comprises mostly pit cells of the stomach gland, which expressed high levels of Gkn1, Gkn2, and Tff1 (Fig.5r, t). The esophageal subcluster Sq1 expressed Col7a1, Timm9, Trp63, Stmn1, and Krt17, representing the stratified epitheliums basal cells. The Sq2A subcluster consists of transient proliferating cells expressing Mki67, Top2a, Pcna, Fau, Gstm1, Jun, and Upk3bl. The subcluster Sq2B was enriched for Atf3, Cav1, Ybx1, Cald1, and Sox4, while Sq3A and Sq3B subclusters exhibited differentiation-associated gene markers such as Rhov, Krt6a, Krt13, Anxa1, Tgm1, Spink5, Gsta5, Sprr3 and Elf5 (Fig.5r, u, Supplementary Fig.7dg). Similar to our bulk transcriptomic data (Supplementary Fig.7c), we further identified the distinct expression patterns of the canonical and non-canonical WNT signaling genes in subpopulations of the columnar and esophageal epithelium from the scRNA seq data (Fig.5v).

Since little is known about the esophageal epithelial differentiation trajectories in vitro, we performed a pseudo-temporal reconstruction of the lineage using slingshot49. We show two distinct trajectories, all originating from the basal stem cell compartment of Sq1, differentiating into distinct sub-lineages Sq2 and Sq3 (Fig.5s). Further, by immunostaining, we spatially located the cell types in scRNA seq data that express KRT17, JUN, and KRT6 in human and mouse tissue and organoids, revealing three major subtypes, KRT17+/JUN- basal stem cells KRT17+/JUN+ parabasal cells and KRT6+ differentiated cells (Fig.5wx). Thus, organoids reflect the in vivo epithelial heterogeneity and illustrate the differential impact of WNT signaling on gastroesophageal epithelial stem cell regeneration and differentiation dynamics.

Our approach by employing tissue and organoid models and transcriptome analyses at both global and single-cell levels indicated that the spatial signaling factors are crucial in dictating the squamocolumnar epithelial homeostasis in GE-SCJ. Hence, to gain insights into the pathways and uncover the molecular regulatory networks between epithelial and fibroblast cell populations during GE-SCJ development, we performed gene set enrichment analysis (GSEA) using scRNA-seq data. We identified key signaling pathways differentially enriched between tissue types and time points (Fig.6a, and Supplementary Data9). Pathways such as bile acid and fatty acid metabolism were enriched in the stomach epithelia. While MYC target genes were enriched in esophagus and stomach epithelia, they gradually decreased towards the adult stage, suggesting an overall reduction in cell proliferation as higher-order differentiation proceeded with development. Interestingly, stroma from both esophagus and stomach exhibited strong enrichment for PI3K- FGFR1 cascade, Platelet-Derived Growth Factor (PDGF) signaling, and myogenesis. The hallmark of inflammatory response was more upregulated in both adult tissue stromal regions, and the hallmark of complement was highly enriched in the esophagus stromal cells, suggesting the presence of activated fibroblast50.

a Heatmap of gene set enrichment scores of fibroblasts and epithelial cells of esophagus and stomach from embryonic to adult time points with specific pathways highlighted; column represents individual cells colored by tissue type and time point; colors in the scale bar denotes the z-scored enrichment values ranging from high (deep pink) to low (blue). b, c Heatmap comparing the overall (aggregated both incoming and outgoing) signaling patterns associated with both fibroblast and epithelial compartments in the esophagus (b) and stomach (c) between E19 and adult time points. The color bar denotes the relative signaling strength (row-scaled values) of a pathway across cell types and time points. The relative strength of a pathway is calculated by normalizing each row of values to fall within the range 0-1 and depicted as low (white) to high (dark brown). Colored bar plot on top depicts the total signaling strength of a particular cell type by summarizing all pathways in the heatmap. d Dot plot showing the expression levels of ligands, receptors, and modulators associated with key signaling pathways in both fibroblasts and the epithelial subpopulation of esophagus and stomach at E19 and adult stages. Dot size represents the percentage of cells expressing a particular gene; the color bar indicates the intensity of scaled mean expression levels ranging from high (red) to low (blue). Genes are color-coded based on the signaling pathways to which they belong.

However, the enrichment results did not reveal information regarding the directionality and temporal dynamics of these signaling pathways. Therefore, we scrutinized for alterations in signaling patterns and their strengths between embryonic and adult stages using comparative CellChat51 analysis. In order to mitigate the complexity of cellular interactions and their interpretation, we designated E19 and adult mice as representatives for the pre- and postnatal stages, respectively, and were used for the interaction study. We found that many pathways, such as Laminin and FN1, were enriched during both the pre- and postnatal stages of the esophagus, while pathways including MK, NCAM, and VCAM were more enriched in the prenatal esophagus; Transforming Growth Factor Beta (TGF-), Fibroblast Growth Factor (FGF), and Chemokine (C-X-C motif) Ligand (CXCL) were more enriched in the postnatal esophagus (Supplementary Fig.8a). Interestingly, in case of stomach, majority of the pathways showed more enrichment during the pre-natal phase (Supplementary Fig.8a).

Next, we identified the patterns for incoming, outgoing (Supplementary Fig.8b, c), and overall signaling associated with epithelial and fibroblast cells (Fig.6b, c). In our analysis, incoming or receiver signals refer to the communication received by a cell population through expressed receptors. Conversely, outgoing or sender signals pertain to the communication initiated by a cell population, typically through the expression of ligands. Our analysis indicated that fibroblasts predominantly served as the signaling senders during the epithelial-fibroblast interplay in the esophagus and stomach (Supplementary Fig.8b, c). For Instance, in the esophagus, the Notch pathway has consistently stronger incoming signals in the epithelium compared to fibroblasts at both E19 and adult stages. At the E19 stage, fibroblasts predominantly exhibit outgoing Notch signals, whereas in adult tissues, epithelial cells emerge as the primary source. This pattern indicates that epithelial cells function as receivers of Notch signals across both examined stages. In contrast, fibroblasts transition from being predominant senders at E19 to a less active signaling role in adults (Supplementary Fig.8b). This observation aligns with our earlier study, emphasizing the significance of basal squamous epithelial stem cells as the primary source of outgoing Notch signal and differentiated cells as the receivers contributing to stratification14.

Overall interactions for cell adhesion signaling pathways, including collagen, THBS, Laminin, and FN1, were higher in fibroblast cells of both pre-and postnatal stages, whereas NCAM, VCAM, and OCLN were found higher only in prenatal fibroblasts. Further, TGF- signaling was highly expressed in fibroblasts of the prenatal stomach, while in postnatal phase, it was more active in the esophagus. When compared between the esophagus and stomach, the signaling strength for BMP, non-canonical WNT (ncWNT), NOTCH, WNT, and FGF was retained at a similar level during esophagus development, whereas in the stomach, signaling was predominant at the early stage (Fig.6b, c). These results provide a comprehensive overview of the evolution of organ-specific epithelial-stromal signaling, which regulates several biological processes and homing of tissue-resident cells during the histogenesis of GE-SCJ52,53.

Next, we checked for the sources and targets of signaling involved in the development associated pathways such as WNT, BMP, TGF-, Insulin-like Growth Factor (IGF), FGF, NOTCH, SHH, and PDGF. We manually collected and curated key ligands (L), receptors (R), and positive and negative modulators (M) for each pathway (from publicly available literature together with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database) and assessed their mRNA expression level across all epithelial and stromal subclusters of E19 and adult esophagus and stomach samples. We used the individual time point-based subclustered fibroblasts (Supplementary Fig.8d, e) and epithelial cells of both the esophagus and stomach for analysis (Supplementary Fig.3f, g). This comprehensive analysis unraveled a detailed expression pattern of L-R-M across various epithelial and stromal subclusters, offering insights into the intricate network of epithelial-fibroblast communication during the GE-SCJ development(Fig.6d). BMP pathway genes were expressed relatively more in the fibroblasts than epithelial cells throughout development. Other pathway genes, such as Igf1, Mdk, and Ptn, were highly expressed in the fibroblasts of both esophagus and stomach during the prenatal stage. The distinct expression profiles of FGF ligands in fibroblasts, with Fgf7 highly expressed in the esophagus and Fgf10 in the stomach, suggest a regulatory role in the GE-SCJ. The expression patterns of Fgf7 and Fgf10 align with their requirement for esophageal13 and stomach48,54 epithelium, as evidenced by organoid studies6,32nonetheless, their precise contribution to GE-SCJ development remains to be elucidated. Hedgehog signaling genes Ihh and Shh were expressed in high levels in stomach epithelia during the prenatal stage, while receptors like Notch1, Sdc1, Fgfr2, and Fgfr3 were expressed in high levels in esophageal epithelial cells. WNT ligand genes Wnt4, Wnt5b, Wnt7b, and Wnt10a were strongly expressed only by squamous epithelia. In particular, Wnt4 was highly expressed among all esophageal epithelial subclusters, indicating its role in epithelial-stromal interaction, proliferation, and differentiation in the stratified epithelium55. WNT receptor Fzd6 plays a significant role in the PCP pathway during development and is an inhibitor of cWNT signaling specifically expressed at a higher level in the esophagus epithelial subclusters56,57. The known ncWNT ligand Wnt5b was briefly expressed in the early esophagus, while Wnt5a58 was highly expressed in the fibroblasts of the stomach. The Wnt inhibitors Dkk2 and Sfrp4 expressions were restricted to the fibroblasts of the adult esophagus (Fig.6d). Taken together, our data reveal differential pathway enrichment and alterations in the signaling patterns between squamous and columnar niches governing GE-SCJ development and homeostasis.

To better understand epithelial-fibroblast interactions, we analyzed signaling interactions based on ligand-receptor pairs between epithelia and fibroblasts at a subcluster level. This analysis retrieved unknown additional information on autocrine and paracrine signaling. We identified significant ligand-receptor pairs by combining differential expression analysis with cell-cell communication analysis. Our results revealed that pathways such as WNT, BMP, TGF-, Epidermal Growth Factor (EGF), FGF, and PDGF were among the significant ones. Overall, cell-cell interaction showed fibroblasts predominantly sent FGF and TGF- signals to the epithelia. In comparison, PDGF and EGF signals were sent predominantly from epithelial cells to fibroblasts. The BMP and WNT signals act in both autocrine and paracrine manner in both epithelia and fibroblasts. However, the type of ligands and receptors involved varied between the esophagus and stomach (Fig.7ac, Supplementary Fig.9ac). Further, we investigated the direction of signaling involving significant ligands identified from our cell-cell interactions (Fig.7ac, Supplementary Fig.9ac, left panel) together with ligands and receptor expression dynamics across developmental time points in both the stomach and esophagus (Fig.7ac, Supplementary Fig.9ac, right panel). Interestingly, Tgfb2 and Fgf7 expression levels increased over time in esophageal fibroblasts, whereas Pdgfa/b/c and Hbegf expression exhibited a declining trend over time in the epithelia of both tissues (Supplementary Data10).

ac Graphical abstract of tissue-specific signaling directions between epithelia and fibroblasts (left); trend plots showing the mean expression dynamics of key ligands and receptors over time (right); for the following signaling pathways of interest: BMP (a) TGF- (b) PDGF (c). Lines colored by gene with shapes representing the epithelial (circle) and fibroblast (triangle) cell population; arrows in graphical depictions show signaling direction and colored by signal origin: squamous epithelia (green), columnar epithelia (light pink) and fibroblast (brown). df Chord diagrams depicting inferred cell-cell communications mediated by multiple significant ligand-receptors between epithelia and fibroblast in esophagus and stomach at E19 and adult time points for BMP (d) TGF- (e) PDGF (f) pathways; in lower half of the circos plot, outer bars colored by signal sending cell groups; inner bars colored by proportion of receiving cell groups; edges colored by signal senders. g, h Confocal images of the adult mouse esophagus (g) and stomach (h) tissue sections immunostained for CDH1 (green), PDGFRA (red), and smRNA-ISH probed for Pdgfa (white), and nuclei (blue). Images are representative of three biological replicates. Yellow arrow indicates the direction of predicted interaction between epithelial and fibroblast cells for PDGF signaling.

Further, the inferred significant L-R pairs for BMP, TGF-, FGF, EGF, cWNT, ncWNT, and PDGF-mediated communications between epithelia and fibroblasts were visualized using a chord diagram (Fig.7df, Supplementary Fig.9df). FGF signaling takes place in both autocrine and paracrine manner, where signals are usually sent by the fibroblasts and directed towards epithelial and fibroblast cells in both the esophagus and stomach (Supplementary Fig.9d). In the case of EGF signaling, different ligands were expressed by the differentiated squamous epithelial cells and stomach epithelial cells (Supplementary Fig.9e). These ligands interact in both autocrine and paracrine settings by binding to either Egfr or Egfr-Erbb2 receptor pair, implying that epithelia are the signaling source and signals were directed either back to epithelia or towards fibroblasts in both esophagus and stomach. Our ligand-receptor analysis of WNT signaling revealed that esophageal cells express Wnt4, Wnt10a, Wnt7b, Wnt5a, and Wnt11 ligands (Supplementary Fig.9f) involved in either one or both canonical and non-canonical WNT pathways. Interestingly, most WNT signal senders were epithelial cells, and receivers were fibroblasts, while non-canonical Wnt5a and -Wnt11 signals were primarily restricted to senders and receivers within fibroblasts. On the other hand, in the stomach, Wnt4 and Wnt5a gene expression were observed, with senders and receivers being bi-directional between epithelial and fibroblast compartments (Supplementary Fig.9f). Further, we spatially validated one of the key L-R interaction predictions where the Pdgfa ligand is primarily sent by Sq1-2 of the esophagus and tuft/endocrine cell types of the stomach targeting different fibroblasts (Fig.7f). We confirmed the presence of Pdgfa sender cells (epithelia) and PDGFRA-expressing receiver cells (fibroblast) in the vicinity in both the esophagus and stomach, suggesting possible interaction (Fig.7g, h). In line with this, a previous study showed that PDGFA expressing intestinal epithelium signals with PDGFRA expressing stromal cells for proper villi formation during gastrointestinal development59. Together, our findings deciphered the direction of the communication network and the role each cell type plays during different developmental stages in the process of GE-SCJ histogenesis.

Continued here:
Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction ... - Nature.com

Researchers find the "recipe" for growing new limbs – ZME Science

For as long as superheroes have been imagined, theres been a superhero who can regrow limbs. Other animals (like salamanders and sharks) do it, why couldnt we? Scientists have also tackled this question because, obviously, humans dont naturally regrow limbs. But before we move on to regrowing limbs ourselves, we need to understand how other species do it.

In a new study, researchers mapped the proteins that kick off limb creation in mice and chicks, finding that a cocktail of just three proteins performs the initial magic.

People in the field have known a lot of the proteins critical for limb formation, but we found that there are proteins we missed, said study co-first author ChangHee Lee, research fellow in genetics in the lab of Cliff Tabin at Harvard Medical School.

When the body produces stem cells, undifferentiated cells capable of self-renewal and differentiation into specialized cell types, its proteins that decide whether the stem cells will be limb-producing or not limb-producing. Lee and colleagues found that just three proteins (Prdm16, Zbtb16, and Lin28a) are sufficient to encourage stem cells to develop into limbs in mice and chicks. A fourth protein, Lin41, speeds the process up.

The role of these protein is not entirely surprising.

Prdm16 is a critical regulator in the development and function of brown adipose tissue. It plays a significant role in determining whether precursor cells become brown fat cells or muscle cells. This protein is also involved in the regulation of hematopoietic (blood cell) stem cell differentiation and may play roles in other tissue types, indicating its importance in cell fate decisions. Lin28a plays a central role in developmental timing and stem cell maintenance and promotes the pluripotency of embryonic stem cells. Meanwhile, Zbtb16 is involved in the regulation of development, differentiation, and apoptosis (programmed cell death). It is also a transcriptional repressor, meaning it can turn off the expression of certain genes.

Together, this combination of cells ensures that stem cells can grow into a new limb.

Weve found the proteins that imbue limbness to this subgroup of mesenchymal cells, said Lee. People didnt know how to make mesenchymal stem cells into limb progenitors before. Now we can do this and study early limb differentiation.

This finding essentially enables researchers to take mouse fibroblasts (the most common type of connective tissue) and direct them to become limb progenitors.

With this approach, the team was able to grow limb progenitor cells and lay them out in a 3D scaffold. Then, they optimized the stem cell growth condition until the cells started to develop towards a limb-like structure. This means the stem cells were able to survive, proliferate, and, critically, maintain their limb progenitor identity after extended culture, said co-senior author Cliff Tabin, also from Harvard Medical school.

The team also tested out several protocols for growing the cells and found what they believe to be the optimal one theyve also made the protocols available for free online.

We tested a lot of conditions to see what the cells like and what they dont like. We found they are particularly finicky about stiffness, said Lee. The only limitation weve found so far is that the cells grow so well that they fill up the containers we use, which is a good problem to have.

The next step also involves identifying what ingredients need to be added for the different types of tissues in limbs, like tendons, ligaments, and skin. They also want to investigate what directs further limb development (like the protein cocktail that directs finger or toe formation, for instance). Ultimately, the team wants to use this approach to regrow different body parts to treat injury or disease.

Its important to understand the basic properties of cells that have a therapeutic value, said Lee. Culturing and maintaining limb progenitor cells and directing them to more specific lineages is fundamentally important for the long-term goal of replenishing cells in the clinic.

The study was published in Developmental Cell.

Thanks for your feedback!

Read more from the original source:
Researchers find the "recipe" for growing new limbs - ZME Science

Evaluating the Injection of Platelet-Rich Plasma on Second Lower Molars Protraction: A Randomized Controlled … – Cureus

Specialty

Please choose I'm not a medical professional. Allergy and Immunology Anatomy Anesthesiology Cardiac/Thoracic/Vascular Surgery Cardiology Critical Care Dentistry Dermatology Diabetes and Endocrinology Emergency Medicine Epidemiology and Public Health Family Medicine Forensic Medicine Gastroenterology General Practice Genetics Geriatrics Health Policy Hematology HIV/AIDS Hospital-based Medicine I'm not a medical professional. Infectious Disease Integrative/Complementary Medicine Internal Medicine Internal Medicine-Pediatrics Medical Education and Simulation Medical Physics Medical Student Nephrology Neurological Surgery Neurology Nuclear Medicine Nutrition Obstetrics and Gynecology Occupational Health Oncology Ophthalmology Optometry Oral Medicine Orthopaedics Osteopathic Medicine Otolaryngology Pain Management Palliative Care Pathology Pediatrics Pediatric Surgery Physical Medicine and Rehabilitation Plastic Surgery Podiatry Preventive Medicine Psychiatry Psychology Pulmonology Radiation Oncology Radiology Rheumatology Substance Use and Addiction Surgery Therapeutics Trauma Urology Miscellaneous

Read the original here:
Evaluating the Injection of Platelet-Rich Plasma on Second Lower Molars Protraction: A Randomized Controlled ... - Cureus

Prognostic Factors in Intra-articular Platelet-Rich Plasma Treatment for Knee Osteoarthritis: A Comparative Analysis of … – Cureus

Specialty

Please choose I'm not a medical professional. Allergy and Immunology Anatomy Anesthesiology Cardiac/Thoracic/Vascular Surgery Cardiology Critical Care Dentistry Dermatology Diabetes and Endocrinology Emergency Medicine Epidemiology and Public Health Family Medicine Forensic Medicine Gastroenterology General Practice Genetics Geriatrics Health Policy Hematology HIV/AIDS Hospital-based Medicine I'm not a medical professional. Infectious Disease Integrative/Complementary Medicine Internal Medicine Internal Medicine-Pediatrics Medical Education and Simulation Medical Physics Medical Student Nephrology Neurological Surgery Neurology Nuclear Medicine Nutrition Obstetrics and Gynecology Occupational Health Oncology Ophthalmology Optometry Oral Medicine Orthopaedics Osteopathic Medicine Otolaryngology Pain Management Palliative Care Pathology Pediatrics Pediatric Surgery Physical Medicine and Rehabilitation Plastic Surgery Podiatry Preventive Medicine Psychiatry Psychology Pulmonology Radiation Oncology Radiology Rheumatology Substance Use and Addiction Surgery Therapeutics Trauma Urology Miscellaneous

View original post here:
Prognostic Factors in Intra-articular Platelet-Rich Plasma Treatment for Knee Osteoarthritis: A Comparative Analysis of ... - Cureus