Category Archives: Stell Cell Research

A New Gig in the Science World – The New York Times

Good morning. Its Wednesday. Well meet the new president and chief executive of a foundation that backs stem cell research. Well also get details on a $5 million fine in a New Jersey tax break scandal.

Jennifer Raab heard about the space launch while being interviewed for a job at the New York Stem Cell Foundation that unexpectedly turned emotional.

Valentina Fossati, a scientist with the foundation, mentioned that test tubes would be part of the payload on a private mission to the International Space Station. The test tubes would contain three-dimensional models of brain tissue that scientists at the foundation had made from stem cells. Fossati said the scientists hoped to learn whether space was the place to study neurodegenerative diseases like Parkinsons disease and multiple sclerosis.

Then Fossati said that she had M.S. herself.

That was very moving, Raab said, to realize that someone had turned her own challenges into working on solving a problem for the general population.

Raab was hired as president and chief executive of the foundation. The space mission was launched on her third day on the job. The project, conducted in collaboration with other research institutions, will study the cells when they are brought back to earth. The researchers will look for changes brought on by microgravity in space and whether such changes could be applied to work on diseases like Parkinsons or M.S.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit andlog intoyour Times account, orsubscribefor all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?Log in.

Want all of The Times?Subscribe.

See more here:
A New Gig in the Science World - The New York Times

Synthetic Stem Cells Market Size & Share to Exceed USD 60.1 Billion by 2034, at CAGR of 23.3%. – InvestorsObserver

Synthetic Stem Cells Market Size & Share to Exceed USD 60.1 Billion by 2034, at CAGR of 23.3%. "Revolutionizing Regenerative Medicine: The Booming Frontier of Synthetic Stem Cells Unleashes Hope and Healing" PMI Leads the Way

Covina, Feb. 01, 2024 (GLOBE NEWSWIRE) -- According to the recent research study, the Synthetic Stem Cells Market size was valued at about USD 8.9 Billion in 2024 and expected to grow at CAGR of 23.3% to extend a value of USD 60.1 Billion by 2034.

What is Synthetic Stem Cells?

Synthetic stem cells can be designed in laboratories by mimicking the properties of natural stem cells, such as their self-renewal capacity and pluripotency (ability to differentiate into multiple cell types). These artificial cells are often created using bioengineering techniques and may involve the use of biomaterials, genetic manipulation, or other advanced technologies. The field of synthetic stem cells holds promise for various medical applications, including regenerative medicine, tissue engineering, and disease treatment. By harnessing the potential of synthetic stem cells, researchers aim to develop innovative therapies for conditions such as injuries, degenerative diseases, and other disorders that involve damaged or malfunctioning tissues.

Driving Factors:

Restrain Factors:

Get Access to Free Sample Research Report with Latest Industry Insights:

https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/3911

*Note: PMI Sample Report includes,

Report scope:

By Region - North America, Latin America, Europe, Asia Pacific, Middle East, and Africa

Europe - UK, Germany, Spain, France, Italy, Russia, Rest of Europe

Asia Pacific - Japan, India, China, South Korea, Australia, Rest of Asia-Pacific

Latin America - Brazil, Mexico, Argentina, Rest of Latin America

Middle East & Africa - South Africa, Saudi Arabia, UAE, Rest of Middle East & Africa

Top Leading Players in Synthetic Stem Cells Market:

Download PDF Brochure:

https://www.prophecymarketinsights.com/market_insight/Insight/request-pdf/3911

Emerging Trends and Opportunities in Synthetic Stem Cells Market:

Challenges of Synthetic Stem Cells Market:

Detailed Segmentation:

Key highlights of the Synthetic Stem Cells Market:

Any query or customization before buying:

https://www.prophecymarketinsights.com/market_insight/Insight/request-customization/3911

Explore More Insights:

Blog: http://www.prophecyjournals.com

Follow us on:

LinkedIn | Twitter | Facebook | YouTube

See the article here:
Synthetic Stem Cells Market Size & Share to Exceed USD 60.1 Billion by 2034, at CAGR of 23.3%. - InvestorsObserver

Stem cell research project to launch into space – Fox Weather

Science experiments are launching to the space station on NASA's 20th Northrop Grumman mission.

A Mayo Clinic research project focusing on gravitys role in bone loss will be one of several experiments aboard a SpaceX Falcon 9 rocket when it lifts off from Cape Canaveral Space Force Station later this month.

The mission is known as NG-20 and is destined to deliver food, supplies and experiments to the International Space Station.

The stem cell experiment has been a long time in the planning and researchers say theyll be able to learn more about tissue repair and regeneration.

"Weve known for some time that astronauts lose bone density on long-duration space flights," Dr. Abba Zubair, a laboratory medicine and pathology specialist at the Mayo Clinic said in a statement. "We want to understand how this occurs so we can work on solutions that prevent bone loss not only in astronauts while theyre in space but also in patients here on Earth."

Northrop Grummans 20th operational cargo delivery flight

(Northrop Grumman / FOX Weather)

Zubair believes the experiment could have implications on clinical trials and travel to Mars.

"We will use what we learn from this project to advance our research on the road to clinical trials, with the ultimate goal of testing therapeutic agents that can prevent or treat bone loss that comes with osteoporosis, as well as bone loss that occurs in patients who are bedridden for long periods of time," Zubair stated.

2024 ROCKET LAUNCH SCHEDULE SHOWS CONTINUED STEADY PACE OF BLAST-OFFS

If weather or technical matters dont delay the launch, itll lift off from Floridas Space Coast on Jan. 29 with spacecraft named after NASA astronaut Dr. Patricia "Patty" Hilliard Robertson.

Robertson was killed during a private plane crash a year before she was set to arrive at the ISS in 2002.

"It is the companys tradition to name each Cygnus spacecraft in honor of an individual who has made substantial contributions to human spaceflight. Dr. Robertson was an accomplished medical doctor and avid acrobatic pilot prior to her NASA career," Northrop Grumman, the producer of the Cygnus spacecraft, stated.

Dr. Patricia "Patty" Hilliard Robertson

(NASA)

A crew of seven aboard the ISS will be tasked with unloading the Cygnus spacecraft a few days after launch.

The mission is Northrop Grummans 20th cargo flight to the ISS, which is expected to continue through 2026.

SEE THE OBJECT HUMANS LEFT BEHIND ON THE MOON

Other experiments aboard the NG-20 will involve testing a 3D metal printer, semiconductor manufacturing and a thermal protection system.

The Mayo Clinic stated a second space flight could launch by the end of the year, which would analyze bone formation and loss.

The combination of experiments is expected to help researchers study bones healing potential and lead to potential treatments that could be used in space and on Earth.

The International Space Station

(NASA)

Visit link:
Stem cell research project to launch into space - Fox Weather

Gut bacteria can be the key to safer stem cell transplantations, study finds – EURACTIV

A new study shows that adverse effects in stem cell transplantation are less common when certain microbes are present in the patients gut, which opens possibilities to create better conditions synthetically and ensure safer outcomes.

Stem cell transplantations can help cure many haematological conditions such as leukaemia, myeloma, and lymphoma in which the bone marrow is damaged and can no longer produce healthy blood cells.

However, there are still considerable risks associated with them, like graft-versus-host disease (GvHD) and transplant-related mortality (TRM).

GvHD can happen after a stem cell transplantation, when in some cases the donor stem cells, the graft, attack healthy cells in the patient, typically in the skin, the gut or the liver.

It affects up to 30% of patients and can be severe. In some cases, patients respond to steroids, but in many others, they are refractory, reducing the survival outcomes and setting the mortality rate as high as 50%.

Some previous studies have shown that the probability of developing GvHD is related to the recipients microbiome, the community of bacteria, fungi, and viruses that reside in patients guts.

Theres been quite a bit of interest in the microbiome because a few landmark studies have shown a correlation between the microbiome and outcomes in stem cell transplantation, Erik Thiele Orberg from TUM (Technical University of Munich) told Euractiv.

We didnt understand the mechanisms that underlie and confer this effect, he explained.

Along with a team of researchers from the TUM and the Universittsklinikum Regensburg (UKR), Thiele Orberg has tried to fill some of the knowledge gaps in a study.

According to Thiele Orberg, these findings will help identify individuals at risk of developing these adverse reactions during stem cell transplantation.

In the study, researchers analysed stool samples from a cohort of patients undergoing stem cell transplantation and confirmed that patients with a higher bacterial diversity had better outcomes, including reduced mortality, lower transplant-related mortality, and less relapse.

They aimed to identify metabolites substances produced by gut bacteria during metabolism that could influence immune responses in patients undergoing stemcell transplantation and identify the microbiome contributing to their production.

Thiele Orberg explained that they were able to find which consortia of protective bacteria, bacteriophages, and metabolites are highly associated with beneficial outcomes and are useful in identifying their lack in patients, creating a risk of developing GVHD and transplant-related mortality.

New possibilities for future procedures

The researchers next step is to figure out how to create this beneficial landscape in the recipients guts.

The studys findings suggest that it may be possible to use synthetic bacteria consortia to produce the protective metabolites identified in the study to improve the transplantations outcomes.

All these new data, Thiele Orberg added, could also be used to improve other already established procedures, like faecal microbiota transplantation (FMT), the transplant of faecal matter from a donor into the intestinal tract of a recipient to change their microbiome.

It is currently being researched in several advanced clinical trials, but we still have the same burning questions in that field, namely what makes a donor a good donor [for FMT] and why do some patients respond and others dont, he explained.

One of the current hypotheses, backed by early pilot experiments, is that the patients who respond to FMT are those able to kick-start their metabolite production after the procedure.

With these new findings, Thiele Orberg explained that a future standard procedure to ensure better outcomes could go as follows:

A patient undergoing stem cell transplantation would be continuously screened using the immune modulatory metabolite risk index. Once a patient is considered to be at risk, they could be prophylactically treated using metabolite cocktails or precision FMT products from donors that have been previously validated for robust metabolite production.

All these discoveries open new investigative paths not only for stem cell transplantation but also for new microbiome studies in other cell therapies.

[Edited by Zoran Radosavljevic]

The rest is here:
Gut bacteria can be the key to safer stem cell transplantations, study finds - EURACTIV

Stem Cell Research Heading to the ISS on Axiom Mission 3 – ISS National Lab

KENNEDY SPACE CENTER (FL), January 17, 2024 More than 5 million people worldwide are living with neurodegenerative disorders like Parkinsons disease and primary progressive multiple sclerosis (PPMS). Researchers funded by the National Stem Cell Foundation (NSCF) are turning to the microgravity environment of the International Space Station (ISS) to better understand and model what causes these debilitating diseases as part of an ISS National Laboratory-sponsored investigation flying on Axiom Spaces third private astronaut mission.

The mission will mark the fifth flight to the orbiting laboratory for NSCF, which is aiming to study tissue changes within stem cell-derived brain organoids to pinpoint where inflammation begins in the brain. Studies have shown a link between inflammation and these types of neurodegenerative diseases, with specialized immune cells within the bodys central nervous system, called microglia, playing a key role in regulating inflammation.

To that end, NSCF will send human brain organoids derived from patients with two different types of degenerative brain diseasesParkinsons and PPMSto the orbiting laboratory. NSCF CEO Paula Grisanti says that the data collected from this flight is crucial. We send research to space because we can see the cells interacting in ways that are not possible on Earth, she said. By adding microglia, we can begin to see where inflammation begins in those processes.

According to Grisanti, findings from the investigation will inform the foundations next mission set to launch in March. Both flights involve organoids created from induced pluripotent stem cells (IPSCs) from affected patients. Approximately 80 organoids will be studied over the two-week mission before being returned to Earth and to NSCF for further analysis.

The absence of gravity acts as an accelerator, speeding up the aging process we see here on Earth, says Grisanti. We turn to space because cells mature more quickly in microgravity, she said. This means we can see the same changes in cells in a matter of weeks or months in microgravity that might take years to see on the ground.

A follow-on investigation will fly on SpaceXs upcoming 30th Commercial Resupply Services (CRS) mission, currently slated for launch in March. On that flight, organoids from patients with Alzheimers disease will be added, and all three sets of cells will be studied over the course of a month. Results from both investigations will be used to inform drug discovery as well as clinical trial assessment for novel therapeutics designed to treat these types of diseases.

By developing human organoids of neurodegenerative diseases, with microglia in the accelerated environment of microgravity, we have added an important new tool and a new way of looking at and understanding how and why neurodegeneration occurs, said Grisanti.

Through private astronaut missions, Axiom Space and the ISS National Lab partner to expand access to the unique microgravity environment for the benefit of humanity. To learn more about all the payloads launching on this mission, please visit Axiom Spaces Research Overview and our launch page.

Download the high-resolution image for this release:Axiom Mission 3

Media Contact: Patrick ONeill 904-806-0035 PONeill@ISSNationalLab.org

# # #

About the International Space Station (ISS) National Laboratory: The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Laboratory allows researchers to leverage this multiuser facility to improve quality of life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit. Through this orbiting national laboratory, research resources on the ISS are available to support non-NASA science, technology, and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space (CASIS) manages the ISS National Lab, under Cooperative Agreement with NASA, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit ourwebsite.

About Axiom Space:Axiom Space is building for beyond, guided by the vision of a thriving home in space that benefits every human, everywhere. The leading provider of human spaceflight services and developer of human-rated space infrastructure, Axiom Space operates end-to-end missions to the International Space Station today while developing its successor, Axiom Station the worlds first commercial space station in low-Earth orbit, which will sustain human growth off the planet and bring untold benefits back home. For more information visit Axiom Spaceswebsite.

View original post here:
Stem Cell Research Heading to the ISS on Axiom Mission 3 - ISS National Lab

Global Cell Line Development Industry on Track for a US$10.6 Billion Boom by 2033, Fuelled by 7.7% CAGR | FMI … – Market Research Blog

In a groundbreaking revelation, the Global Cell Line Development Industry is poised for an extraordinary surge, with sales projected to reach an impressive US$10.6 billion by 2033, propelled by a robust Compound Annual Growth Rate (CAGR) of 7.7% from 2023. These findings, based on a comprehensive analysis by Future Market Insights (FMI), reveal a significant leap from the estimated US$4.7 billion valuation in 2022.

The driving force behind this unprecedented growth is the escalating adoption of bio-therapeutics for the treatment of chronic diseases such as arthritis, diabetes, and cancer. As the demand for innovative therapeutic solutions continues to rise, the Global Cell Line Development Industry is witnessing an increased need for automated cell line development and specialized cell line development services.

Request a Sample of this Report Now! https://www.futuremarketinsights.com/reports/sample/rep-gb-7566

The rapid increase in the prevalence of cancer and neurology disorders and the lack of efficient treatment solutions for these diseases have created the need for more advanced and efficient treatment pathways. Companies and government organizations are investing in research and development activities and are also focusing more on cell line development in search of new cellular pathways to develop novel drugs. The increased spending on biosimilar R&D from exiting biopharmaceutical companies would provide a boost to the Global Cell Line Development Industry.

In recent times contract research organizations have focused on cell line development and cell line research activities. According to the National Institutes of Health (NIH), the estimated total federal spending on all types of stem cell line research for 2017 is US$ 1.58 Bn. In developing countries like India, the government is supporting cell line development through national funding agencies like the Department of Biotechnology (DBT), the Indian Council of Medical Research (ICMR), and the Department of Science and Technology (DST).

Regenerative medicines are the next-generation treatment solution and Cell Line Development or Cell Culture is a vital part of regenerative medicine. Increasing demand for regenerative medicines in cancer treatment would positively impact the growth of the Global Cell Line Development Industry over the forecast period.

The biopharmaceutical companies operating in the development of novel drug lines are expected to hold promising revenue opportunities in the Global Cell Line Development Industry.

Future Market Insights (FMI) has segmented the Global Cell Line Development Industry based on product type, cell line source type, end user, type of cell line, and region.

Product type segment in the Global Cell Line Development Industry is segmented into media and reagents, equipment, and accessories. Reagents and Media are required from incubation to preservation of cell lines. These products are expensive and have repetitive use in cell culture or bio-production. The reagent and media segment in the cell line development market is expected to witness noteworthy growth in terms of revenue owing to a rapid increase in demand for cell culture and cell-based assays.

Global Cell Line Development Industry by cell line source is categorized into mammalian cells and non-mammalian cells. Mammalian cell line development is anticipated to witness significant growth in the overall Global Cell Line Development Industry. This growth of the mammalian cells segment in the cell line development market is driven by increased production of biologics drugs that require mammalian cells. Increasing antibody production is the major driving factor behind the growth of the mammalian cell lines segment in the Global Cell Line Development Industry.

Mammalian cell lines are used to create therapeutic proteins through genetic building and antibodies through viral infection. For example, Gauchers disease, is a genetic disorder characterized by a lack of -glucocerebrosidase enzyme and can be treated by Cerezyme which is a recombinant enzyme produced in mammalian cell lines. Mammalian cell lines are also useful in the production of antibodies and other therapeutic agents such as specific binding proteins that can neutralize disease-causing agents in the body. For example Under the cell line type segment in the Global Cell Line Development Industry, recombinant cell line development is the most demanding type of cell line due to its large application in biologics production, protein interaction, gene activation, toxicity testing, and drug screening.

Request Your Customized Report Now! https://www.futuremarketinsights.com/customization-available/rep-gb-7566

Growing application recombinant cell line development in drug toxicity testing is expected to boost the growth of overall cell line development during the forecast period

North American and European cell line development markets will dominate owing to increasing government funding in cell line development research and rising spending on biosimilar developments. Asia Pacific cell line development market is expected to grow at a high growth rate due to the increased number of research organizations engaged in novel biologics and biosimilars fastest revenue growth in the overall cell line development market.

The Asia Pacific region in the Cell line development market is anticipated to witness increasing demand for biopharmaceuticals and regenerative medicines are expected to boost the growth of the cell line development market.

FMIs report tracks some of the key companies operating in the Global Cell Line Development Industry, such as Selexis SA, GE Healthcare, Corning Incorporated, Thermo Fischer Scientific, Inc., American Type Culture Collection (ATCC), Lonza (Sartorius Stedim Biotech S.A.), Danaher Corporation, Merck KGaA, WuXi Biologics.

Key Segments:

By Source Type:

By End User:

By Cell Lines:

Reach Out to Our Analyst For Your Queries https://www.futuremarketinsights.com/ask-question/rep-gb-7566

Author

Sabyasachi Ghosh(Associate Vice President at Future Market Insights, Inc.) holds over 12 years of experience in the Healthcare, Medical Devices, and Pharmaceutical industries. His curious and analytical nature helped him shape his career as a researcher.

Identifying key challenges clients face and devising robust, hypothesis-based solutions to empower them with strategic decision-making capabilities come naturally to him. His primary expertise lies in areas such as Market Entry and Expansion Strategy, Feasibility Studies, Competitive Intelligence, and Strategic Transformation.

Holding a degree in Microbiology, Sabyasachi has authored numerous publications and has been cited in journals, including The Journal of mHealth, ITN Online, and Spinal Surgery News.

About Future Market Insights (FMI)

Future Market Insights, Inc. (ESOMAR certified, recipient of the Stevie Award, and a member of the Greater New York Chamber of Commerce) offers profound insights into the driving factors that are boosting demand in the market. FMI is the leading global provider of market intelligence, advisory services, consulting, and events for the Packaging, Food and Beverage, Consumer Technology, Healthcare, Industrial, and Chemicals markets. With a team of over 5,000 analysts worldwide, FMI provides global, regional, and local expertise on diverse domains and industry trends across more than 110 countries.

Contact Us:

Nandini Singh Sawlani

Future Market Insights Inc. Christiana Corporate, 200 Continental Drive, Suite 401, Newark, Delaware 19713, USA T: +1-845-579-5705 For Sales Enquiries:sales@futuremarketinsights.com Website:https://www.futuremarketinsights.com LinkedIn|Twitter|Blogs|YouTube

See original here:
Global Cell Line Development Industry on Track for a US$10.6 Billion Boom by 2033, Fuelled by 7.7% CAGR | FMI ... - Market Research Blog

Research being conducted on using stem cells to treat diabetes – UCLA Health Connect

Dear Doctors: My 11-year-old granddaughter was recently hospitalized for two days and diagnosed with Type 1 diabetes. This came as a shock. Her cord blood has been stored since her birth. Is there any way it can be used to help with this disease?

Dear Reader: Diabetes is a disease in which the body is unable to adequately manage blood sugar. It falls into three categories -- Type 1, Type 2 and gestational diabetes. Although the causes and mechanisms of impaired glucose control differ with each type of the disease, they all involve insulin, a hormone produced by the pancreas. Insulin helps glucose move from the blood into the cells, where it is used for energy.

In Type 1 diabetes, the beta cells of the pancreas are either unable to produce insulin, or they produce very little. This allows glucose to build up in the bloodstream, which is damaging to the body. Treatment of Type 1 diabetes involves the use of injectable insulin, managing the diet and close monitoring of blood sugar levels to avoid episodes of low or high blood sugar.

In asking about your granddaughters cord blood, you echo a question that has led to recent groundbreaking research into a cure for diabetes. The focus is on stem cells, which are present in cord blood.

For those who are not familiar, the term "cord blood" refers to the blood that remains in the umbilical cord and the placenta following an infant's birth. It contains stem cells, which are immature cells with the potential to develop into many different types of specialized cells. Stem cells can be used to treat lymphoma, sickle cell anemia, leukemia and some inherited disorders.

Researchers are now studying if the components of cord blood may be useful in treating a wide range of conditions and disorders. This includes cerebral palsy, stroke, spinal cord injury, diabetes, birth asphyxia, age-related cognitive decline and both Type 1 and Type 2 diabetes.

A number of recent studies exploring the use of stem cells to treat, manage or even cure Type 1 diabetes are yielding promising -- and sometimes remarkable -- results. In a small clinical trial in Sweden, certain components of cord blood were used to slow the progression of Type 1 diabetes in patients newly diagnosed with the disease. In another study, a biotech firm in San Francisco used genetically altered stem cells to successfully treat mice with Type 1 diabetes. The notable aspect here was that the stem cells were rendered invisible to the immune system, and thus did not provoke an immune response that could have derailed the treatment. At the University of Chicago, researchers used stem cells from cord blood to teach the immune system not to destroy the pancreatic cells that produce insulin.

Although promising, these advances remain in the research phase. There are no stem cell-based treatments for Type 1 diabetes available at this time. However, recent breakthroughs, not only in stem cell therapies, but also in immunotherapy and transplantation of insulin-producing cells, offer real hope for the near future.

(Send your questions to [emailprotected], or write: Ask the Doctors, c/o UCLA Health Sciences Media Relations, 10960 Wilshire Blvd., Suite 1955, Los Angeles, CA, 90024. Owing to the volume of mail, personal replies cannot be provided.)

Read more:
Research being conducted on using stem cells to treat diabetes - UCLA Health Connect

A novel stem cell solution for preventing ischemia-induced amputations – News-Medical.Net

Across the United States, about 2 million people are living with an amputation and another 185,000 amputations occur every year, according to the Amputee Coalition, a Washington DC-based support group. About 54% of these lost limbs were caused by vascular disease, including diabetes and peripheral arterial disease (PAD).

And as more people are diagnosed with diabetes, in the US and worldwide, the number of amputations keeps rising.

Now, experts at Cincinnati Children's in collaboration with colleagues from Kanazawa University in Japan, have uncovered a new way to prompt blood vessel growth that shows promise as a treatment for preventing ischemia-induced amputations. Their discoveries were based on achieving a deeper understanding about why two patients in a clinical trial in Japan walked away with fully recovered limbs that appeared destined for amputation.

The study, published Dec. 19, 2023, in the journal Cell Reports Medicine, was led by first author Oto Inoue, MD, PhD, a cardiologist from Japan and a research fellow with Cincinnati Children's, and Juan Sanchez-Gurmaches, PhD, Division of Endocrinology.

Their team reports that a specific subset of stem cells isolated from adipose tissue (fat) that also carry the cell surface marker CD271 outperformed all other similar cell types at inducing blood vessel formation. The study also details key molecular mechanisms involved the process.

The scientists confirmed these findings by transplanting this population of human stem cells into in mice with limb ischemia. In every case, the treatment rescued limbs that otherwise would have required amputation.

Then the team analyzed data from a clinical trial to provide initial evidence that such a cell transplant may have already worked in humans. In this case, people with foot ulcers were treated with a generalized mix of stem cells collected from the patients' own tissues. Of the small number of patients analyzed, the two patients with fully recovered limbs received high numbers of CD271-positive stem cells. Those results in combination with the highly consistent benefits found in the mouse testing, appear to justify further work to launch a formal clinical trial, the co-authors say.

Critical limb ischemia is one of the most severe outcomes for PAD and undertreated diabetes. This research shows hopeful results that this new subset of progenitors may have positive therapeutic value. It was quite inspiring to see that one of the patients has recovered enough to return to work."

Oto Inoue, MD, PhD, First Author

With rising rates of obesity plaguing the United States, diabetes incidence has been rising for years, and leading to a host of cardiovascular complications, including PAD leading to critical limb ischemia.

Doctors treat PAD by using medications to slow the disease while performing bypass surgeries or catheter-based procedures to open clogged arteries in the limbs. However, many of the arteries that need treatment in the limbs are too small and difficult to access with surgery. As a result, at least a third of the people who need revascularization therapy are not eligible for surgical interventions. Those who lose their limbs go on to experience significant pain and disability while their underlying cardiovascular disease makes them increasingly likely to experience potentially fatal heart attacks, strokes, and other problems.

Once seen as a purely adult health problem, researchers at Cincinnati Children's and other centers have been finding early signs of vascular disease in teens and even younger children who struggle with severe obesity and diabetes.

Inoue, 40, has been studying PAD in Japan for more than a decade. He came to Cincinnati in 2021 to further study the emerging area of induced angiogenesis through cellular transplantation as a member of the Sanchez-Gurmaches lab.

Many researchers have explored the idea of transplanting progenitor cells to jump-start the body's own tissue-repair capabilities. However, the major limitation has been finding the right cells to use.

To solve this, the team used single-cell transcriptomics to hunt through a haystacky of different types of progenitor cells to find the right population of cells. While many stem cells reside naturally in the bone marrow, this study found the strongest trigger of blood vessel formation lurking within fat tissue. These cells carry the marker CD271, which has been shown in other studies to play important roles in tissue growth.

The team transplanted these human CD271-positive cells into mice to confirm their abilities. The human CD271 cells were 100% effective at prompting enough blood vessel growth in the mice to restore normal blood flow to the diseased limbs.

Evidence that this new cell population may work in human disease also was provided. The authors found that among people who received progenitor cells self-transplanted from fat, those who recovered better and saved their limbs had higher numbers of CD271 progenitor cells present.

"The positive correlation between recovery and the number of CD271+ progenitors injected in the affected area of these patients was striking," Sanchez-Gurmaches says.

The co-authors emphasize that the findings so far are preliminary. The therapeutic value of adipose tissue CD271-positive cells should be evaluated in larger numbers of patients through a formal clinical trial.

One significant issue to resolve is how to obtain enough CD271 progenitor cells to use as treatment. The new paper reports that the number of CD271 progenitors found in the fat of people with insulin resistance can be as much as 75% lower than people without insuline resistance. Also, the cells that are found tend to be less active in generating new vessels.

"Unfortunately, the people living with insulin resistance who face elevated risk of limb ischemia are the same people with low numbers of CD271-postive progenitor cells, which could make self-transplantation more difficult," Inoue says.

More research is needed to determine if these cells can be multiplied in the lab before transplantation.

In addition to Inoue and Sanchez-Gurmaches, Cincinnati Children's co-authors included PhD student Manasi Halurkar, Hee-Woong Lim, PhD, and Vivian Hwa, PhD.

Funding sources for this study include the National Institutes of Health (R21OD031907); the Japan Society for the Promotion of Science (JP16H06828); the Japanese Heart Foundation; the American Heart Association (18CDA34080527), and three grants from Cincinnati Children's (a Trustee Award, a Center for Pediatric Genomics Award and a Center for Mendelian Genomics & Therapeutics Award.

Source:

Journal reference:

Inoue, O., et al. (2023) Single-cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. Cell Reports Medicine. doi.org/10.1016/j.xcrm.2023.101337.

Read more here:
A novel stem cell solution for preventing ischemia-induced amputations - News-Medical.Net

Crucial blood stem cell creation step found by ISU researchers – Tech Explorist

A microbial sensor, Nod1, identifies bacterial infections and aids in developing blood stem cells, offering valuable insights. Raquel Espin Palazons team at Iowa State University discovered this, potentially eliminating the need for bone marrow transplants.

Published in Nature Communications, the finding builds on Espin Palazons earlier work, revealing the role of inflammatory signals in the embryos early stages and activating Nod1 in embryos forces vascular cells to become blood stem cells. This knowledge could pave the way for creating patient-specific blood stem cells derived from their own blood in the lab.

Espin Palazon said, This would eliminate the challenging task of finding compatible bone marrow transplant donors and the complications that occur after a transplant, improving the lives of many leukemia, lymphoma, and anemia patients.

Stem cells act as both the builders and raw materials in our bodies, constantly dividing to renew and create cells for different tissues. Embryonic pluripotent stem cells can become any cell type, while adult stem cells are limited.

Blood stem cells, or hematopoietic stem cells, produce all blood components and are formed before birth in embryos. Raquel Espin Palazons team discovered an immune receptor that activates in embryos, preparing endothelial cells to become stem cells. This finding holds the potential for understanding and manipulating the creation of blood stem cells.

Raquel Espin Palazon said, We know blood stem cells form from endothelial cells, but the factors that set up the cell to switch identity were enigmatic. We didnt know that this receptor was needed or that it was needed this early before blood stem cells even form.

Researchers identified Nod1s role in blood stem cell creation by studying human embryos and using zebrafish. Nod1 levels are closely correlated with blood stem cell development. They collaborated with the Childrens Hospital of Philadelphia to validate this in humans, using induced pluripotent stem cells. Removing Nod1 hindered blood production, confirming its crucial role, similar to its impact on zebrafish blood stem cells.

Researchers, led by Raquel Espin Palazon, found that Nod1 is crucial for blood stem cell development. This discovery opens possibilities for creating blood stem cells from patients samples, a potential game-changer for treating blood disorders without needing bone marrow transplants.

The self-derived stem cells could mitigate risks like graft-versus-host disease. The ongoing research aims to understand the intricate timeline of blood stem cell formation, focusing on developing precise methods. Collaborating with the Childrens Hospital of Philadelphia enhances this effort.

The ultimate goal is therapeutic-grade blood stem cells for curing blood disorder patients. The study involves various Iowa State researchers and collaborators from the University of Edinburgh and Childrens Hospital of Philadelphia.

ISU researchers found a vital step in making blood stem cells. This discovery could create therapeutic-grade stem cells for treating blood disorders, offering a potential breakthrough in regenerative medicine.

The ongoing study focuses on refining methods and understanding the precise timeline of blood stem cell formation. Collaboration with the Childrens Hospital of Philadelphia enhances their efforts. The goal is to provide patients with a revolutionary option, using stem cells derived from their bodies, reducing risks associated with traditional treatments.

Journal reference:

Original post:
Crucial blood stem cell creation step found by ISU researchers - Tech Explorist

Scientists Grew ‘Mini Brains’ From Stem Cells. Then, The Brains Sort-of Developed Eyes. – ScienceAlert

Mini brains grown in a lab from stem cells spontaneously developed rudimentary eye structures, scientists reported in a fascinating paper in 2021.

On tiny, human-derived brain organoids grown in dishes, two bilaterally symmetrical optic cups were seen to grow, mirroring the development of eye structures in human embryos.

This incredible result will help us to better understand the process of eye differentiation and development, as well as eye diseases.

"Our work highlights the remarkable ability of brain organoids to generate primitive sensory structures that are light sensitive and harbor cell types similar to those found in the body," said neuroscientist Jay Gopalakrishnan of University Hospital Dusseldorf in Germany.

"These organoids can help to study brain-eye interactions during embryo development, model congenital retinal disorders, and generate patient-specific retinal cell types for personalized drug testing and transplantation therapies."

Brain organoids are not true brains, as you might be thinking of them. They are small, three-dimensional structures grown from induced pluripotent stem cells - cells harvested from adult humans and reverse engineered into stem cells, that have the potential to grow into many different types of tissue.

In this case, these stem cells are coaxed to grow into blobs of brain tissue, without anything resembling thoughts, emotions, or consciousness.

Such 'mini brains' are used for research purposes where using actual living brains would be impossible, or at the very least, ethically tricky - testing drug responses, for example, or observing cell development under certain adverse conditions.

This time, Gopalakrishnan and his colleagues were seeking to observe eye development.

In previous research, other scientists had used embryonic stem cells to grow optic cups, the structures that develop into almost the entire globe of the eye during embryonic development. And other research had developed optic cup-like structures from induced pluripotent stem cells.

Rather than grow these structures directly, Gopalakrishnan's team wanted to see if they could be grown as an integrated part of brain organoids. This would add the benefit of seeing how the two types of tissue can grow together, rather than just growing optic structures in isolation.

"Eye development is a complex process, and understanding it could allow underpinning the molecular basis of early retinal diseases," the researchers wrote in their paper.

"Thus, it is crucial to study optic vesicles that are the primordium of the eye whose proximal end is attached to the forebrain, essential for proper eye formation."

Previous work in the development of organoids showed evidence of retinal cells, but these did not develop optic structures, so the team changed their protocols. They didn't attempt to force the development of purely neural cells at the early stages of neural differentiation, and added retinol acetate to the culture medium as an aid to eye development.

Their carefully tended mini brains formed optic cups as early as 30 days into development, with the structures clearly visible at 50 days. This is consistent with the timing of eye development in the human embryo, which means these organoids could be useful for studying the intricacies of this process.

There are other implications, too. The optic cups contained different retinal cell types, which organized into neural networks that responded to light, and even contained lens and corneal tissue. Finally, the structures displayed retinal connectivity to regions of the brain tissue.

"In the mammalian brain, nerve fibers of retinal ganglion cells reach out to connect with their brain targets, an aspect that has never before been shown in an in vitro system," Gopalakrishnan said.

And it's reproducible. Of the 314 brain organoids the team grew, 73 percent developed optic cups. The team hopes to develop strategies for keeping these structures viable on longer time-scales for performing more in-depth research with huge potential, the researchers said.

"Optic vesicle-containing brain organoids displaying highly specialized neuronal cell types can be developed, paving the way to generate personalized organoids and retinal pigment epithelial sheets for transplantation," they wrote in their paper.

"We believe that [these] are next-generation organoids helping to model retinopathies that emerge from early neurodevelopmental disorders."

The research has been published in Cell Stem Cell.

A version of this article was first published in August 2021.

Follow this link:
Scientists Grew 'Mini Brains' From Stem Cells. Then, The Brains Sort-of Developed Eyes. - ScienceAlert