Category Archives: Stell Cell Research

New Stem Cell Research Offers First Glimpse of Early Human Development – SciTechDaily

Using a novel stem cell model, scientists have advanced our understanding of gastrulationa critical early stage of human developmentoffering new insights that could improve outcomes in pregnancy and the understanding of developmental disorders. The image above shows a blastoid, a stem cell model system that allows scientists to study the nuances of human gastrulation. Credit: Laboratory of Stem Cell Biology and Molecular Embryology at The Rockefeller University

Its one of lifes most defining momentsthat crucial step in embryonic development, when an indistinct ball of cells rearranges itself into the orderly three-layered structure that sets the stage for all to come. Known as gastrulation, this crucial process unfolds in the third week of human development. Gastrulation is the origin of our own individualization, the emergence of our axis, says Rockefellers Ali Brivanlou. It is the first moment that separates our heads from our behinds.

Observing the molecular underpinnings of this pivotal event would go a long way toward helping scientists prevent miscarriages and developmental disorders. But studying human gastrulation has proven both technologically difficult and ethically complicated, and thus current approaches have had limited success in expanding our understanding of early human development. Now Brivanlou and colleagues have demonstrated how a stem cell model system known as a blastoid can allow the study of the nuances of human gastrulation in the presence of pre-implantation extra-embryonic cell types. Their study, published in Stem Cell Reports, describes the scientific and clinical potential of this new platform.

Gastrulation was a tremendous black box. We had never seen ourselves at that stage, Brivanlou says. This moves us closer to understanding how we begin.

Prior to implantation, an embryo is a ball of about 250 cells organized as a blastocyst. This elusive ball of cells was difficult to study directly, so scientists developed blastoidsstem-cell-based blastocyst models. Blastoids can be cloned, experimentally manipulated, and programmed, allowing scientists to study identical blastoids over and over again.

The question was whether blastoids could gastrulate in vitro. Unlike a blastocyst in vivo, which rolls around in the uterus until it attaches to maternal tissue, blastoids were good at modeling the ball of cells from which life emerges, but it remained unclear whether this in vitro model could model later stages of human development. That is, until Brivanlou developed a platform to allow blastoids to attach in vitro, and thereby progress toward gastrulation.

We were then able to see epiblast symmetry breaking, marked by BRA expression, for the first time with the high molecular resolution, says Riccardo De Santis, a research associate in the Brivanlou lab and lead author on the study. This allowed us to start asking more detailed questions about the earliest moments of life.

With this unprecedented clarity, the team directly observed two key moments in gastrulation: the first epiblast symmetry-breaking event and the emergence of the molecular markers of the primitive streak and mesoderm upon in vitro attachment.

The primitive streak is a structure that marks the beginning of gastrulation and lays the foundation for the three primary layers of the embryo. One of those layers, the mesoderm, forms during gastrulation and gives rise to muscles, bones, and the circulatory system. The team discovered that, as early as seven days after attachment, they were already able to use molecular markers to detect the earliest signature of a nascent primitive streak and mesodermal cells.

To confirm their findings, the team also compared the blastoid results with data from in vitro attached human embryos and demonstrated that blastoids express the same genes in vitro that a regular embryo would at that stage in vivo, a strong demonstration of the power of blastoids as models for human embryonic development. Further highlighting the power of the labs in vitro attached blastoid system, the team then used it to demonstrate that pathways that regulate the rise of the primitive streak and mesoderm in vivo also regulate blastoids symmetry breaking in vitroall with nothing but stem-cell-derived blastoid models.

Along the way, the team also demonstrated that gastrulation in vitro can begin at day 12, earlier than once thought. This will change textbooks, Brivanlou says. Weve contributed to redefining the molecular signature and timing of the onset of gastrulation upon in vitro attachment.

The results demonstrate that blastoids, when combined with the Brivanlou labs unique attachment platform, are now capable of conveying insights into early human development that have long been inaccessible. De Santis envisions a future in which blastoid-based research leads to advancements in diagnosing and treating developmental disorders, or offers insights into potential causes of early miscarriages during gastrulation.

Many couples cant have babies because the embryo doesnt attach properly, and many miscarriages occur in the first few weeks of pregnancy, De Santis explains. We now have a model system that can help us understand the molecular mechanism that defines whether a pregnancy will be successful or not. In the near future, De Santis hopes to combine this method with machine learning to help predict pregnancy outcomes and the trajectories of developmental disorders by observing how model blastoids built with particular genetic makeups fare in vitro.

A better understanding of gastrulationand the ability to study it with a reliable model systemimpacts everything from survival of the fetus to autism to neurodegeneration.

Reference: The emergence of human gastrulation upon in vitro attachment by Riccardo De Santis, Eleni Rice, Gist Croft, Min Yang, Edwin A. Rosado-Olivieri and Ali H. Brivanlou, 14 December 2023, Stem Cell Reports. DOI: 10.1016/j.stemcr.2023.11.005

Visit link:
New Stem Cell Research Offers First Glimpse of Early Human Development - SciTechDaily

Paralyzed man who can walk again shows potential benefit of stem cell therapy – ABC News

This page either does not exist or is currently unavailable.

From here you can either hit the "back" button on your browser to return to the previous page, or visit the ABCNews.com Home Page. You can also search for something on our site below.

STATUS CODE: 500

See the rest here:
Paralyzed man who can walk again shows potential benefit of stem cell therapy - ABC News

Vitamin A’s Puzzling Effects Unraveled: New Research Sheds Light on Stem Cell Repair Mechanisms – SciTechDaily

Hair follicle stem cells (green) mobilize and expand (white) to help repair the skins barrier by differentiating into epidermal lineages (red). Credit: Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development at The Rockefeller University

When a child falls off her bike and scrapes her knee, skin stem cells rush to the rescue, growing new epidermis to cover the wound. However, only a portion of these stem cells, which eventually repair the damage, are typically assigned the task of replenishing the epidermis that protects her body.

Others are former hair follicle stem cells, which usually promote hair growth but respond to the more urgent needs of the moment, morphing into epidermal stem cells to bolster local ranks and repair efforts. To do that, these hair follicle stem cells first enter a pliable state in which they temporarily express the transcription factors of both types of stem cells, hair, and epidermis.

Now, new research demonstrates that once stem cells have entered this state, known as lineage plasticity, they cannot function effectively in either role until they choose a definitive fate. In a screen to identify key regulators of this process, retinoic acid, the biologically active form of Vitamin A, surfaced as a surprising rheostat. The findings shed light on lineage plasticity, with potential clinical implications.

Our goal was to understand this state well enough to learn how to dial it up or down, says Rockefellers Elaine Fuchs. We now have a better understanding of skin and hair disorders, as well as a path toward preventing lineage plasticity from contributing to tumor growth.

Lineage plasticity has been observed in multiple tissues as a natural response to wounding and an unnatural feature of cancer. But minor skin injuries are the best place to study the phenomenon, because the skins outer layers are subject to perpetual abuse. And when the scratches or abrasions damage the epidermis, hair follicle stem cells are the first responders.

Fuchs and colleagues began to look more closely at lineage plasticity because it, can act as a double-edged sword, explains Matthew Tierney, lead author on the paper and an NIH K99 pathway to independence postdoctoral awardee in the Fuchs lab. The process is necessary to redirect stem cells to parts of the tissue most in need but, if left unchecked, it can leave those same tissues vulnerable to chronic states of repair and even some types of cancer.

To better understand how the body regulates this process, Fuchs and her team screened small molecules for their ability to resolve lineage plasticity in cultured mouse hair follicle stem cells, under conditions that mimicked a wound state. They were surprised to find that retinoic acid, a biologically active form of vitamin A, was essential for these stem cells to exit lineage plasticity and then be coaxed to differentiate into hair cells or epidermal cells in vitro.

Through our studies, first in vitro and then in vivo, we discovered a previously unknown function for vitamin A, a molecule that has long been known to have potent but often puzzling effects on skin and many other organs, Fuchs says. The team found that genetic, dietary, and topical interventions that boosted or removed retinoic acid from mice all confirmed its role in balancing how stem cells respond to skin injuries and hair regrowth. Interestingly, retinoids did not operate on their own: their interplay with signaling molecules such as BMP and WNT influenced whether the stem cells should maintain quiescence or actively engage in regrowing hair.

The nuance did not stop there. Fuchs and colleagues also demonstrated that retinoic acid levels must fall for hair follicle stem cells to participate in wound repairif levels are too high, they fail to enter lineage plasticity and cant repair woundsbut if the levels are too low, the stem cells focus too heavily on wound repair, to the expense of hair regeneration.

This may be why vitamin As effects on tissue biology have been so elusive, Fuchs says.

One result of retinol biology remaining obscure for so long is that retinoid and vitamin A applications have long produced confusing results. Topical retinoids are known to stimulate hair growth in wounds, but excessive retinoids have been shown to prevent hair cycling and cause alopecia; both positive and negative effects of retinoids on epidermal repair have been documented through various studies. The present study brings greater clarity by casting retinoids in a more central roleat the helm of regulating both hair follicle and epidermal stem cells.

By defining the minimal requirements needed to form mature hair cell types from stem cells outside the body, this work has the potential to transform the way we approach the study of hair biology, Tierney says.

How retinoids impact other tissues remains to be seen. When you eat a carrot, vitamin A gets stored in the liver as retinol where it is sent to various tissues, Fuchs says. Many tissues that receive retinol and convert it to retinoic acid need wound repair and use lineage plasticity, so it will be interesting to see how broad the implications of our findings in skin will be.

The Fuchs lab is also interested in how retinoids impact lineage plasticity in cancer, particularly squamous and basal cell carcinoma. Cancer stem cells never make the right choicethey are always doing something off-beat, Fuchs says. As we were studying this state in many types of stem cells, we began to realize that, when lineage plasticity goes unchecked, its a key contributor to cancer.

Basal cell carcinomas have relatively little lineage plasticity and are far less aggressive than squamous cell carcinomas. If future studies demonstrate that suppressing lineage plasticity is key to controlling tumor growth and improving outcomes, retinoids may have a key role to play in treating these cancers.

Its possible that suppressing lineage plasticity can improve prognoses, Fuchs says. This hasnt been on the radar until now. Its an exciting front to now investigate.

Reference: Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices by Matthew T. Tierney, Lisa Polak, Yihao Yang, Merve Deniz Abdusselamoglu, Inwha Baek, Katherine S. Stewart and Elaine Fuchs, 8 March 2024, Science. DOI: 10.1126/science.adi7342

Originally posted here:
Vitamin A's Puzzling Effects Unraveled: New Research Sheds Light on Stem Cell Repair Mechanisms - SciTechDaily

$343m investment to build stem-cell research center – BioProcess Insider – BioProcess Insider

Novo Nordisk Foundation will invest up to $343 million over a ten-year period to establish an international research center focused on stem cell medicine.

The center is a partnership entitled reNEW between the University of Copenhagen, Denmark, Murdoch Childrens Research Institute, Australia, and Leiden University Medical Center, The Netherlands.

The aim of the collaboration is to drive future stem cell-based treatments. The governing hub will be based at the Faculty of Health and Medical Sciences, University of Copenhagen and Melissa Little from the Murdoch Childrens Research Institute will serve as the CEO of the reNEW partnership, as well as being appointed executive director and professor of the center.

Image: Melissa Little, CEO of reNEW

reNEW builds international critical mass, expands the horizons and facilities available to all sites and enables the creation of international teams working towards targeted outcomes, Little told us.

She continued: Stem cell biology has come of age. The challenge now is to apply this understanding to outcomes that will benefit society whilst supporting these on research excellence.

Experts across the three institutions will work together to develop therapeutic options for patients with incurable diseases. According to the organization, the combination of exchange programs and joint technology platforms in the reNEW model will drive the partnership and train upcoming scientists in translational stem medicine.

My aim is to create an incentivized structure in which together the researchers can pivot to targeted product development and deliver these outcomes by creating more than the sum of the parts, Little said.

reNEW has separated the research into three themes, which includes the following:

reBUILD theme: This will focus on the use of stem cells to regenerate and/or recreate tissue once it has been damaged or destroyed. Programmes include stem cell-based therapies for diseases such as congenital heart disease, diabetes, ulcerative colitis and chronic renal disease, and Parkinsons disease.

reSOLVE theme: This sees the collaboration search for potential drug candidates using stem cell-based models of human tissue. This includes lab grown models of mini-organs to treat conditions like chronic ulceration and inherited kidney and heart disease.

reWRITE theme: This will use a combination of gene editing and stem cell technologies to produce treatment strategies for genetically inherited diseases. For example, immune deficiency disorders and progressive congenital muscle disorders.

My particular area of interest is kidney disease, said Little. While we are now able to recreate models of the human kidney from pluripotent stem cells, we wish to apply these to screen for treatments for inherited kidney disease and ultimately to bioengineer transplantable kidney tissue.

The $343 million funding will support 24 groups across the three sites together with advanced facilities available and accessible to researchers across the consortium.

Read more here:
$343m investment to build stem-cell research center - BioProcess Insider - BioProcess Insider

Cell Isolation/Cell Separation Market Growth, Development Factors, Business Insights, Value Chain and Sales … – Taiwan News

Introduction:

The global Cell Isolation/Cell Separation Market is on an unprecedented trajectory, projected to reach a staggering USD 17.3 billion by 2025, as reported by Report Ocean Market Research. This surge is underpinned by a myriad of factors, including the evolving landscape of medical research, the surge in stem cell isolation practices, and the increasing emphasis on personalized medicines. With North America currently dominating the market, closely followed by Europe and the Asia Pacific, the Cell Isolation/Cell Separation Market is witnessing a transformative phase with a focus on driving innovation for treating diseases like cancer.

Request To Download Free Sample of This Strategic Report @-https://reportocean.com/industry-verticals/sample-request?report_id=5257

Market Dynamics:

For an in-depth analysis, you can refer sample copy of the report @-https://reportocean.com/industry-verticals/sample-request?report_id=5257

Get a Free Sample PDF copy of the report @-https://reportocean.com/industry-verticals/sample-request?report_id=5257

Key Market Players:

Leading the charge in the Cell Isolation/Cell Separation Market are prominent players like Thermo Fisher Scientific, BD Biosciences, Beckman Coulter, Merck & Company, GE Healthcare, STEMCELL Technologies Inc., Terumo BCT, Bio-Rad Laboratories Inc., PluriSelect Life Sciences, Sigma-Aldrich Corporation, Clontech Laboratories, and Miltenyi BioTec. These companies are at the forefront of technological advancements, relentlessly pursuing breakthroughs in personalized medicine and cell research.

Conclusion:

As the Cell Isolation/Cell Separation Market hurtles toward a projected valuation of USD 17.3 billion by 2025, it stands as a testament to the remarkable strides in medical research and treatment methodologies. The convergence of technological innovation, a surge in stem cell practices, and the global shift towards personalized medicine are reshaping the landscape of healthcare. The markets dynamics, driven by research and development, government funding, and a growing interest in stem cell isolation, underscore its transformative potential.

The dominance of consumables, the varied techniques employed, and the focus on human cell isolation collectively paint a comprehensive picture of a market on the cusp of revolutionary breakthroughs. As North America retains its stronghold and the Asia Pacific emerges as a powerhouse, the global community is poised to witness pioneering advancements in precision medicine and disease treatment. The market players, with their unwavering commitment to innovation, are steering the Cell Isolation/Cell Separation Market toward a future where tailored medical solutions redefine the boundaries of possibility.

These responses will function a complete examination of the:

Access Full Report Description, TOC, Table of Figure, Chart, etc.-https://reportocean.com/industry-verticals/sample-request?report_id=5257

Report Ocean is a renowned provider of market research reports, offering high-quality insights to clients in various industries. Their goal is to assist clients in achieving their top line and bottom line objectives, thereby enhancing their market share in todays competitive environment. As a trusted source for innovative market research reports, Report Ocean serves as a comprehensive solution for individuals, organizations, and industries seeking valuable market intelligence.

Email:sales@reportocean.com

Address: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611, United States

Telephone: +1 888 212 3539 (US Toll-Free)

For more information and to explore their offerings, visit their website at:https://www.reportocean.com/

See original here:
Cell Isolation/Cell Separation Market Growth, Development Factors, Business Insights, Value Chain and Sales ... - Taiwan News

Stem Cell Science and Human Research Studies Ahead of Cargo Arrival – NASA Blogs

The seven-member Expedition 70 crew gathers for a dinner time portrait inside the International Space Stations Unity module. In the front row from left are, Flight Engineers Konstantin Borisov of Roscosmos, Jasmin Moghbeli of NASA, and Satoshi Furukawa from JAXA (Japan Aerospace Exploration Agency). In the back row are, Commander Andreas Mogensen from ESA (European Space Agency), NASA Flight Engineer Loral OHara, and Roscosmos Flight Engineers Oleg Kononenko and Nikolai Chub.

A cargo craft loaded with nearly three tons of food, fuel, and supplies is currently in orbit heading to the International Space Station, targeting early Saturday for docking. As the Expedition 70 crew members await the arrival of Progress 87, stem cell science, heart rate data collection and eye exam activities topped their research schedule on Thursday.

Progress 87 successfully launched from the Baikonur Cosmodrome in Kazakhstan at 10:25 p.m. EST Wednesday, Feb. 14. On Saturday, Feb. 17, the cargo craft will automatically dock to the aft port of the Zvezda service module at 1:12 a.m., with cosmonauts Oleg Kononenko and Nikolai Chub on duty to monitor the spacecrafts arrival.

Aboard station, four orbital residents spent most of the day on theMesenchymal Stem Cells in Microgravity Induced Bone Loss(MABL-A) investigation. MABL-Adelivered aboard Northrop Grummans20thCommercial Resupply Missionassesses the effects of microgravity on bone marrow stem cells.In the morning, NASA astronaut Loral OHara collected BioCell samples inside the habitat with assistance from JAXA (Japan Aerospace Exploration Agency) Flight Engineer Satoshi Furkawa. In the afternoon, NASA astronaut Jasmin Moghbeli took over the BioCell sampling work with assistance from ESA (European Space Agency) Commander Andreas Mogensen.

Mogensen also spent part of the day photographingPlant-Microbe Interactions in Space(APEX-10) petri platesanother investigation that launched aboard Northrop Grummans 20th resupply missionto examine whether beneficial microbes can mitigate some of the negative effects the space environment can have on plant growth and development.

In the afternoon, OHara conducted an array of activities for the CIPHER investigation, including the collection of heart rate data and completing an eye exam. CIPHER, or Complement of Integrated Protocols for Human Exploration Research, is an all-encompassing, total-body approach that examines how humans adapt tospaceflight.

In the Roscosmos segment, Chub worked with Flight Engineer Konstantin Borisov to film an educational video that demonstrates the capabilities of Roscosmos scientific hardware aboard station. Meanwhile, Kononenko conducted some routine maintenance in Zarya module. Near the end of the day, Borisov examined the Earths nighttime atmosphere in near-ultraviolet for an ongoing investigation aboard the orbital lab.

Learn more about station activities by following the space station blog, @space_station and @ISS_Research on X, as well as the ISS Facebook and ISS Instagram accounts.

Get weekly video highlights at: https://roundupreads.jsc.nasa.gov/videoupdate/

Get the latest from NASA delivered every week. Subscribe here: http://www.nasa.gov/subscribe

Read more here:
Stem Cell Science and Human Research Studies Ahead of Cargo Arrival - NASA Blogs

Space Station Astronauts Conduct Stem Cell Science and Human Research Ahead of Cargo Arrival – SciTechDaily

The suns last rays illuminate Earths atmosphere and refract in the camera lense in this photograph of an orbital sunset from the International Space Station as it soared 261 miles above the Pacific Ocean off the northern coast of Japan. Credit: NASA

A cargo craft loaded with nearly three tons of food, fuel, and supplies is currently in orbit heading to the International Space Station, targeting early Saturday for docking. As the Expedition 70 crew members await the arrival of Progress 87, stem cell science, heart rate data collection, and eye exam activities topped their research schedule on Thursday.

Progress 87 successfully launched from the Baikonur Cosmodrome in Kazakhstan at 10:25 p.m. EST Wednesday, February 14. On Saturday, February 17, the cargo craft will automatically dock to the aft port of the Zvezda service module at 1:12 a.m., with cosmonauts Oleg Kononenko and Nikolai Chub on duty to monitor the spacecrafts arrival.

NASA astronaut and Expedition 70 Flight Engineer Loral OHara treats brain cell-like samples inside the Kibo laboratory modules Life Science Glovebox aboard the International Space Station. She was processing the samples for the Cerebral Ageing space biology study that is exploring the degenerative processes of brain cells. Results may provide insights into accelerated aging symptoms seen in space and neurodegenerative diseases experienced on Earth. Credit: NASA

Aboard the station, four orbital residents spent most of the day on the Mesenchymal Stem Cells in Microgravity Induced Bone Loss(MABL-A) investigation. MABL-Adelivered aboard Northrop Grummans20thCommercial Resupply Missionassesses the effects of microgravity on bone marrow stem cells.In the morning, NASA astronaut Loral OHara collected BioCell samples inside the habitat with assistance from JAXA (Japan Aerospace Exploration Agency) Flight Engineer Satoshi Furkawa. In the afternoon, NASA astronaut Jasmin Moghbeli took over the BioCell sampling work with assistance from ESA (European Space Agency) Commander Andreas Mogensen.

Mogensen also spent part of the day photographingPlant-Microbe Interactions in Space(APEX-10) petri platesanother investigation that launched aboard Northrop Grummans 20th resupply missionto examine whether beneficial microbes can mitigate some of the negative effects the space environment can have on plant growth and development.

Astronauts headed to the International Space Station can now sign up for a broad suite of experiments that will help scientists pinpoint how the human body reacts to long-duration missions in space. The research will help NASA prepare astronauts for missions to the Moon, Mars, and beyond. Credit: NASA

In the afternoon, OHara conducted an array of activities for the CIPHER investigation, including the collection of heart rate data and completing an eye exam. CIPHER, or Complement of Integrated Protocols for Human Exploration Research, is an all-encompassing, total-body approach that examines how humans adapt tospaceflight.

In the Roscosmos segment, Chub worked with Flight Engineer Konstantin Borisov to film an educational video that demonstrates the capabilities of Roscosmos scientific hardware aboard the station. Meanwhile, Kononenko conducted some routine maintenance in the Zarya module. Near the end of the day, Borisov examined the Earths nighttime atmosphere in near-ultraviolet for an ongoing investigation aboard the orbital lab.

More:
Space Station Astronauts Conduct Stem Cell Science and Human Research Ahead of Cargo Arrival - SciTechDaily

Unlocking the Secrets of Stem Cells in Zero Gravity – SciTechDaily

The Expedition 70 crew at the International Space Station embarked on a busy week filled with stem cell research and preparations for the arrival of the Progress 87 cargo craft.

A busy week of science and prep for an upcoming cargo delivery kicked off aboard the International Space Station on Monday as the Expedition 70 crew set its sights on new stem cell research and orbital training.

Two cosmonauts, Flight Engineers Oleg Kononenko and Nikolai Chub, are gearing up to be on duty monitoring the automated docking of the Progress 87 cargo craft, which is scheduled to launch from the Baikonur Cosmodrome in Kazakhstan at 10:25 p.m. EST on Wednesday, February 14. Loaded with nearly three tons of food, fuel, and supplies, Progress will dock to the station around 1:12 a.m. Saturday, February 17. In preparation of the upcoming cargo delivery, the cosmonauts trained on the telerobotically operated rendezvous unit, or TORU, which allows them to remotely control an arriving spacecraft in the unlikely event it could not automatically dock.

The Progress 84 cargo craft is pictured shortly after undocking from the International Space Stations Poisk Module. Credit: NASA

Meanwhile, the Progress 85 cargo craft, which arrived to the station about six months ago, will undock from the station at 9:09 p.m. Monday, February 12 About three hours later, it will be commanded to deorbit before harmlessly burning up over the Pacific Ocean.

While training for the upcoming mission was underway, two NASA Flight Engineers, Jasmin Moghbeli and Loral OHara, focused a majority of their day on the Mesenchymal Stem Cells in Microgravity Induced Bone Loss (MABL-A) investigation. MABL-A, which was delivered aboard Northrop Grummans 20th Commercial Resupply Mission nearly two weeks ago, assesses the effects of microgravity on bone marrow stem cells. The duo worked separately throughout the day to sample BioCells inside the habitat with assistance from JAXA (Japan Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa.

NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli works inside the Life Science Glovebox for the Microgravity Associated Bone Loss-A investigation. She was processing bone cell samples obtained from human donors on Earth and exploring space-caused bone loss. Results may help doctors learn how to protect and treat astronauts on long-term missions and inform treatments for bone conditions on Earth. Credit: SciTechDaily.com

Later on, Moghbeli donned the Bio-Monitor garment and headband, which monitors and records vital signs while crew members perform daily activities. Afterward, she was joined by Furukawa, ESA (European Space Agency) Commander Andreas Mogensen, and Roscosmos Flight Engineer Konstantin Borisov to complete orbital training in the unlikely event an emergency were to occur on station.

Near the end of the day, Mogensen, with assistance from Furukawa, unstowed the NanoRacks External Platform and then mounted a pressure management device to it before configuring power and data cables.

Continue reading here:
Unlocking the Secrets of Stem Cells in Zero Gravity - SciTechDaily

Improving stem cell research – Harvard School of Engineering and Applied Sciences

Repetitive, manual tasks are an inevitability in managing daily operations in a research setting. But the more time researchers spend on basic maintenance, the less time they have to do cutting-edge research.

Third-year students at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) worked with the Harvard Stem Cell Institute iPS Core Facility last fall to design a pair of solutions to reduce the time spent on day-to-day operations. They created an automated task management and scheduling system called WorkFlow, and a semi-robotic cell imaging system called CytoScope. The students presented their designs as their final project for ES96: Engineering Problem Solving and Design Project, a core course for third-year SEAS students pursuing S.B. engineering degrees. This section was taught by David Mooney, Robert P. Pinkas Family Professor of Bioengineering.

This was the best design project Ive ever been part of, said project co-lead Ryan Link, a mechanical engineering concentrator. We started from scratch, didnt know what wed have at the end. It was this whole design process: start from literally a blank piece of paper, create each piece, go through and solve problems along the way, and build something in the end.

The iPS Core Facility derives and distributes induced pluripotent stem cells (IPSCs). Unlike embryonic stem cells, IPSCs can be taken from adults and start off as cells that have already differentiated into a specific use, such as kidney or heart cells. The cells can then be regressed into stem cells, which can differentiate into a new function.

I could walk up to an adult, take some cells, turn them into stem cells and use them to recreate their kidney or liver, Link said.

Because IPSCs can be taken from adults, they have the potential to enable stem cell research without the ethical and political issues associated with embryonic stem cells.

As bioengineers, a lot of the stuff that we research has ethical concerns in mind, said Aaron Zheng, a bioengineering concentrator and project co-lead. So, it was very interesting for us to work on this project to further a field that has a lot of scientific implications without the preexisting ethical implications.

The iPS Core Facility challenged the 13 ES96 students to identify ways to improve productivity and operations in the lab. That led to a full month of background research and interviews to identify the most-pressing needs.

We spent a month deriving a one-sentence problem statement, which is what we framed the rest of the semester around, Zheng said. It was about what our client needed the most, what their biggest challenges were, and what solution would best address that problem.

The students then brainstormed potential solutions, slowly whittling down the list based on factors that included cost of materials, level of impact, and feasibility of delivery by the end of the semester.

The students worked hard, demonstrated significant creativity and ingenuity, and I think really learned how to work as a team on a complex, multicomponent project, Mooney said. The Teaching Fellows, Shawn Kang and Kyle Ruark, and Active Learning Labs staff Melissa Hancock and Avery Normandin provided access to critical resources and important training, and the students worked closely with the iPS Core Facility Director Dr. Laurence Daheron to both identify the key issues and develop solutions.

As a problem statement, the students decided the facilitys biggest need was to improve the inefficiencies in its monitoring technology and process of culturing sample cells. The CytoScope addresses those inefficiencies by automating the imaging process for stem cell plates stored overnight in incubators.

When researchers would check on the IPSCs every morning, theyd have to take them out, put them under a microscope, examine them by hand and try to determine what was going on, Link said. Theyd have to do that for every cell plate or cell well, which means a lot of manual labor for a pretty simple task. Our idea was to create a system inside the incubator that could image the cells autonomously overnight, and the researchers could just look at the images in the morning without having to do all these extra steps.

WorkFlow is a software system that combines calendar, messaging, spreadsheet and task-management programs, making it easier for researchers to track what their colleagues are doing and when. Both final products stressed the importance of feasibility, of designing engineering solutions that can be delivered to a client by a specific date.

View original post here:
Improving stem cell research - Harvard School of Engineering and Applied Sciences

Researchers discover new class of compound that targets cancer stem cells – News-Medical.Net

Many cancer therapies, in addition to producing numerous side effects, fail to achieve complete tumour remission, partly due to the presence of cancer stem cells, which are difficult to eradicate. These cells can self-renew and play a key role in tumor recurrence and metastasis processes, so there is significant interest in developing therapies that target this subset of tumour cells.

A collaboration between chemists from the Center for Research in Biological Chemistry and Molecular Materials (CiQUS), led by Prof. JL Mascareas, and cell biologists from the CSIC (Instituto de Investigaciones Biomdicas Sols-Morreale, IIBM CSIC-UAM, Madrid), led by Dr. Bruno Sainz, has led to the discovery of a new class of compound that targets cancer stem cells and reduces their potential to generate tumors. For some years, Prof. Mascareas' laboratory has been conducting basic research on certain molecules based on metal complexes that can interact very selectively with DNA. These findings have allowed Dr. Sainz's group to conduct extensive studies with mice implanted with patients' tumors, demonstrating a powerful antitumor effect of these complexes. The scientists have demonstrated anticancer effects in pancreatic, colorectal, and osteosarcoma tumors, with low secondary toxicity, and studies on other types of cancer are currently underway.

Cancer stem cells rely on mitochondrial respiration to survive and evade the immune system's defenses, which represents a metabolic Achilles' heel. Mechanistic studies carried out this time suggest that the new compound, called Ru1, promotes a decrease in the expression of genes necessary for this respiration, the main energy source for these cells, causing them to lose their cancerous potential. Dr. Sainz's group has also demonstrated that combined therapies with other antitumor agents are possible, resulting in additive effects.

The preliminary results of the scientific work, which also includes contributions from the USC's ACUIGEN group, have just been published in a leading cancer research journal. All these studies have been made possible thanks to the support of different entities, including the Ignicia program (Xunta de Galicia), the Spanish Association Against Cancer, or the CaixaImpulse program ("la Caixa" Foundation), and the project is currently in an advanced stage for its transfer and preclinical valorization.

Source:

Journal reference:

Alcal, S., et al. (2024). Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy.Journal of Experimental & Clinical Cancer Research. doi.org/10.1186/s13046-023-02931-7.

More:
Researchers discover new class of compound that targets cancer stem cells - News-Medical.Net